BibTex RIS Cite

Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption

Year 2011, Volume: 39 Issue: 2, 163 - 172, 01.04.2011

Abstract

Cryogels are known as a novel generation of stationary phases in the separation science, and they have been succesfully used as efficient adsorbents for separation and purification of biomolecules, such as proteins, enzymes, DNA, cell organelles and viruses in downstream processes. In this study, DNA adsorption performance of Cu2+-attached magnetite Fe3O4 nanoparticles Cu2+-AMNPs embedded supermacroporous monolithic composite cryogels were investigated. Firstly, Magnetite nanoparticles NPs coated with 3-aminopropyltriethoxysilane APTES were prepared by silanization reaction. Then, Cu2+ ions were attached to silanized magnetite NPs through amine groups. After that, Cu2+-AMNPs were embedded into the cryogels for DNA adsorption studies. The prepared cryogel was characterized by scanning electron microscopy SEM , elemental analysis, FTIR and swelling. SEM analysis indicates that the cryogel have a heteroporous structure with interconnected pores of 10-50 m size, which ascribed to the porogens effect of frozen water crystals. The maximum amount of DNA adsorption was 19.97 mg/g polymer, at pH 8.0.

References

  • J. Porath, Immobilized metal ion affinity chromatography, Protein Expr. Purif, 3 (1992) 263.
  • J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Metal chalete affinity chromatoraphy: A new approach to protein fractionation, Nature 258 (1975) 598.
  • M. Odabaşı, L. Uzun, A. Denizli, Porous Magnetic Chelator Support for Albumin Adsorption by Immobilized Metal Affinity Separation, J. Appl. Polym. Sci., 493 (2000) 2501.
  • E.B. Altintas, N. Tuzmen, L. Uzun, A. Denizli, Immobilized metal affinity adsorption for antibody depletion from human serum with monosize beads, Ind., Eng. Chem. Res., 46 (2007) 7802.
  • M.B. Ribeiro, M. Vijayalakshmi, D.T. Balvay, S.M.A. Bueno, Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes, J. Chromatogr. B., 86 (2008) 64.
  • P. Jain, L. Sun, J. Dai, G.L. Baker, M.L. Bruening, High-capacity purification of His-tagged proteins by affinity membranes containing functionalized polymer brushes, Biomacromolecules, 8 (2007) 3102.
  • H. Yavuz, M. Odabaşı, S. Akgöl, A. Denizli, Immobilized metal affinity beads for ferritin adsorption, J. Biomater. Sci. Polym. Edn. 16 (2005) 673.
  • M. Odabaşi, B. Garipcan, A. Denizli, Preparation of a novel metal-chelate affinity beads for albumin isolation from human plasma, J. Appl. Polym. Sci., 90 (2003) 2847.
  • T. Hermann, E. Westhof, Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations, Structure, 6 (1998) 1303.
  • R. L. Jr. Gonzalez, I. Jr. Tinoco, Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudokno, J. Mol. Biol. 289 (1999) 1267.
  • C.M. Jason, L.J. David, I.W. Kristopher, E.F. George, C.W. Richard, Nucleic acid separations utilizing immobilized metal affinity chromatography, Biotechnol. Prog., 19 (2003) 982.
  • C. Babaç, H. Yavuz, I. Y. Galaev, E. Pişkin, A. Denizli, Binding of antibodies to concanavalin A-modified monolithic cryogel, React. Funct. Polym., 66 (2006) 1263.
  • M.B. Dainiak, A. Kumara, F.M. Plieva, I.Y. Galaev, B. Mattiasson, Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels, J. Chromatogr. A, 1045 (2004) 93.
  • P. Arvidsson, F.M. Plieva, V.I. Lozinsky, I.Y. Galaev, B. Mattiasson, Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent, J. Chromatogr. A, 986 (2003) 275.
  • A. Derazshamshir, B. Ergün, G. Peşint, M. Odabaşı, Preparation of Zn2+-chelated poly(HEMA-MAH) cryogel for affinity purification of chicken egg lysozyme, J. Appl. Polym. Sci., 109 (2008) 2905.
  • A. Kumar, F.M. Plieva, I.Y. Galaev, B. Mattiasson, Affinity fractionation of lymphocytes using a monolithic cryogel, J. Immunol. Methods, 283 (2003) 185.
  • S.L. Williams, M.E. Eccleston, N.K.H. Slater, Affinity capture of a biotinylated retrovirus on macroporous monolithic adsorbents: Towards a rapid single-step purification process, Biotechnol. Bioeng., 89 (2005) 783.
  • N. Bereli, G. Şener, E.B. Altıntaş, H. Yavuz, A. Denizli, Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G, Mater. Sci. Eng. C, 30 (2010) 323.
  • G. Baydemir, N. Bereli, M. Andaç, R. Say, I.Y. Galaev, A. Denizli, Supermacroporous poly(hydroxyethyl methacrylate) based cryogel with embedded bilirubin imprinted particles, React. Funct. Polym., 69 (2009) 36.
  • M. Odabaşı, G. Baydemir, M. Karataş, A. Derazshamshir, Preparation and characterization of metal-chelated poly(HEMA-MAH) monolithic cryogels and their use for DNA adsorption, J. Appl. Polym. Sci., 116 (2010) 1306.
  • L. Tan, L. Wen-Bin, L.T. Chew, S.K. Duck, C. Woo-Seok, J. Chromatogr. A, Differential interactions of plasmid DNA, RNA and endotoxin with immobilised and free metal ions 1141 (2007) 226.
  • K. Kang, J. Choi, J.H. Nam, S.C. Lee, K.J. Kim, S.W. Lee, J.H. Chang, Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator, J. Phys. Chem. B, 113 (2009) 536.
  • T. Tanaka, R. Sakai, R. Kobayashi, K. Hatakeyama, T. Matsunaga, Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane- modified magnetic nanoparticles, Langmuir, 25 (2009) 2956.
  • B. Başer, G.B. Demirel, L. Açık, T. Çaykara, Preparation of comb-type grafted hydrogels composed of polyacrylamide and chitosan and their use for DNA adsorption, J. Appl. Polym. Sci., 111 (2009) 1862.
  • A. Denizli, E. Piskin, DNA-immobilized polyhydroxy- ethylmethacrylate microbeads for affinity sorption of human immunoglobulin G and anti-DNA antibodies, J. Chromatogr. B, 666 (1995) 215.
  • M. Odabaşı, A. Denizli, Polyhydroxyethylmethacrylate based magnetic DNA-affinity beads for anti-DNA antibody removal from systemic lupus erythematosus patient plasma, J. Chromatogr. B, 760 (2001) 137.
  • D.S. Terman, I. Steward, J. Robinetto, R. Carr, R. Harbeck, Specific removal of DNA antibodies in vivo with an extracorporeal immuno-adsorbent, Clin. Exp. Immunol. 24 (1976) 231.
  • L. Uzun, H. Yavuz, B. Osman, H. Çelik, A. Denizli, Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma. Int. J. Biol. Macromol., 47 (2010) 44.
  • M. Odabaşı, N. Özkayar, S. Özkara, S. Ünal, A. Denizli, Pathogenic antibody removal using magnetically stabilized fluidized bed, J. Chromatogr. B, 826 (2005) 50.
  • C.J. Soares, M. Giannini, M.T. De Oliveira, L.A.M.S. Paulillo, L.R.M. Martins, Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement, J. Appl. Oral Sci., 12 (2004) 1.
  • K. Yao, J. Yun, S. Shen, L. Wang, X. He, X. Yu, Characterization of a novel continuous supermacro- porous monolithic cryogel embedded with nano- particles for protein chromatography, J. Chromatogr. A, 1109 (2006) 103.
  • Y.Kim, I. Choi, S.K. Kang, J. Lee, J. Yi, Growth mode and structural characterization of GaSb on Si (001) substrate: A transmission electron microscopy study, Appl. Phys. Lett., 88 (2006) 013113
  • H.G. Hansma, D.E. Laney, DNA binding to mica correlates with cationic radius: assay by atomic force microscopy, Biophys. J., 70 (1996) 1933.
  • J.K. Barton, S.J. Lippard, Heavy metal interactions with nucleic acids. In nucleic acid-metal ion interactions, John Wiley and Sons, New York, 31 (1980) 113.
  • W. Saenger, Principles of nucleic acid structure, Springer-Verlag, New York, 1984.
  • W.S. Ngah, C.S. Endud, R.R. Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, React. Funct. Polym., 50 (2002) 181.
  • E. Valdman, L. Erijman, F.L.P. Pessoa, S.G.F. Leite, Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp., Process Biochem., 36 (2001) 869.
  • C.Y. Wu, S.Y. Suen, S.C. Chen, J.H. Tzeng, Analysis of protein adsorption on regenerated cellulose- based immobilized copper ion affinity membranes, J. Chromatogr. A, 996 (2003) 53.
  • B. Ergün, A. Derazshamshir M. Odabaşı, Preparation of Fe(III)-chelated poly(HEMA-MAH) cryogel for lysozyme adsorption, Hacettepe J. Biol. Chem., 35 (2007) 143.

Cu2+-takılı Magnetit Nanopartikül Gömülü Süpermakrogözenekli Monolitik Kompozit Kriyojellerin DNA Adsorpsiyon Uygulaması

Year 2011, Volume: 39 Issue: 2, 163 - 172, 01.04.2011

Abstract

Kriyojeller ayırma biliminde yeni nesil sabit faz olarak değerlendirilmektedirler. Kriyojeller, altakım işlemlerinde protein, enzim, DNA, hücre organelleri ve virüsler gibi biyomoleküllerin ayrılması ve saflaştırılmasında etkin adsorbentler olarak kullanılmaktadır. Bu çalışmada, Cu2+-takılı magnetit Fe3O4 nanopartikül Cu2+-AMNP gömülü süpermakrogözenekli monolitik kompozit kriyojellerin DNA adsorpsiyon performansı incelenmiştir. Öncelikle, 3-aminopropyltriethoxysilane APTES ile kaplanmış magnetit NP’ler silanizasyon reaksiyonu ile hazırlanmıştır. Daha sonra, silanlanmış magnetit NP’lere, amin grupları üzerinden Cu2+ iyonları takılmıştır. Bundan sonra, Cu2+-AMNP’ler DNA adsorpsiyon çalışmaları için süpermakrogözenekli monolitik kompozit kriyojellere gömülmüştür. Hazırlanan kriyojel taramalı elektron mikroskobu SEM , elementel analiz, FTIR ve şişme testi ile karakterize edilmiştir. SEM analizleri kriyojellerin, donmuş su kristallerinin porojen etkisi ile oluşan birbirine bağlı 10-50 μm boyutunda gözenekleri ile heterogözenekli bir yapıya sahip olduğunu göstermiştir. Maksimum DNA adsorpsiyon miktarı pH 8’de 19.97 mg/g polymer olarak bulunmuştur

References

  • J. Porath, Immobilized metal ion affinity chromatography, Protein Expr. Purif, 3 (1992) 263.
  • J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Metal chalete affinity chromatoraphy: A new approach to protein fractionation, Nature 258 (1975) 598.
  • M. Odabaşı, L. Uzun, A. Denizli, Porous Magnetic Chelator Support for Albumin Adsorption by Immobilized Metal Affinity Separation, J. Appl. Polym. Sci., 493 (2000) 2501.
  • E.B. Altintas, N. Tuzmen, L. Uzun, A. Denizli, Immobilized metal affinity adsorption for antibody depletion from human serum with monosize beads, Ind., Eng. Chem. Res., 46 (2007) 7802.
  • M.B. Ribeiro, M. Vijayalakshmi, D.T. Balvay, S.M.A. Bueno, Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes, J. Chromatogr. B., 86 (2008) 64.
  • P. Jain, L. Sun, J. Dai, G.L. Baker, M.L. Bruening, High-capacity purification of His-tagged proteins by affinity membranes containing functionalized polymer brushes, Biomacromolecules, 8 (2007) 3102.
  • H. Yavuz, M. Odabaşı, S. Akgöl, A. Denizli, Immobilized metal affinity beads for ferritin adsorption, J. Biomater. Sci. Polym. Edn. 16 (2005) 673.
  • M. Odabaşi, B. Garipcan, A. Denizli, Preparation of a novel metal-chelate affinity beads for albumin isolation from human plasma, J. Appl. Polym. Sci., 90 (2003) 2847.
  • T. Hermann, E. Westhof, Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations, Structure, 6 (1998) 1303.
  • R. L. Jr. Gonzalez, I. Jr. Tinoco, Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudokno, J. Mol. Biol. 289 (1999) 1267.
  • C.M. Jason, L.J. David, I.W. Kristopher, E.F. George, C.W. Richard, Nucleic acid separations utilizing immobilized metal affinity chromatography, Biotechnol. Prog., 19 (2003) 982.
  • C. Babaç, H. Yavuz, I. Y. Galaev, E. Pişkin, A. Denizli, Binding of antibodies to concanavalin A-modified monolithic cryogel, React. Funct. Polym., 66 (2006) 1263.
  • M.B. Dainiak, A. Kumara, F.M. Plieva, I.Y. Galaev, B. Mattiasson, Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels, J. Chromatogr. A, 1045 (2004) 93.
  • P. Arvidsson, F.M. Plieva, V.I. Lozinsky, I.Y. Galaev, B. Mattiasson, Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent, J. Chromatogr. A, 986 (2003) 275.
  • A. Derazshamshir, B. Ergün, G. Peşint, M. Odabaşı, Preparation of Zn2+-chelated poly(HEMA-MAH) cryogel for affinity purification of chicken egg lysozyme, J. Appl. Polym. Sci., 109 (2008) 2905.
  • A. Kumar, F.M. Plieva, I.Y. Galaev, B. Mattiasson, Affinity fractionation of lymphocytes using a monolithic cryogel, J. Immunol. Methods, 283 (2003) 185.
  • S.L. Williams, M.E. Eccleston, N.K.H. Slater, Affinity capture of a biotinylated retrovirus on macroporous monolithic adsorbents: Towards a rapid single-step purification process, Biotechnol. Bioeng., 89 (2005) 783.
  • N. Bereli, G. Şener, E.B. Altıntaş, H. Yavuz, A. Denizli, Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G, Mater. Sci. Eng. C, 30 (2010) 323.
  • G. Baydemir, N. Bereli, M. Andaç, R. Say, I.Y. Galaev, A. Denizli, Supermacroporous poly(hydroxyethyl methacrylate) based cryogel with embedded bilirubin imprinted particles, React. Funct. Polym., 69 (2009) 36.
  • M. Odabaşı, G. Baydemir, M. Karataş, A. Derazshamshir, Preparation and characterization of metal-chelated poly(HEMA-MAH) monolithic cryogels and their use for DNA adsorption, J. Appl. Polym. Sci., 116 (2010) 1306.
  • L. Tan, L. Wen-Bin, L.T. Chew, S.K. Duck, C. Woo-Seok, J. Chromatogr. A, Differential interactions of plasmid DNA, RNA and endotoxin with immobilised and free metal ions 1141 (2007) 226.
  • K. Kang, J. Choi, J.H. Nam, S.C. Lee, K.J. Kim, S.W. Lee, J.H. Chang, Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator, J. Phys. Chem. B, 113 (2009) 536.
  • T. Tanaka, R. Sakai, R. Kobayashi, K. Hatakeyama, T. Matsunaga, Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane- modified magnetic nanoparticles, Langmuir, 25 (2009) 2956.
  • B. Başer, G.B. Demirel, L. Açık, T. Çaykara, Preparation of comb-type grafted hydrogels composed of polyacrylamide and chitosan and their use for DNA adsorption, J. Appl. Polym. Sci., 111 (2009) 1862.
  • A. Denizli, E. Piskin, DNA-immobilized polyhydroxy- ethylmethacrylate microbeads for affinity sorption of human immunoglobulin G and anti-DNA antibodies, J. Chromatogr. B, 666 (1995) 215.
  • M. Odabaşı, A. Denizli, Polyhydroxyethylmethacrylate based magnetic DNA-affinity beads for anti-DNA antibody removal from systemic lupus erythematosus patient plasma, J. Chromatogr. B, 760 (2001) 137.
  • D.S. Terman, I. Steward, J. Robinetto, R. Carr, R. Harbeck, Specific removal of DNA antibodies in vivo with an extracorporeal immuno-adsorbent, Clin. Exp. Immunol. 24 (1976) 231.
  • L. Uzun, H. Yavuz, B. Osman, H. Çelik, A. Denizli, Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma. Int. J. Biol. Macromol., 47 (2010) 44.
  • M. Odabaşı, N. Özkayar, S. Özkara, S. Ünal, A. Denizli, Pathogenic antibody removal using magnetically stabilized fluidized bed, J. Chromatogr. B, 826 (2005) 50.
  • C.J. Soares, M. Giannini, M.T. De Oliveira, L.A.M.S. Paulillo, L.R.M. Martins, Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement, J. Appl. Oral Sci., 12 (2004) 1.
  • K. Yao, J. Yun, S. Shen, L. Wang, X. He, X. Yu, Characterization of a novel continuous supermacro- porous monolithic cryogel embedded with nano- particles for protein chromatography, J. Chromatogr. A, 1109 (2006) 103.
  • Y.Kim, I. Choi, S.K. Kang, J. Lee, J. Yi, Growth mode and structural characterization of GaSb on Si (001) substrate: A transmission electron microscopy study, Appl. Phys. Lett., 88 (2006) 013113
  • H.G. Hansma, D.E. Laney, DNA binding to mica correlates with cationic radius: assay by atomic force microscopy, Biophys. J., 70 (1996) 1933.
  • J.K. Barton, S.J. Lippard, Heavy metal interactions with nucleic acids. In nucleic acid-metal ion interactions, John Wiley and Sons, New York, 31 (1980) 113.
  • W. Saenger, Principles of nucleic acid structure, Springer-Verlag, New York, 1984.
  • W.S. Ngah, C.S. Endud, R.R. Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, React. Funct. Polym., 50 (2002) 181.
  • E. Valdman, L. Erijman, F.L.P. Pessoa, S.G.F. Leite, Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp., Process Biochem., 36 (2001) 869.
  • C.Y. Wu, S.Y. Suen, S.C. Chen, J.H. Tzeng, Analysis of protein adsorption on regenerated cellulose- based immobilized copper ion affinity membranes, J. Chromatogr. A, 996 (2003) 53.
  • B. Ergün, A. Derazshamshir M. Odabaşı, Preparation of Fe(III)-chelated poly(HEMA-MAH) cryogel for lysozyme adsorption, Hacettepe J. Biol. Chem., 35 (2007) 143.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Şeyda Ceylan This is me

Tülden Kalburcu This is me

Mehmet Gedikli This is me

Mehmet Odabaşı This is me

Publication Date April 1, 2011
Published in Issue Year 2011 Volume: 39 Issue: 2

Cite

APA Ceylan, Ş., Kalburcu, T., Gedikli, M., Odabaşı, M. (2011). Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption. Hacettepe Journal of Biology and Chemistry, 39(2), 163-172.
AMA Ceylan Ş, Kalburcu T, Gedikli M, Odabaşı M. Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption. HJBC. April 2011;39(2):163-172.
Chicago Ceylan, Şeyda, Tülden Kalburcu, Mehmet Gedikli, and Mehmet Odabaşı. “Application of Cu2+-Attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption”. Hacettepe Journal of Biology and Chemistry 39, no. 2 (April 2011): 163-72.
EndNote Ceylan Ş, Kalburcu T, Gedikli M, Odabaşı M (April 1, 2011) Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption. Hacettepe Journal of Biology and Chemistry 39 2 163–172.
IEEE Ş. Ceylan, T. Kalburcu, M. Gedikli, and M. Odabaşı, “Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption”, HJBC, vol. 39, no. 2, pp. 163–172, 2011.
ISNAD Ceylan, Şeyda et al. “Application of Cu2+-Attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption”. Hacettepe Journal of Biology and Chemistry 39/2 (April 2011), 163-172.
JAMA Ceylan Ş, Kalburcu T, Gedikli M, Odabaşı M. Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption. HJBC. 2011;39:163–172.
MLA Ceylan, Şeyda et al. “Application of Cu2+-Attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption”. Hacettepe Journal of Biology and Chemistry, vol. 39, no. 2, 2011, pp. 163-72.
Vancouver Ceylan Ş, Kalburcu T, Gedikli M, Odabaşı M. Application of Cu2+-attached Magnetite Nanoparticles Embedded Supermacroporous Monolithic Composite Cryogels for DNA Adsorption. HJBC. 2011;39(2):163-72.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc