BibTex RIS Cite

Physicochemical Properties of Invertase Partitioned in an Aqueous Two-Phase System of Poly Ethylene Glycol /Sodium Sulfate

Year 2012, Volume: 40 Issue: 2, 139 - 147, 01.04.2012

Abstract

Biochemical properties of an enzyme are very important for its applications in various fields. In the present work, we have investigated some parameters affecting to the invertase activity and stability which was partitioned in poly ethylene glycol /sodium sulfate aqueous two-phase system ATPS . The optimum temperature and pH of the invertase were found as 50ºC and pH 5.0, respectively. The enzyme was very stable at the temperature ranged from 25 to 50ºC and also in a pH range of 4.0-7.5. The enzyme was stored at 4ºC and lost about only 47% of its initial activity at the end of two months. Kinetic parameters; Km and Vmax were determined as 4.65 mM and 30 U, respectively. The effect of various effectors on the activity of the invertase was also searched. Especially, Mn+2 ions showed an activator effect for invertase. Invertases are still efficient tools in various biotechnological applications especially in the food and beverage industry. The results obtained in this study indicate that, characteristic properties of invertase partitioned by PEG/Na2SO4 aqueous two-phase system is very suitable for its industrial applications. The relatively wide range of pH and temperature for activity and stability exhibited by invertase could be very interesting for the food processes.

References

  • 1. S.M. Kotwal, V. Shankar, Immobilized invertase, Biotechnol. Adv., 27 (2009) 311.
  • 2. L.D.S. Marquez, B.V. Cabral, F.F. Freitas, V.L. Cardosa, E.J. Riberio, Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis, J. Mol. Cat. B: Enzymatic, 51 (2007) 86.
  • 3. L.H.S. Guimaraes, H.F. Terenzi, M.L.T. Polizeli, J.A. Jorge, Production and characterization of a thermostable extracellular β-D-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources, Enzyme Microb. Tech., 42 (2007) 52.
  • 4. L.H.S. Guimaraes, A.F. Somera, H.F. Terenzi, M.L.T.M. Polizeli, J.A. Jorge, Production of β-D-fructofuranosidase by Aspergillus niveus using agroindustrial residues as carbon source: characterization of an intracellular enzyme accumulated in the presence of glucose, Process Biochem., 44 (2009) 237.
  • 5. S. Jegou. A. Conreux, S, Villaume, A. Hovasse, C. Schaeffer, C. Cilindre, AV. Dorsselaer, P. Jeandet, One step purification of the grape vacuolar invertase, Anal. Chim. Acta., 638 (2009) 75.
  • 6. A. Hussain, M.H. Rashid, R. Perveen, M. Ashraf, Purification, kinetic and thermodynamic character of soluble acid invertase from sugar cane (Saccarum officinarum L), Plant Physiol. Biochem., 47 (2009) 188.
  • 7. Q.D. Nguyen, J.M. Rezessy-Szabo, M.K. Bhat, A. Hoscheke, Purification and same properties of β-fructofuranosidase from Aspergillus niger IMI 303386, Process Biochem., 40 (2005) 2461.
  • 8. C.C. Liu, L.C. Huang, C.T. Chang, H.Y. Sung, Purification and characterization of soluble invertases from suspension-cultured bamboo (Bambusa edulis) cells, Food Chem., 96 (2006) 621.
  • 9. H. Walter, D.E. Brooks, D. Fisher, Partitioning in aqueous two-phase systems. Academic Press, New York 1985.
  • 10. R. Hatti-Kaul, Aqueous two-phase systems. Methods and Protocols, Methods Biotechnol. Vol 11 Humana Press New Jersey 2000.
  • 11. BY. Zaslavsky, Aqueous two-phase partitioning: Physical chemistry and bioanalytical applications, Marcel Dekker Inc. New York 1994.
  • 12. A.D. Diamond, J.T. Hsu, Aqueous two phase systems for biomolecule separation, Adv. Biochem. Eng. Biotechnol., 47 (1992) 89.
  • 13. T.T. Franco, A.T. Andrews, J.A. Asenjo, Conservative chemical modification of proteins to study the effects of a single protein property on partitioning in aqueous twophase systems, Biotechnol. Bio. Eng., 49(1996) 290.
  • 14. P.A. Albertson, Partition of Cell Particles and Macromolecules, 3rd edition, Wiley, New York 1986.
  • 15. S. Nalinanon, S. Benjakul, W. Visessanguan, H. Kishimura, Partitioning of protease form stomach of albacore tuna (Thunnus alalunga) by aqueous twophase systems, Process Biochem., 44 (2009) 471.
  • 16. R. Dembczynski, W. Bialas, K. Regulski, T. Jankowski, Lysozyme extraction from hen egg white in an aqueous two-phase system composed of ethylene oxidepropylene oxide thermoseparating copolymer and potassium phosphate, Process Biochem., 45 (2010) 369.
  • 17. R. Lucena de Souza, J.M.P. Barbosa, G.M. Zanin, M.W.N. Lobao, C.M.F. Soares, A.S. Lima, Partitioning of porcine pancreatic lipase in a two-phase systems of polyethylene glycol/potassium phosphate aqueous, Appl. Biochem. Biotechnol., 161 (2010) 288.
  • 18. K. Nagangouda, V.H. Mulimani, Aqueous two-phase extraction (ATPE) an attractive and economically viable technology for downstream processing, Process Biochem., 43 (2008) 1293.
  • 19. J.T. Faria, FC. Sampaio, A. Converti, F.M.L. Passos, V.P.R. Minim, L.A. Minim, Use of response surface methodology to evaluate the extraction of Debaryomyces hanseii xylose reductase by aqueous two-phase systems, J. Chroma. B, 877 (2009) 3031.
  • 20. B.K. Vaidya, H.K. Suthar, S. Kasture, S. Nave, Purification of potato polyphenol oxidase (PPO) by partitioning in aqueous two-phase system, Biochem. Eng. J., 28 (2006) 161.
  • 21. G. Tubio, B. Nerli, G. Pico, Partitioning features of bovine trypsin and α-chymotrypsin in polyethylene glycol-sodium citrate aqueous two-phase systems, J. Chromatogr. B, 852 (2007) 244.
  • 22. S. Gautam, L. Simon, Partitioning of β-glucosidase from Trichoderma reesei in poly(ethylene glycol) and potassium phosphate aqueous two-phase systems: influence of pH and temperature, Biochem. Eng. J., 30 (2006) 104.
  • 23. İ. Yücekan, S. Önal, Partitioning of invertase from tomato in poly(ethylene glycol)/sodium sulfate aqueous two-phase systems, Process Biochem, 46 (2011) 226.
  • 24. H. Yue, Q. Yuan, W. Wang, Purification of phenylalanine ammonia-lyase in PEG 1000/Na2SO4 aqueous twophase system by a two-step extraction, J. Plant Physiol., 164 (2007) 746.
  • 25. G.L. Miller, Use of dinitrosalicilic acid reagent for determination of reducing sugars, Anal. Chem., 31 (1959) 426.
  • 26. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding, Anal. Biochem., 72 (1976) 248.
  • 27. M.J. Alam, M.H. Rahman, S.M. Abu Sayem, Extraction, partial purification and characterization of tomato invertase, Proc. Pak. Acad. Sci., 44 (2007) 97.
  • 28. M.H. Rahman, A.S.M.A.H. Akand, T. Yaesmin, M.S. Udin, M.Rahman, Purification and properties of invertase from mango fruit, Pak. J. Biol. Sci., 4 (2001) 1271.
  • 29. W.B. Miller, A.P. Ranwala, Characterisation and localization of three soluble invertase forms from Lilium longiflorum flower buds, Physiol. Plantarum, 92 (1994) 247.
  • 30. H. Takahana, H. Nakagawa, Purification and some properties of β-fructofuranosidase from tomato fruit, Tech. Bull. Hort. Chiba Univ., 18 (1970) 67.
  • 31. L.T. Wang, A.Y. Wang, C.W. Hsieh, C.Y. Chen, H.Y. Sung, Vacuolar invertases in sweet potato: molecular cloning, characterisation and analysis of gene expression, Food Chem., 53 (2005) 3672.
  • 32. B. Peter, Stephanie, D. Sugar accumulation in tomato and partial purification of buffer insoluble invertase, Phytochem., 36 (1994) 837.
  • 33. Y. Konno, T.V. Vedick, Z. Fitzmaurice, T.E. Mirkov, Purification and characterisation and subcellular localization of soluble invertase from tomato fruit, J. Plant Physiol., 141 (1993) 385.
  • 34. H. Nakagawa, Y. Kawasaki, N. Ogura, H. Takehana, Purification and some properties of two types of beta-fructofuranosidase from tomato fruit, Agric. Biol. Chem., 36 (1971) 18.
  • 35. C. West, M. Wade, C. McMillan III, P. Albersheim, Purification and properties of invertases extractable from Phytophthora megasperma var. sojae mycelia, Arch. Biochem. Biophysics., 201 (1980) 25.
  • 36. H.S. Lee, A.Sturn, Purification and characterisation of neutral and alkaline invertase from carrot, Plant Physiol, 112 (1996) 1513.
  • 37. M.I. Isla, M.A. Vattuone, M.I. Gutierrez, A.R. Sampietro, Acid invertase from Tropaeolum leaves, Phytochemistry, 27 (1988) 1993.

Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri

Year 2012, Volume: 40 Issue: 2, 139 - 147, 01.04.2012

Abstract

E nzimlerin biyokimyasal özellikleri çeşitli alanlardaki uygulamaları için oldukça önemlidir. Bu çalşmada, poli etilen glikol /sodyum sülfat sulu ikili-faz sistemi ATPS ile ayrılan invertaz enziminin aktivitesi ve kararlılığına etki eden bazı parametreler incelendi. İnvertaz enziminin optimum pH’sı 5.0 ve optimum sıcaklığı 50oC olarak belirlendi. Enzim 25-50oC sıcaklık ve 4.0-7.5 pH aralığında oldukça kararlıdır. Enzim 4oC’de depolandı ve iki ay sonunda başlangıç aktivitesinin sadece % 47’sini kaybetti. Kinetik parametrelerden K ve Vmax sırasıyla 4.65 mM ve 30 U olarak belirlendi. İnvertaz aktivitesine çeşitli efektörlerin etkisi de incelendi. Özellikle, Mn+2 iyonları invertaz için aktivatör etkisi gösterdi. İnvertazlar özellikle gıda ve içeçek sanayindeki çeşitli biyoteknolojik uygulamalarda hala etkin araçlardır. Bu çalışmadan elde edilen sonuçlar, PEG/Na2SO4 sulu ikili-faz sisteminde ayrılan invertazın karakteristik özelliklerinin endüstriyel uygulamaları için oldukça uygun olduğunu gösterdi. İnvertaz aktivitesi ve kararlığı için sıcaklık ve pH’nın geniş aralıkta değişmesi özellikle gıda prosesleri için ilgi çekici olacaktır

References

  • 1. S.M. Kotwal, V. Shankar, Immobilized invertase, Biotechnol. Adv., 27 (2009) 311.
  • 2. L.D.S. Marquez, B.V. Cabral, F.F. Freitas, V.L. Cardosa, E.J. Riberio, Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis, J. Mol. Cat. B: Enzymatic, 51 (2007) 86.
  • 3. L.H.S. Guimaraes, H.F. Terenzi, M.L.T. Polizeli, J.A. Jorge, Production and characterization of a thermostable extracellular β-D-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources, Enzyme Microb. Tech., 42 (2007) 52.
  • 4. L.H.S. Guimaraes, A.F. Somera, H.F. Terenzi, M.L.T.M. Polizeli, J.A. Jorge, Production of β-D-fructofuranosidase by Aspergillus niveus using agroindustrial residues as carbon source: characterization of an intracellular enzyme accumulated in the presence of glucose, Process Biochem., 44 (2009) 237.
  • 5. S. Jegou. A. Conreux, S, Villaume, A. Hovasse, C. Schaeffer, C. Cilindre, AV. Dorsselaer, P. Jeandet, One step purification of the grape vacuolar invertase, Anal. Chim. Acta., 638 (2009) 75.
  • 6. A. Hussain, M.H. Rashid, R. Perveen, M. Ashraf, Purification, kinetic and thermodynamic character of soluble acid invertase from sugar cane (Saccarum officinarum L), Plant Physiol. Biochem., 47 (2009) 188.
  • 7. Q.D. Nguyen, J.M. Rezessy-Szabo, M.K. Bhat, A. Hoscheke, Purification and same properties of β-fructofuranosidase from Aspergillus niger IMI 303386, Process Biochem., 40 (2005) 2461.
  • 8. C.C. Liu, L.C. Huang, C.T. Chang, H.Y. Sung, Purification and characterization of soluble invertases from suspension-cultured bamboo (Bambusa edulis) cells, Food Chem., 96 (2006) 621.
  • 9. H. Walter, D.E. Brooks, D. Fisher, Partitioning in aqueous two-phase systems. Academic Press, New York 1985.
  • 10. R. Hatti-Kaul, Aqueous two-phase systems. Methods and Protocols, Methods Biotechnol. Vol 11 Humana Press New Jersey 2000.
  • 11. BY. Zaslavsky, Aqueous two-phase partitioning: Physical chemistry and bioanalytical applications, Marcel Dekker Inc. New York 1994.
  • 12. A.D. Diamond, J.T. Hsu, Aqueous two phase systems for biomolecule separation, Adv. Biochem. Eng. Biotechnol., 47 (1992) 89.
  • 13. T.T. Franco, A.T. Andrews, J.A. Asenjo, Conservative chemical modification of proteins to study the effects of a single protein property on partitioning in aqueous twophase systems, Biotechnol. Bio. Eng., 49(1996) 290.
  • 14. P.A. Albertson, Partition of Cell Particles and Macromolecules, 3rd edition, Wiley, New York 1986.
  • 15. S. Nalinanon, S. Benjakul, W. Visessanguan, H. Kishimura, Partitioning of protease form stomach of albacore tuna (Thunnus alalunga) by aqueous twophase systems, Process Biochem., 44 (2009) 471.
  • 16. R. Dembczynski, W. Bialas, K. Regulski, T. Jankowski, Lysozyme extraction from hen egg white in an aqueous two-phase system composed of ethylene oxidepropylene oxide thermoseparating copolymer and potassium phosphate, Process Biochem., 45 (2010) 369.
  • 17. R. Lucena de Souza, J.M.P. Barbosa, G.M. Zanin, M.W.N. Lobao, C.M.F. Soares, A.S. Lima, Partitioning of porcine pancreatic lipase in a two-phase systems of polyethylene glycol/potassium phosphate aqueous, Appl. Biochem. Biotechnol., 161 (2010) 288.
  • 18. K. Nagangouda, V.H. Mulimani, Aqueous two-phase extraction (ATPE) an attractive and economically viable technology for downstream processing, Process Biochem., 43 (2008) 1293.
  • 19. J.T. Faria, FC. Sampaio, A. Converti, F.M.L. Passos, V.P.R. Minim, L.A. Minim, Use of response surface methodology to evaluate the extraction of Debaryomyces hanseii xylose reductase by aqueous two-phase systems, J. Chroma. B, 877 (2009) 3031.
  • 20. B.K. Vaidya, H.K. Suthar, S. Kasture, S. Nave, Purification of potato polyphenol oxidase (PPO) by partitioning in aqueous two-phase system, Biochem. Eng. J., 28 (2006) 161.
  • 21. G. Tubio, B. Nerli, G. Pico, Partitioning features of bovine trypsin and α-chymotrypsin in polyethylene glycol-sodium citrate aqueous two-phase systems, J. Chromatogr. B, 852 (2007) 244.
  • 22. S. Gautam, L. Simon, Partitioning of β-glucosidase from Trichoderma reesei in poly(ethylene glycol) and potassium phosphate aqueous two-phase systems: influence of pH and temperature, Biochem. Eng. J., 30 (2006) 104.
  • 23. İ. Yücekan, S. Önal, Partitioning of invertase from tomato in poly(ethylene glycol)/sodium sulfate aqueous two-phase systems, Process Biochem, 46 (2011) 226.
  • 24. H. Yue, Q. Yuan, W. Wang, Purification of phenylalanine ammonia-lyase in PEG 1000/Na2SO4 aqueous twophase system by a two-step extraction, J. Plant Physiol., 164 (2007) 746.
  • 25. G.L. Miller, Use of dinitrosalicilic acid reagent for determination of reducing sugars, Anal. Chem., 31 (1959) 426.
  • 26. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding, Anal. Biochem., 72 (1976) 248.
  • 27. M.J. Alam, M.H. Rahman, S.M. Abu Sayem, Extraction, partial purification and characterization of tomato invertase, Proc. Pak. Acad. Sci., 44 (2007) 97.
  • 28. M.H. Rahman, A.S.M.A.H. Akand, T. Yaesmin, M.S. Udin, M.Rahman, Purification and properties of invertase from mango fruit, Pak. J. Biol. Sci., 4 (2001) 1271.
  • 29. W.B. Miller, A.P. Ranwala, Characterisation and localization of three soluble invertase forms from Lilium longiflorum flower buds, Physiol. Plantarum, 92 (1994) 247.
  • 30. H. Takahana, H. Nakagawa, Purification and some properties of β-fructofuranosidase from tomato fruit, Tech. Bull. Hort. Chiba Univ., 18 (1970) 67.
  • 31. L.T. Wang, A.Y. Wang, C.W. Hsieh, C.Y. Chen, H.Y. Sung, Vacuolar invertases in sweet potato: molecular cloning, characterisation and analysis of gene expression, Food Chem., 53 (2005) 3672.
  • 32. B. Peter, Stephanie, D. Sugar accumulation in tomato and partial purification of buffer insoluble invertase, Phytochem., 36 (1994) 837.
  • 33. Y. Konno, T.V. Vedick, Z. Fitzmaurice, T.E. Mirkov, Purification and characterisation and subcellular localization of soluble invertase from tomato fruit, J. Plant Physiol., 141 (1993) 385.
  • 34. H. Nakagawa, Y. Kawasaki, N. Ogura, H. Takehana, Purification and some properties of two types of beta-fructofuranosidase from tomato fruit, Agric. Biol. Chem., 36 (1971) 18.
  • 35. C. West, M. Wade, C. McMillan III, P. Albersheim, Purification and properties of invertases extractable from Phytophthora megasperma var. sojae mycelia, Arch. Biochem. Biophysics., 201 (1980) 25.
  • 36. H.S. Lee, A.Sturn, Purification and characterisation of neutral and alkaline invertase from carrot, Plant Physiol, 112 (1996) 1513.
  • 37. M.I. Isla, M.A. Vattuone, M.I. Gutierrez, A.R. Sampietro, Acid invertase from Tropaeolum leaves, Phytochemistry, 27 (1988) 1993.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

İlke Yücekan This is me

Seçil Önal This is me

Publication Date April 1, 2012
Published in Issue Year 2012 Volume: 40 Issue: 2

Cite

APA Yücekan, İ., & Önal, S. (2012). Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri. Hacettepe Journal of Biology and Chemistry, 40(2), 139-147.
AMA Yücekan İ, Önal S. Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri. HJBC. April 2012;40(2):139-147.
Chicago Yücekan, İlke, and Seçil Önal. “Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri”. Hacettepe Journal of Biology and Chemistry 40, no. 2 (April 2012): 139-47.
EndNote Yücekan İ, Önal S (April 1, 2012) Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri. Hacettepe Journal of Biology and Chemistry 40 2 139–147.
IEEE İ. Yücekan and S. Önal, “Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri”, HJBC, vol. 40, no. 2, pp. 139–147, 2012.
ISNAD Yücekan, İlke - Önal, Seçil. “Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri”. Hacettepe Journal of Biology and Chemistry 40/2 (April 2012), 139-147.
JAMA Yücekan İ, Önal S. Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri. HJBC. 2012;40:139–147.
MLA Yücekan, İlke and Seçil Önal. “Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri”. Hacettepe Journal of Biology and Chemistry, vol. 40, no. 2, 2012, pp. 139-47.
Vancouver Yücekan İ, Önal S. Poli Etilen Glikol /Sodyum Sülfat Sulu İkili-Faz Sisteminde Ayrılan İnvertazın Fizikokimyasal Özellikleri. HJBC. 2012;40(2):139-47.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc