BibTex RIS Cite

Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis

Year 2011, Volume: 39 Issue: 3, 305 - 313, 01.08.2011

Abstract

The aim of this study is to investigate benefit and cost analysis of enzyme production with solid state and submerged fermentation techniques, biotechnological processes within production of value-added products. The approach of benefit and cost analysis is commonly used a way at deciding and investigating of the project. This analysis was referred two methodologies on production of laccase, a significant enzyme at environmental biotechnology. According to the result of the comparison, benefit/cost ratio in laccase activity obtained with solid state fermentation was calculated 1.76 and the ratio of laccase activity was 22.62 U ml-1, whereas those of submerged fermentation was 2.42 and the activity was 29.08 U ml-1. In particular, induced liquid culture obtained submerged fermentation is seen maximum benefit of production facilities and the minimum cost. This situation indicates laccase production with this type fermentation for a company is more attractive

References

  • 1. S.Rodriguez Couto, M.A., Sanrom´an, Application of solid-state fermentation to ligninolytic enzyme production, Biochem. Eng. J., 22 (2005) 211.
  • 2. A. Pandey, Solid-state fermentation, Biochem. Eng. J., 13 (2003) 81.
  • 3. R.R. Singhania, R.K. Sukumarana, A.K. Patelb, et al., Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases, Enzym. Microb. Tech., 46 (2010) 541.
  • 4. G. Viniegra-Gonz´alez, E. Favela-Torres, Why solidstate fermentation seems to be resistant to catabolite repression?, Food Technol. Biotechnol., 44 (2006) 397.
  • 5. G. Viniegra-Gonz´alez, 1998. Strategies for the selection of mold strains geared to produce enzymes on solid substrates, in: E. Glindo, O.T. Ram´ırez (Eds.), Advances in Biprocess Engineering II, Kluwer Academic Publishers, Dordrecht, p. 123–136.
  • 6. G. Viniegra-Gonz´alez, E. Favela-Torres, C. Noe Aguilar, et al., Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochem. Eng. J., 13 (2003) 157.
  • 7. Y. Matsumoto, G. Saucedo-Castañeda, S. Revah, et al., Production of β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer, Process Biochem., 39 (2004) 665.
  • 8. T. Robinson, G. McMullan, R. Marchant, et al., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247.
  • 9. C. Krishna, Solid-state fermentation systems – an overview, Crit. Rev. Biotechnol., 25 (2005) 1.
  • 10. D. Mamma, E. Kourtoglou, P. Christakopoulos, Fungal multienzyme production on industrial by-products of the citrus-processing industry, Bioresour. Technol., 99 (2008) 2373.
  • 11. C. Sandhya, A. Sumantha, G. Szakacs, et al., Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation, Process Biochem., 40 (2005) 2689.
  • 12. U. Hölker, J. Lenz, Solid-state fermentation - are there any biotechnological advantages? Curr. Opin. Microbiol., 8 (2005) 301.
  • 13. V. Ramamurthy, R.M. Kothari, Comparison of fungal protease production by submerged and surface cultivation, J. Biotechnol., 27 (1993) 349.
  • 14. N.E. Ramírez, M.C. Vargas, J.C. Ariza, C. Martínez, Caracterización de la lacasa obtenida por dos métodos de producción con Pleurotus ostreatus, Rev. Colombiana Biotecnol., 2 (2003) 64.
  • 15. M. Téllez-Téllez, F.J. Fernández, A.M. MontielGonzález, et al., Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation, Appl. Microbiol. Biotechnol., 81 (2008) 675.
  • 16. A. Téllez-Jurado, A. Arana-Cuenca, A.E. GonzálezBecerra, et al., Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations, Enzym. Microb. Tech., 38 (2005) 665.
  • 17. K. Oda, D. Kakizono, O. Yamada, et al., Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions, Appl. Environ. Microbiol., 72 (2006) 3448.
  • 18. P. Layman, Promising new markets emerging for commercial enzymes, Chem. Eng. News., 68 (1990) 17.
  • 19. C.F. Thurston, The structure and function of fungal laccase. Microbiology, 140 (1994) 19.
  • 20. H.P. Call, I. Mücke, History, overview and applications of mediated lignolytic systems, especially laccasemediator systems (Lignozym® process), J. Biotechnol., 53 (1997) 163.
  • 21. M. Balakshin, E. Capanema, C.L. Chen, et al., Biobleaching of pulp with dioxygen in the laccasemediator system–reaction mechanisms for degradation of residual lignin, J. Mol. Catal. B-Enzym., 13 (2001) 1.
  • 22. M. Lund, M. Eriksson, C. Felby, Reactivity of a fungal laccase towards lignin in softwood kraft pulp. Holzforschung, 57 (2003) 21.
  • 23. C. Sigoillot, E. Record, V. Belle, et al., Natural and recombinant fungal laccases for paper pulp bleaching, Appl. Microbiol. Biotechnol., 64 (2004) 346.
  • 24. N.K. Pazarlıoglu, M. Sariişik, A. Telefoncu, Laccase: production by Trametes versicolor and application to denim washing, Process Biochem., 40 (2005) 1673.
  • 25. N. Aktas, A. Tanyolaç, Reaction conditions for laccase catalyzed polymerization of catechol, Bioresour. Technol., 87 (2003) 209.
  • 26. G.M.B. Soares, M.T.P. Amorim, R. Hrdina, et al., Studies on the biotransformation of novel disazo dyes by laccase, Process Biochem., 37 (2002) 581.
  • 27. P. Peralta-Zamora, C.M. Pereira, E.R.L. Tiburtius et al., Decolorization of reactive dyes by immobilized laccase, Appl. Catal. B-Environ., 42 (2003) 131.
  • 28. A. Ünyayar, M.A. Mazmanci, H. Ataçağ, et al., Drimaren Blue X3LR dye decolorizing enzyme from Funalia trogii one step isolation and identification, Enzym. Microb. Tech., 36 (2005) 10.
  • 29. M.A. Ullah, C.T. Bedford, C.S. Evans, Reactions of pentachlorophenol with laccase from Coriolus versicolor, Appl. Microbiol. Biotechnol., 53 (2000) 230.
  • 30. A. Schultz, U. Jonas, E. Hammer, Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase, Appl. Environ. Microbiol., 67 (2001) 4377.
  • 31. J.M. Bollag, H.L. Chu, M.A. Rao, et al., Enzymatic oxidative transformation of chlorophenol mixtures, J. Environ. Qual., 32 (2003) 63.
  • 32. S.B. Pointing, Feasibility of bioremediation by whiterot fungi, Appl. Microbiol. Biotechnol., 57 (2001) 20.
  • 33. A. D’Annibale, S.R. Stazi, V. Vinciguerra, et al., Oxiraneimmobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater, J. Biotechnol., 77 (2000) 265.
  • 34. A. Tsioulpas, D. Dimou, D. Iconomou, Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity, Biores. Technol., 84 (2002) 251.
  • 35. M.A. Velazquez-Cedeno, G. Mata, J.M. Savoie, Wastereducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes, World J. Microbiol. Biotechnol., 18 (2002) 201.
  • 36. E. Selinheimo, K. Kruus, J. Buchert, et al., Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs, J. Cereal Sci., 43 (2006) 152.
  • 37. K. Golz-Berner, B. Walzel, L. Zastrow et al., Cosmetic and dermatological preparation containing copper binding proteins for skin lightening, Int. Pat. Appl., WO2004017931 (2004)..
  • 38. M. Alcalde, 2007. Lacases: Biological Functions, Molecular Structure and Industrial Applications, pp. 461–476 in Poliana J., MacCabe A. (Eds): Industrial Enzymes Structure, Function and Applications, Springer.
  • 39. E. Kalogeris, F. Iniotaki, E. Topakas, et al., Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw, Bioresour. Technol., 86 (2003) 207.
  • 40. V.L. Papinutti, L.A. Diorio, F. Forchiassin, Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran, J. Ind. Microb. Biotechnol., 30 (2003) 157.
  • 41. C.G. Marques de Souza, A. Zilly, R.M. Peralta, Production of laccase as the sole phenoloxidase by a Brazilian strain of Plerotus pulmonarius in solid state fermentation, J. Basic Microb., 42 (2002) 83.
  • 42. L.R. Castilho, C.M.S. Polato, E.A. Baruque, et al., Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations, Biochem. Eng. J., 4 (2000) 239.
  • 43. S.J.R. Tolls, The uncertainty about climate change too large for expected cost-benefit analysis?, Climatic Change, 56 (2003) 265.
  • 44. I.H. Özsabuncuoğlu, A.A. Uğur, Doğal Kaynaklar, Ekonomi, Yönetim ve Politika, Imaj Yayınevi, Ankara, 2005.
  • 45. A. Demir, M. Arısoy, Biological and Chemical Removal of Cr (VI) From Waste Water: Cost and Benefit Analysis, J. Hazard. Mat., 147 (2007) 275.
  • 46. M.E. Ünsal, Mikro İktisat, Kutsan Ofset Matbaacılık, Ankara, 1998.
  • 47. G. Atkinson, S. Mourato, Environmental Cost-Benefit Analysis, Annu. Rev. Environ. Resour., 33 (2008) 317.
  • 48. J. Persky, Retrospectives: cost-benefit analysis and the classical creed, J. Econ. Perspect., 15 (2001) 199.
  • 49. S. Kurniawan, J.A. Efendi, M.I. Kamil, 2009. Environmental Economic Study of Acid Mine Drainage Management Using Cost Benefit Analysis Approach (Case Study: Coal Mine Area of PT. TAL in South Sumatra), International Conference on Sustainable Infrastructure and Built Environment in Developing Countries November, 2-3, Bandung, West Java, Indonesia ISBN 978-979-98278-2.
  • 50. F. Kutlu, Katı Faz Fermentasyonu ile Ligninolitik Enzimlerin Üretimi, Master of Science thesis, Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences (2010).
  • 51. S. Gedikli, Çeşitli Makrofungus İzolatlarının Lakkaz Üretim Yetenekleri Açısından Değerlendirilmesi ve Dekolorizasyon Uygulamalarında Kullanılabilirliği, Master of Science thesis, Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, (2008).
  • 52. P.M. Coll, J.M. Fernandez-Abalos, J.R. Villanueva, et al., Purification and characterization of a Phenoloxidase (Laccase) from the Lignin-Degrading Basidiomycete PM1 (CECT 2971), Appl. Environ. Microbiol., 59 (1993) 2607.

Batık ve Katı Faz Fermentasyonu ile Lakkaz Üretimi: Fayda ve Maliyet Analizi

Year 2011, Volume: 39 Issue: 3, 305 - 313, 01.08.2011

Abstract

B u çalışmanın amacı, katma değer ürünlerin üretimlerine sahip biyoteknolojik süreçlerden katı faz ve batık fermentasyon teknikleri ile enzim üretiminin, fayda maliyet analizini değerlendirmektir. Fayda maliyet analiz yaklaşımı projenin karar verilmesinde ve değerlendirilmesinde genelde kullanılan bir yoldur. Bu analiz, çevresel biyoteknolojide önemli bir enzim olan lakkazın üretiminde kullanılan iki yöntemle ilgilidir. Karşılaştırma sonucuna göre, katı faz fermentasyonla elde edilen lakkaz aktivitesinde fayda/maliyet oranı 1.76 ve aktivite değeri 22.62 U ml-1 olurken batık fermentasyonla elde edilen lakkaz aktivitesi içinse bu değer 2.42 ve aktivite değeri 29.08 U ml-1’dir. Özellikle batık fermentasyonla elde edilen indüklenmiş sıvı kültürü, üretim faaliyetinin maksimum fayda sağladığı ve minimum maliyet getirdiği görülmektedir. Bu durum bir şirket için bu tip fermentasyonla lakkaz üretiminin daha cazip olduğunu göstermektedir

References

  • 1. S.Rodriguez Couto, M.A., Sanrom´an, Application of solid-state fermentation to ligninolytic enzyme production, Biochem. Eng. J., 22 (2005) 211.
  • 2. A. Pandey, Solid-state fermentation, Biochem. Eng. J., 13 (2003) 81.
  • 3. R.R. Singhania, R.K. Sukumarana, A.K. Patelb, et al., Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases, Enzym. Microb. Tech., 46 (2010) 541.
  • 4. G. Viniegra-Gonz´alez, E. Favela-Torres, Why solidstate fermentation seems to be resistant to catabolite repression?, Food Technol. Biotechnol., 44 (2006) 397.
  • 5. G. Viniegra-Gonz´alez, 1998. Strategies for the selection of mold strains geared to produce enzymes on solid substrates, in: E. Glindo, O.T. Ram´ırez (Eds.), Advances in Biprocess Engineering II, Kluwer Academic Publishers, Dordrecht, p. 123–136.
  • 6. G. Viniegra-Gonz´alez, E. Favela-Torres, C. Noe Aguilar, et al., Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochem. Eng. J., 13 (2003) 157.
  • 7. Y. Matsumoto, G. Saucedo-Castañeda, S. Revah, et al., Production of β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer, Process Biochem., 39 (2004) 665.
  • 8. T. Robinson, G. McMullan, R. Marchant, et al., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247.
  • 9. C. Krishna, Solid-state fermentation systems – an overview, Crit. Rev. Biotechnol., 25 (2005) 1.
  • 10. D. Mamma, E. Kourtoglou, P. Christakopoulos, Fungal multienzyme production on industrial by-products of the citrus-processing industry, Bioresour. Technol., 99 (2008) 2373.
  • 11. C. Sandhya, A. Sumantha, G. Szakacs, et al., Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation, Process Biochem., 40 (2005) 2689.
  • 12. U. Hölker, J. Lenz, Solid-state fermentation - are there any biotechnological advantages? Curr. Opin. Microbiol., 8 (2005) 301.
  • 13. V. Ramamurthy, R.M. Kothari, Comparison of fungal protease production by submerged and surface cultivation, J. Biotechnol., 27 (1993) 349.
  • 14. N.E. Ramírez, M.C. Vargas, J.C. Ariza, C. Martínez, Caracterización de la lacasa obtenida por dos métodos de producción con Pleurotus ostreatus, Rev. Colombiana Biotecnol., 2 (2003) 64.
  • 15. M. Téllez-Téllez, F.J. Fernández, A.M. MontielGonzález, et al., Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation, Appl. Microbiol. Biotechnol., 81 (2008) 675.
  • 16. A. Téllez-Jurado, A. Arana-Cuenca, A.E. GonzálezBecerra, et al., Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations, Enzym. Microb. Tech., 38 (2005) 665.
  • 17. K. Oda, D. Kakizono, O. Yamada, et al., Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions, Appl. Environ. Microbiol., 72 (2006) 3448.
  • 18. P. Layman, Promising new markets emerging for commercial enzymes, Chem. Eng. News., 68 (1990) 17.
  • 19. C.F. Thurston, The structure and function of fungal laccase. Microbiology, 140 (1994) 19.
  • 20. H.P. Call, I. Mücke, History, overview and applications of mediated lignolytic systems, especially laccasemediator systems (Lignozym® process), J. Biotechnol., 53 (1997) 163.
  • 21. M. Balakshin, E. Capanema, C.L. Chen, et al., Biobleaching of pulp with dioxygen in the laccasemediator system–reaction mechanisms for degradation of residual lignin, J. Mol. Catal. B-Enzym., 13 (2001) 1.
  • 22. M. Lund, M. Eriksson, C. Felby, Reactivity of a fungal laccase towards lignin in softwood kraft pulp. Holzforschung, 57 (2003) 21.
  • 23. C. Sigoillot, E. Record, V. Belle, et al., Natural and recombinant fungal laccases for paper pulp bleaching, Appl. Microbiol. Biotechnol., 64 (2004) 346.
  • 24. N.K. Pazarlıoglu, M. Sariişik, A. Telefoncu, Laccase: production by Trametes versicolor and application to denim washing, Process Biochem., 40 (2005) 1673.
  • 25. N. Aktas, A. Tanyolaç, Reaction conditions for laccase catalyzed polymerization of catechol, Bioresour. Technol., 87 (2003) 209.
  • 26. G.M.B. Soares, M.T.P. Amorim, R. Hrdina, et al., Studies on the biotransformation of novel disazo dyes by laccase, Process Biochem., 37 (2002) 581.
  • 27. P. Peralta-Zamora, C.M. Pereira, E.R.L. Tiburtius et al., Decolorization of reactive dyes by immobilized laccase, Appl. Catal. B-Environ., 42 (2003) 131.
  • 28. A. Ünyayar, M.A. Mazmanci, H. Ataçağ, et al., Drimaren Blue X3LR dye decolorizing enzyme from Funalia trogii one step isolation and identification, Enzym. Microb. Tech., 36 (2005) 10.
  • 29. M.A. Ullah, C.T. Bedford, C.S. Evans, Reactions of pentachlorophenol with laccase from Coriolus versicolor, Appl. Microbiol. Biotechnol., 53 (2000) 230.
  • 30. A. Schultz, U. Jonas, E. Hammer, Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase, Appl. Environ. Microbiol., 67 (2001) 4377.
  • 31. J.M. Bollag, H.L. Chu, M.A. Rao, et al., Enzymatic oxidative transformation of chlorophenol mixtures, J. Environ. Qual., 32 (2003) 63.
  • 32. S.B. Pointing, Feasibility of bioremediation by whiterot fungi, Appl. Microbiol. Biotechnol., 57 (2001) 20.
  • 33. A. D’Annibale, S.R. Stazi, V. Vinciguerra, et al., Oxiraneimmobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater, J. Biotechnol., 77 (2000) 265.
  • 34. A. Tsioulpas, D. Dimou, D. Iconomou, Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity, Biores. Technol., 84 (2002) 251.
  • 35. M.A. Velazquez-Cedeno, G. Mata, J.M. Savoie, Wastereducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes, World J. Microbiol. Biotechnol., 18 (2002) 201.
  • 36. E. Selinheimo, K. Kruus, J. Buchert, et al., Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs, J. Cereal Sci., 43 (2006) 152.
  • 37. K. Golz-Berner, B. Walzel, L. Zastrow et al., Cosmetic and dermatological preparation containing copper binding proteins for skin lightening, Int. Pat. Appl., WO2004017931 (2004)..
  • 38. M. Alcalde, 2007. Lacases: Biological Functions, Molecular Structure and Industrial Applications, pp. 461–476 in Poliana J., MacCabe A. (Eds): Industrial Enzymes Structure, Function and Applications, Springer.
  • 39. E. Kalogeris, F. Iniotaki, E. Topakas, et al., Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw, Bioresour. Technol., 86 (2003) 207.
  • 40. V.L. Papinutti, L.A. Diorio, F. Forchiassin, Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran, J. Ind. Microb. Biotechnol., 30 (2003) 157.
  • 41. C.G. Marques de Souza, A. Zilly, R.M. Peralta, Production of laccase as the sole phenoloxidase by a Brazilian strain of Plerotus pulmonarius in solid state fermentation, J. Basic Microb., 42 (2002) 83.
  • 42. L.R. Castilho, C.M.S. Polato, E.A. Baruque, et al., Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations, Biochem. Eng. J., 4 (2000) 239.
  • 43. S.J.R. Tolls, The uncertainty about climate change too large for expected cost-benefit analysis?, Climatic Change, 56 (2003) 265.
  • 44. I.H. Özsabuncuoğlu, A.A. Uğur, Doğal Kaynaklar, Ekonomi, Yönetim ve Politika, Imaj Yayınevi, Ankara, 2005.
  • 45. A. Demir, M. Arısoy, Biological and Chemical Removal of Cr (VI) From Waste Water: Cost and Benefit Analysis, J. Hazard. Mat., 147 (2007) 275.
  • 46. M.E. Ünsal, Mikro İktisat, Kutsan Ofset Matbaacılık, Ankara, 1998.
  • 47. G. Atkinson, S. Mourato, Environmental Cost-Benefit Analysis, Annu. Rev. Environ. Resour., 33 (2008) 317.
  • 48. J. Persky, Retrospectives: cost-benefit analysis and the classical creed, J. Econ. Perspect., 15 (2001) 199.
  • 49. S. Kurniawan, J.A. Efendi, M.I. Kamil, 2009. Environmental Economic Study of Acid Mine Drainage Management Using Cost Benefit Analysis Approach (Case Study: Coal Mine Area of PT. TAL in South Sumatra), International Conference on Sustainable Infrastructure and Built Environment in Developing Countries November, 2-3, Bandung, West Java, Indonesia ISBN 978-979-98278-2.
  • 50. F. Kutlu, Katı Faz Fermentasyonu ile Ligninolitik Enzimlerin Üretimi, Master of Science thesis, Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences (2010).
  • 51. S. Gedikli, Çeşitli Makrofungus İzolatlarının Lakkaz Üretim Yetenekleri Açısından Değerlendirilmesi ve Dekolorizasyon Uygulamalarında Kullanılabilirliği, Master of Science thesis, Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, (2008).
  • 52. P.M. Coll, J.M. Fernandez-Abalos, J.R. Villanueva, et al., Purification and characterization of a Phenoloxidase (Laccase) from the Lignin-Degrading Basidiomycete PM1 (CECT 2971), Appl. Environ. Microbiol., 59 (1993) 2607.
There are 52 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Aynur Demir This is me

Pınar Aytar This is me

Serap Gedikli This is me

Ahmet Çabuk This is me

Münevver Arısoy This is me

Publication Date August 1, 2011
Published in Issue Year 2011 Volume: 39 Issue: 3

Cite

APA Demir, A., Aytar, P., Gedikli, S., Çabuk, A., et al. (2011). Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis. Hacettepe Journal of Biology and Chemistry, 39(3), 305-313.
AMA Demir A, Aytar P, Gedikli S, Çabuk A, Arısoy M. Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis. HJBC. August 2011;39(3):305-313.
Chicago Demir, Aynur, Pınar Aytar, Serap Gedikli, Ahmet Çabuk, and Münevver Arısoy. “Laccase Production With Submerged and Solid State Fermentation: Benefit and Cost Analysis”. Hacettepe Journal of Biology and Chemistry 39, no. 3 (August 2011): 305-13.
EndNote Demir A, Aytar P, Gedikli S, Çabuk A, Arısoy M (August 1, 2011) Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis. Hacettepe Journal of Biology and Chemistry 39 3 305–313.
IEEE A. Demir, P. Aytar, S. Gedikli, A. Çabuk, and M. Arısoy, “Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis”, HJBC, vol. 39, no. 3, pp. 305–313, 2011.
ISNAD Demir, Aynur et al. “Laccase Production With Submerged and Solid State Fermentation: Benefit and Cost Analysis”. Hacettepe Journal of Biology and Chemistry 39/3 (August 2011), 305-313.
JAMA Demir A, Aytar P, Gedikli S, Çabuk A, Arısoy M. Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis. HJBC. 2011;39:305–313.
MLA Demir, Aynur et al. “Laccase Production With Submerged and Solid State Fermentation: Benefit and Cost Analysis”. Hacettepe Journal of Biology and Chemistry, vol. 39, no. 3, 2011, pp. 305-13.
Vancouver Demir A, Aytar P, Gedikli S, Çabuk A, Arısoy M. Laccase Production with Submerged and Solid State Fermentation: Benefit and Cost Analysis. HJBC. 2011;39(3):305-13.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc