BibTex RIS Cite

New Trends in Electrochemical Protein Sensors

Year 2011, Volume: 39 Issue: 3, 231 - 239, 01.08.2011

Abstract

Proteins are essential parts of organisms and participate in every process within cells. Protein biosensors are becoming more essential for the through and systematic investigation of complex biological processes. Several methods have been used for development of protein biosensors e.g., surface plasmon resonance, quartz crystal microbalance, chemiluminescence, electrophoresis, fluorescence techniques and electrochemical methods. There has been growing interest for electrochemical metods in protein research like protein-protein interactions, or some diseases related to proteins investigations . Herein, this paper will specifically focus on new trends in electrochemical protein sensors.

References

  • M.Vestergaard, K.Kerman and E.Tamiya, An overview of label-free electrochemical protein sensors, Sensors 7 (2007) 3442.
  • B. Strehlitz, N. Nikolaus, and R. Stoltenburg, Protein detection with aptamer biosensors, Sensors 8 (2008) 4296.
  • H.R. Schnerr, Lead identification and optimization in crude samples using label free resonant acoustic profiling, J. Mol. Recognit. 23 (2010) 597.
  • S. Xu, Y. Liu, T. Wang, and J. Li, Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and ınhibition using gold nanoparticle as signal transduction probes, Anal. Chem 82 (2010) 9566.
  • K.C. Lın, V. Kunduru, M. Bothara, K. Rege, S. Prasad, and B.L. Ramakrishna, Biogenic nanoporous silica- based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins, Biosens. Bioelectron. 25 (2010) 2336.
  • M.S. Belluzo, M.É. Ribone, C. Camussone, I.S. Marcipar, and C.M. Lagier, Favorably orienting recombinant proteins to develop amperometric biosensors to diagnose Chagas’ disease, Anal. Biochem., 408 (2011) 86.
  • A. Kummer, and E.C. Li-Chan,Application of an ELISA- elution assay as a screening tool for dissociation of yolk antibody–antigen complexes, J. Immunol. Methods, 211 (1998) 125 .
  • J.S. Yu, H.X. Liao, A.E. Gerdon, B. Huffman, R.M. Scearce, M.McAdams, S.M.Alam, P.M.Popernack, N.J. Sullivan, D. Wright, D.E. Cliffel, G.J. Nabel, and B.F.Haynes, Detection of Ebola virus envelope using monoclonal and polyclonal antibodies in ELISA, surface plasmon resonance, and a quartz crystal microbalance immunosensor, J. Virol. Methods, 137 (2006) 219.
  • H.Q.A. Lê, H. Sauriat-Dorizon, and H. Korri- Youssoufi, Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: A review, Anal. Chim. Acta, 674 (2010) 1.
  • S. Xie, and S.P. Walton, Development of a dual- aptamer-based multiplex protein biosensor, Biosens. Bioelectron. 25 (2010) 2663.
  • K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors, Anal. Chem. 79 (2007) 782.
  • L.S. Barak, S.S. Ferguson, J. Zhang and M.G. Caron, Alpha beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation, J. Biol. Chem. 272 (1997) 27497.
  • Q. Wang, W. Xu, P. Wu, H. Zhang, C. Cai and B. Zhao, New Insights into the effects of thermal treatment on the catalytic activity and conformational structure of glucose oxidase studied by electrochemistry, IR spectroscopy, and theoretical calculation, J. Phys. Chem. B 114 (2010) 12754.
  • Z. Zhao, W. Lei, X. Zhang, B. Wang, and H. Jiang, ZnO- Based amperometric enzyme biosensors, Sensors 10
  • A.A.P. Ferreira, M.J.M. Alves, S. Barrozo, H. Yamanaka, and A.V. Benedetti, Optimization of incubation time of protein Tc85 in the construction of biosensor: Is the EIS a good tool? J. Electroanal. Chem., 643 (2010) 1.
  • T. Ignat, M. Miu, I.Kleps, A. Bragaru, M. Simion, and M. Danila, Electrochemical characterization of BSA/11- mercaptoundecanoic acid on Au electrode, Mater. Sci. Eng. B, 169 (2010) 55.
  • Y. Pan, G.A. Sonn, M.L.Y. Sin, K.E. Mach, M.C. Shih, V. Gau, P.K. Wong, and J.C. Liao, Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis, Biosens. Bioelectron. 26 (2010) 649.
  • J. Wang, Nanomaterial-based electrochemical biosensors, Analyst 130 (2005) 421.
  • J. Wang, Electrochemical biosensors: Towards point- of-care cancer diagnostics, Biosens. Bioelectron., 21 (2006) 1887.
  • X. Kong, X. Rao, J. Han, M. Wei, and X. Duan, Layer- by-layer assembly of bi-protein/layered double hydroxide ultrathin film and its electrocatalytic behavior for catechol, Biosens. Bioelectron. 26 (2010) 549.
  • X. Wang, F. Yin, and Y. Tu, An uric acid biosensor based on langmuir-blodgett film as an enzyme- immobilizing matrix, Anal. Lett.43 (2010) 1507.
  • H. Qi, C. Wang, and N. Cheng, Label-free electro- chemical impedance spectroscopy biosensor for the determination of human immunoglobulin G, Microchim. Acta 170 (2010) 33.
  • K.J. Huang, D.J. Niu, J.Y. Sun, X.L. Zhu and J.J. Zhu, Label-free amperometric immunobiosensor based on a gold colloid and Prussian blue nanocomposite film modified carbon ionic liquid electrode, Anal. Bioanal. Chem. 397 (2010) 3553.
  • A.S. Kumar, S.F. Wang, C.T. Yeh, H.C. Lu, J.C. Yang and Y.T. Chang, Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ ciprofloxacin films, J Solid State Electrochem. 14 (2010) 2129.
  • L.D. Li, Z.B. Chen, H.T. Zhao, L. Guo and X. Mu, An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification, Sens. Actuator., B 149 (2010) 110.
  • J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, Direct electrochemistry of Cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem.74 (2002) 1993.
  • B. Soontornworajit, J. Zhou, Z. Zhang and Y. Wang, Aptamer-functionalized in situ Injectable hydrogel for controlled protein release, Biomacromolecules 11 (2010) 2724.
  • A. Erdem, H. Karadeniz, G. Mayer, M. Famulok and A. Caliskan, Electrochemical sensing of aptamer- protein interactions using a magnetic particle assay and single-use sensor technolog, Electroanalysis 21 (2009) 1278.
  • A. Qureshi, Y. Gurbuz, S. Kallempudi and J.H. Niazi, Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein, Phys. Chem. Chem. Phys. 12 (2010) 9176.
  • C.Y. Huang, C.M. Liang, C.L. Chu and S.M. Liang, Albumin fibrillization induces apoptosis via integrin/ FAK/Akt pathway, BMC Biotechnol. 9 (2009) 1.
  • J.F. Rusling, G. Sotzing and F. Papadimitrakopoulosa, Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins, Bioelectrochemistry 76 (2009) 189.
  • Z. Cao, X. Jiang, Q. Xie and S. Yao, A third - generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene – tetracyano nanotubes film, Biosens. Bioelectron.24 (2008) 222. carbon
  • K. Balasubramanian and M. Burghard, Chemically Functionalized Carbon Nanotubes Small 1 (2005) 180.
  • H. Dai, Carbon Nanotubes: Synthesis, Integration, and Properties, Acc. Chem. Res.35 (2002) 1035.
  • M. Trojanowicz and M. Szewczynska, Biosensing in high-performance chemical separations, Trend. Anal. Chem. 24 (2005) 92.
  • J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis 1(2005) 7.
  • C.E. Banks, and R.G. Compton, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite, Analyst 131 (2006) 15.
  • L. Agüí, P. Yanez-Sedeno and J.M. Pingarron, Role of carbon nanotubes in electroanalytical chemistry: A review, Anal. Chim. Acta 622 (2008) 11.
  • S. A. Kumar, and S.M.Chen, Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-a review, Sensors 8 (2008) 739.
  • E. Lahiff, C. Lynam, N. Gilmartin, R. O’Kennedy and D. Diamond, The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors, Anal. Bioanal. Chem. 398 (2010) 1575.
  • A.D. Ellington, and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818.
  • C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage, T4DNApolymerase, Science 249 (1990) 505.
  • S. Tombelli, M. Minunni and M. Mascini, Analytical applications of aptamers, Biosens. Bioelectron. 20
  • M.N. Stojanovic and D.W. Landry, Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc. 124 (2002) 9678.
  • H.X. Chang, L.H. Tang, Y. Wang, J.H. Jiang and J.H. Li, Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection, Anal. Chem. 82 (2010) 2341.
  • M. Minunni, S. Tombelli, A. Gullotto, E. Luzi and M. Mascini, Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein, Biosens. Bioelectron. 20 (2004) 1149.
  • M. Liss, B. Petersen, H. Wolf and E. Prohaska, An aptamer-based quartz crystal protein biosensor, Anal. Chem. 71 (2002) 4488.
  • M. Liss, B. Petersen, H. Wolf and E. Prohaska, An aptamer-based quartz crystal protein biosensor, Anal. Chem.74 (2002) 4488.
  • B.R. Baker, R.Y. Lai, M.S. Wood, E.H. Doctor, A.J. Heeger and K.W. Plaxco, An electronic, aptamer- based small-molecule sensor for the rapid, label- free detection of cocaine in adulterated samples and biological fluids, J. Am. Chem. Soc. 128 (2006) 3138.
  • X.L. Zuo, S.P. Song, J. Zhang, D.Pan, L.H. Wang, and C.H. Fan, Atarget-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J. Am. Chem. Soc. 129 (2007) 1042.
  • Y. Jin, X. Yao, Q. Liu and J.H. Li, Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator, Biosens. Bioelectron. 22 (2007) 1126.
  • M. Zayats, Y. Huang, R. Gill, C.A. Ma and I.J. Willner, Label-free reagentless aptamer based sensors for small molecules, J. Am. Chem. Soc.128 (2006) 13666.
  • I. Willner and M. Zayats, Electronic aptamer-based sensors, Angew. Chem. Int. Ed. 46 (2007) 6408.
  • Y. Xu, L. Yang, X. Ye, P. He and Y. Fang, An aptamer- based protein biosensor by detecting the amplified impedance signal, Electroanalysis 18 (2006) 1449.
  • M.C. Rodriquez, A.N. Kawde and J. Wang, Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge, Chem. Commun. (2005) 4267.
  • A.N. Kawde, M.C. Rodriquez, T.M.H. Lee and J. Wang, Label-free bioelectronic detection of aptamer- protein interactions, Electrochem. Commun. 7 (2005) 537.
  • D. Xu, X.Yu, Z. Liu, W. He and Z. Ma, Label-free electrochemical detection of aptamerbased array electrodes, Anal. Chem. 77 (2005) 5107.
  • X.R. Liu, Y.Li, J.B. Zheng, J.C. Zhang, Q.L. Sheng, Carbon nanotube-enhanced electrochemical ap- tasensor for the detection of thrombin, Talanta 81 (2010) 1619.
  • C.F. Ding, Y. Ge and J.M. Lin, Aptamer based electrochemical assay for the determination of thrombin by using the ampliŞcation of the nanoparticle, Biosens. Bioelectron. 25 (2010) 1290.

Elektrokimyasal Protein Sensörlerinde Yeni Yaklaşımlar

Year 2011, Volume: 39 Issue: 3, 231 - 239, 01.08.2011

Abstract

P roteinler organizmaların yapıtaşlarından birisi olup, hücre içerisindeki tüm mekanizmalarda görev alır. Karmaşık biyolojik sistemlerin araştırılmasında protein biyosensörleri önem taşımaktadır. Yüzey plazmon rezonansı, kuvartz kristal mikroterazisi, kemilüminesans, elektroforez, floresans teknikleri ve elektrokimyasal yöntemler protein biyosensörlerinde kullanılan tekniklerden bazılarıdır. Son yıllarda protein araştırmalarında protein-protein etkileşimleri ve protein kaynaklı hastalıkların incelenmesi gibi çalışmalar elektrokimyasal teknikler büyük ilgi görmektedir. Bu derlemede, özellikle elektrokimyasal protein sensörlerindeki yeni yaklaşımlara değinilmiştir

References

  • M.Vestergaard, K.Kerman and E.Tamiya, An overview of label-free electrochemical protein sensors, Sensors 7 (2007) 3442.
  • B. Strehlitz, N. Nikolaus, and R. Stoltenburg, Protein detection with aptamer biosensors, Sensors 8 (2008) 4296.
  • H.R. Schnerr, Lead identification and optimization in crude samples using label free resonant acoustic profiling, J. Mol. Recognit. 23 (2010) 597.
  • S. Xu, Y. Liu, T. Wang, and J. Li, Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and ınhibition using gold nanoparticle as signal transduction probes, Anal. Chem 82 (2010) 9566.
  • K.C. Lın, V. Kunduru, M. Bothara, K. Rege, S. Prasad, and B.L. Ramakrishna, Biogenic nanoporous silica- based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins, Biosens. Bioelectron. 25 (2010) 2336.
  • M.S. Belluzo, M.É. Ribone, C. Camussone, I.S. Marcipar, and C.M. Lagier, Favorably orienting recombinant proteins to develop amperometric biosensors to diagnose Chagas’ disease, Anal. Biochem., 408 (2011) 86.
  • A. Kummer, and E.C. Li-Chan,Application of an ELISA- elution assay as a screening tool for dissociation of yolk antibody–antigen complexes, J. Immunol. Methods, 211 (1998) 125 .
  • J.S. Yu, H.X. Liao, A.E. Gerdon, B. Huffman, R.M. Scearce, M.McAdams, S.M.Alam, P.M.Popernack, N.J. Sullivan, D. Wright, D.E. Cliffel, G.J. Nabel, and B.F.Haynes, Detection of Ebola virus envelope using monoclonal and polyclonal antibodies in ELISA, surface plasmon resonance, and a quartz crystal microbalance immunosensor, J. Virol. Methods, 137 (2006) 219.
  • H.Q.A. Lê, H. Sauriat-Dorizon, and H. Korri- Youssoufi, Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: A review, Anal. Chim. Acta, 674 (2010) 1.
  • S. Xie, and S.P. Walton, Development of a dual- aptamer-based multiplex protein biosensor, Biosens. Bioelectron. 25 (2010) 2663.
  • K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors, Anal. Chem. 79 (2007) 782.
  • L.S. Barak, S.S. Ferguson, J. Zhang and M.G. Caron, Alpha beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation, J. Biol. Chem. 272 (1997) 27497.
  • Q. Wang, W. Xu, P. Wu, H. Zhang, C. Cai and B. Zhao, New Insights into the effects of thermal treatment on the catalytic activity and conformational structure of glucose oxidase studied by electrochemistry, IR spectroscopy, and theoretical calculation, J. Phys. Chem. B 114 (2010) 12754.
  • Z. Zhao, W. Lei, X. Zhang, B. Wang, and H. Jiang, ZnO- Based amperometric enzyme biosensors, Sensors 10
  • A.A.P. Ferreira, M.J.M. Alves, S. Barrozo, H. Yamanaka, and A.V. Benedetti, Optimization of incubation time of protein Tc85 in the construction of biosensor: Is the EIS a good tool? J. Electroanal. Chem., 643 (2010) 1.
  • T. Ignat, M. Miu, I.Kleps, A. Bragaru, M. Simion, and M. Danila, Electrochemical characterization of BSA/11- mercaptoundecanoic acid on Au electrode, Mater. Sci. Eng. B, 169 (2010) 55.
  • Y. Pan, G.A. Sonn, M.L.Y. Sin, K.E. Mach, M.C. Shih, V. Gau, P.K. Wong, and J.C. Liao, Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis, Biosens. Bioelectron. 26 (2010) 649.
  • J. Wang, Nanomaterial-based electrochemical biosensors, Analyst 130 (2005) 421.
  • J. Wang, Electrochemical biosensors: Towards point- of-care cancer diagnostics, Biosens. Bioelectron., 21 (2006) 1887.
  • X. Kong, X. Rao, J. Han, M. Wei, and X. Duan, Layer- by-layer assembly of bi-protein/layered double hydroxide ultrathin film and its electrocatalytic behavior for catechol, Biosens. Bioelectron. 26 (2010) 549.
  • X. Wang, F. Yin, and Y. Tu, An uric acid biosensor based on langmuir-blodgett film as an enzyme- immobilizing matrix, Anal. Lett.43 (2010) 1507.
  • H. Qi, C. Wang, and N. Cheng, Label-free electro- chemical impedance spectroscopy biosensor for the determination of human immunoglobulin G, Microchim. Acta 170 (2010) 33.
  • K.J. Huang, D.J. Niu, J.Y. Sun, X.L. Zhu and J.J. Zhu, Label-free amperometric immunobiosensor based on a gold colloid and Prussian blue nanocomposite film modified carbon ionic liquid electrode, Anal. Bioanal. Chem. 397 (2010) 3553.
  • A.S. Kumar, S.F. Wang, C.T. Yeh, H.C. Lu, J.C. Yang and Y.T. Chang, Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ ciprofloxacin films, J Solid State Electrochem. 14 (2010) 2129.
  • L.D. Li, Z.B. Chen, H.T. Zhao, L. Guo and X. Mu, An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification, Sens. Actuator., B 149 (2010) 110.
  • J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, Direct electrochemistry of Cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem.74 (2002) 1993.
  • B. Soontornworajit, J. Zhou, Z. Zhang and Y. Wang, Aptamer-functionalized in situ Injectable hydrogel for controlled protein release, Biomacromolecules 11 (2010) 2724.
  • A. Erdem, H. Karadeniz, G. Mayer, M. Famulok and A. Caliskan, Electrochemical sensing of aptamer- protein interactions using a magnetic particle assay and single-use sensor technolog, Electroanalysis 21 (2009) 1278.
  • A. Qureshi, Y. Gurbuz, S. Kallempudi and J.H. Niazi, Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein, Phys. Chem. Chem. Phys. 12 (2010) 9176.
  • C.Y. Huang, C.M. Liang, C.L. Chu and S.M. Liang, Albumin fibrillization induces apoptosis via integrin/ FAK/Akt pathway, BMC Biotechnol. 9 (2009) 1.
  • J.F. Rusling, G. Sotzing and F. Papadimitrakopoulosa, Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins, Bioelectrochemistry 76 (2009) 189.
  • Z. Cao, X. Jiang, Q. Xie and S. Yao, A third - generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene – tetracyano nanotubes film, Biosens. Bioelectron.24 (2008) 222. carbon
  • K. Balasubramanian and M. Burghard, Chemically Functionalized Carbon Nanotubes Small 1 (2005) 180.
  • H. Dai, Carbon Nanotubes: Synthesis, Integration, and Properties, Acc. Chem. Res.35 (2002) 1035.
  • M. Trojanowicz and M. Szewczynska, Biosensing in high-performance chemical separations, Trend. Anal. Chem. 24 (2005) 92.
  • J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis 1(2005) 7.
  • C.E. Banks, and R.G. Compton, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite, Analyst 131 (2006) 15.
  • L. Agüí, P. Yanez-Sedeno and J.M. Pingarron, Role of carbon nanotubes in electroanalytical chemistry: A review, Anal. Chim. Acta 622 (2008) 11.
  • S. A. Kumar, and S.M.Chen, Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-a review, Sensors 8 (2008) 739.
  • E. Lahiff, C. Lynam, N. Gilmartin, R. O’Kennedy and D. Diamond, The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors, Anal. Bioanal. Chem. 398 (2010) 1575.
  • A.D. Ellington, and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818.
  • C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage, T4DNApolymerase, Science 249 (1990) 505.
  • S. Tombelli, M. Minunni and M. Mascini, Analytical applications of aptamers, Biosens. Bioelectron. 20
  • M.N. Stojanovic and D.W. Landry, Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc. 124 (2002) 9678.
  • H.X. Chang, L.H. Tang, Y. Wang, J.H. Jiang and J.H. Li, Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection, Anal. Chem. 82 (2010) 2341.
  • M. Minunni, S. Tombelli, A. Gullotto, E. Luzi and M. Mascini, Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein, Biosens. Bioelectron. 20 (2004) 1149.
  • M. Liss, B. Petersen, H. Wolf and E. Prohaska, An aptamer-based quartz crystal protein biosensor, Anal. Chem. 71 (2002) 4488.
  • M. Liss, B. Petersen, H. Wolf and E. Prohaska, An aptamer-based quartz crystal protein biosensor, Anal. Chem.74 (2002) 4488.
  • B.R. Baker, R.Y. Lai, M.S. Wood, E.H. Doctor, A.J. Heeger and K.W. Plaxco, An electronic, aptamer- based small-molecule sensor for the rapid, label- free detection of cocaine in adulterated samples and biological fluids, J. Am. Chem. Soc. 128 (2006) 3138.
  • X.L. Zuo, S.P. Song, J. Zhang, D.Pan, L.H. Wang, and C.H. Fan, Atarget-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J. Am. Chem. Soc. 129 (2007) 1042.
  • Y. Jin, X. Yao, Q. Liu and J.H. Li, Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator, Biosens. Bioelectron. 22 (2007) 1126.
  • M. Zayats, Y. Huang, R. Gill, C.A. Ma and I.J. Willner, Label-free reagentless aptamer based sensors for small molecules, J. Am. Chem. Soc.128 (2006) 13666.
  • I. Willner and M. Zayats, Electronic aptamer-based sensors, Angew. Chem. Int. Ed. 46 (2007) 6408.
  • Y. Xu, L. Yang, X. Ye, P. He and Y. Fang, An aptamer- based protein biosensor by detecting the amplified impedance signal, Electroanalysis 18 (2006) 1449.
  • M.C. Rodriquez, A.N. Kawde and J. Wang, Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge, Chem. Commun. (2005) 4267.
  • A.N. Kawde, M.C. Rodriquez, T.M.H. Lee and J. Wang, Label-free bioelectronic detection of aptamer- protein interactions, Electrochem. Commun. 7 (2005) 537.
  • D. Xu, X.Yu, Z. Liu, W. He and Z. Ma, Label-free electrochemical detection of aptamerbased array electrodes, Anal. Chem. 77 (2005) 5107.
  • X.R. Liu, Y.Li, J.B. Zheng, J.C. Zhang, Q.L. Sheng, Carbon nanotube-enhanced electrochemical ap- tasensor for the detection of thrombin, Talanta 81 (2010) 1619.
  • C.F. Ding, Y. Ge and J.M. Lin, Aptamer based electrochemical assay for the determination of thrombin by using the ampliŞcation of the nanoparticle, Biosens. Bioelectron. 25 (2010) 1290.
There are 59 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Arzum Erdem This is me

Pembe Ece Canavar This is me

Hakan Karadeniz This is me

Gülşah Congur This is me

Publication Date August 1, 2011
Published in Issue Year 2011 Volume: 39 Issue: 3

Cite

APA Erdem, A., Canavar, P. E., Karadeniz, H., Congur, G. (2011). New Trends in Electrochemical Protein Sensors. Hacettepe Journal of Biology and Chemistry, 39(3), 231-239.
AMA Erdem A, Canavar PE, Karadeniz H, Congur G. New Trends in Electrochemical Protein Sensors. HJBC. August 2011;39(3):231-239.
Chicago Erdem, Arzum, Pembe Ece Canavar, Hakan Karadeniz, and Gülşah Congur. “New Trends in Electrochemical Protein Sensors”. Hacettepe Journal of Biology and Chemistry 39, no. 3 (August 2011): 231-39.
EndNote Erdem A, Canavar PE, Karadeniz H, Congur G (August 1, 2011) New Trends in Electrochemical Protein Sensors. Hacettepe Journal of Biology and Chemistry 39 3 231–239.
IEEE A. Erdem, P. E. Canavar, H. Karadeniz, and G. Congur, “New Trends in Electrochemical Protein Sensors”, HJBC, vol. 39, no. 3, pp. 231–239, 2011.
ISNAD Erdem, Arzum et al. “New Trends in Electrochemical Protein Sensors”. Hacettepe Journal of Biology and Chemistry 39/3 (August 2011), 231-239.
JAMA Erdem A, Canavar PE, Karadeniz H, Congur G. New Trends in Electrochemical Protein Sensors. HJBC. 2011;39:231–239.
MLA Erdem, Arzum et al. “New Trends in Electrochemical Protein Sensors”. Hacettepe Journal of Biology and Chemistry, vol. 39, no. 3, 2011, pp. 231-9.
Vancouver Erdem A, Canavar PE, Karadeniz H, Congur G. New Trends in Electrochemical Protein Sensors. HJBC. 2011;39(3):231-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc