BibTex RIS Cite

Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​

Year 2012, Volume: 40 Issue: 2, 183 - 194, 01.04.2012

Abstract

Novel bioengineering alternating copolymer and its organoboron amide and a-hydroxy-w- methoxypoly ethylene oxide PEO branched derivatives were synthesized by 1 complex-radical alternating copolymerization of two non-homopolymerizable in chosen reaction conditions monomers such as maleic anhydride MA and 2-vinyl-1,3-dioxolane VDO , 2 amidolysis of synthesized poly MA-alt-VDO with 2-aminoethyldiphenylboronate and 3 esterification-grafting of organoboron copolymer with PEO. The complex-formation Kc and the monomer reactivity ratios r1 and r2 copolymerization constants , structure and composition of the synthesized copolymers were characterized by chemical alkali titration , FTIR-ATR and NMR spectroscopy, TGA-DSC thermal analysis methods. Cytotoxicity found as having an order as organoboron branched PEO copolymer < poly MA-alt-VDO < organoboron copolymer of these novel copolymers containing a combination of ionizable, hydrophilic/hydrophobic, organoboron, carboxyl-amide-ester-ether groups, toward HeLa cells was investigated.

References

  • 1. K. Ulbrich, T. Etrych, P. Chytil, M. Jelnkova, B. Rhova, J. Cont. Release, 87 (2003) 33.
  • 2. GB. Butler, Cyclopolymerization and cyclocopolymerization, (1992). New York, Marcel Dekker.
  • 3. S. Iwatsuki, Y. Yamashita, The charge transfer complex formation between p-dioxene and maleic anhydride and their participation in polymerization, Makromol. Chem., 89 (1965) 205.
  • 4. T. Kokubo, S. Iwatsuki, Y. Tamashita, Studies on the charge-transfer complex and polymerization. XVII. The reactivity of the charge-transfer complex in alternating radical copolymerization of vinyl ethers and maleic anhydride, Macromol., 1 (1968) 482.
  • 5. T. Kokubo, S. Iwatsuki, Y. Tamashita, Studies on the charge-transfer complex and polymerizations, Part XIX. Spontaneous copolymerization of 1.2-dimethoxyethylen and p-dioxene with maleic anhydride, Makromol. Chem., 123 (1969) 256.
  • 6. K. Fujimori, Copolymerization of 2,3-dihydropyran and ethyl vinyl ether with maleic anhydride, J. Macromol. Sci.-Chem A, 9 (1975) 495.
  • 7. Z.M. Rzayev, L.V. Bryksina, S.I. Sadikh-zade, Charge Transfer Complexes of maleic anhydride in radical homo-and copolymerization, J. Polym. Sci. Part 1: Symp., 42 (1973) 519.
  • 8. M.J. Han, K.H. Kim, T.J. Cho, K.B. Choi, Synthesis and characterization of poly[(3,4-dihydro-2hpyran)-alt-(maleic anhydride)] and its derivatives: Biologically active polymers, J. Polym. Sci. Part A: Polym. Chem., 28 (1990) 2719.
  • 9. M.J. Han, K.S. Kim, T.J. Cho, K.H. Kim, J.Y. Chang, Polyribonucleotide Analogs: Synthesis and Physicochemical Properties, Macromolecules, 27 (1994) 2896.
  • 10. I.G. Donaruma, Anionic polymeric drugs, (1980), New York, Wiley.
  • 11. H.K. Can, A.L. Doğan, Z.M.O. Rzayev, A.H. Üner, A. Güner, Synthesis and antitumor activity of poly(3,4- dihydro-2H-pyran-co-maleic anhydride-co-vinylacetate), J. Appl. Polym. Sci., 96 (2005) 2352.
  • 12. Z.MO. Rzayev, M. Türk, A. Uzgören, Bioengineering functional copolymers. XV. Synthesis and characterization of poly(N-isopropyl acrylamideco-3,4-dihydro-2H-pyran-alt-maleic anhydride) s and their PEO branched derivatives, J. Polym. Sci. Part A: Polym. Chem., 48 (2010) 4285.
  • 13. M. Türk, Z.M.O. Rzayev, S.A. Khalilova, Bioengineering functional copolymers. XIV. Synthesis and interaction of poly(isopropyl acrylamide-co-2,3-dihydro-2Hpyran-alt-maleic anhydride)s with SCLC cancer cells, Bioorg. Med. Chem., 18 (2010) 7975.
  • 14. Y.K. Han, S.K. Choi, Synthesis and polymerization of 8,9-benzo-2-methylene-1,4,6-trioxaspiro[4,4] nonane (BMTN), J. Polym. Sci. Polym. Chem. Ed., 21 (1983) 353.
  • 15. T. Otsu, H. Inoue, Alternative copolymerization of vinyl sulfides with maleic anhydride, III. Alternative copolymerization, Makromol. Chem., 128 (1969) 31.
  • 16. K. Fujimori, A. Wickramasinghe, The reactivity of the charge-transfer complex od butyl vinyl ether and maleic anhydride in the radical terpolymerization of butyl vinyl ether, Austral. J. Chem., 33 (1980) 189
  • 17. A.I. Smirnov, G.I. Deryabina, A.B. Kalabina, T.L. Petrova, IL. Stoyachenko, VB. Golubev, VP. Zubov, Inves-tigation of alternating copolymerization mechanizm of vinyl ethers with derivatives of maleic acid, Vysokomol. Soyed. A., 20 (1978) 1794.
  • 18. Z.M.O. Rzayev, Complex-radical alternating copolymerization, Prog. Polym. Sci., 25 (2000) 163.
  • 19. L.M. Croll, H.D.H. Stover, Mechanism of selfassembly and rupture of crosslinked microspheres and microgels at the oil-water interface, Langmuir, 19 (2003) 10077.
  • 20. M.Q. Zhu, L.H. Wei, M. Li, L. Jiang, F.S. Du, Z.C. Li, A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof, Chem. Commun. 4 (2001) 365.
  • 21. M.C. Davies, J.V. Dawkins, D.J. Hourston, Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization, Polymer, 46 (2005) 1739.
  • 22. G. Kahraman, O. Beskardes, Z.M.O. Rzaev, E. Piskin, Bioengineering polyfunctional copolymers. VII. Synthesis and characterization of copolymers of p-vinylphenyl boronic.acid with maleic and citraconic anhydrides and their self-assembled macrobranched supramolecular architectures, Polymer 45 (2004) 5813
  • 23. E. Chernikova, P. Terpugova, C. Bui, B. Charleux, Effect of comonomer composition on the controlled free-radical copolymerization of styrene and maleic anhydride by reversible addition–fragmentation chain transfer (RAFT), Polymer, 44 (2003) 4101.
  • 24. H. Kesim, Z.M.O. Rzaev, S. Dinçer, E. Piskin, Functional bioengineering copolymers. I. Synthesis and characterization of amphiphilic poly(Nisopropylacrylamide-co-maleic anhydride) and its macrobranched derivatives, Polymer, 44 (2003) 2897.
  • 25. M.C. Davies, J.V. Dawkins, D.J. Hourston, E. Meehan, Molar mass determination of poly(octadecenealt-maleic anhydride) copolymers by size exclusion chromatography and dilute solution viscometry, Polymer, 43 (2002) 4311.
  • 26. J. Zhou, L. Wang, C. Wang, T. Chen, H. Yu, Q. Yang, Synthesis and self-assembly of amphiphilic maleic anhydride–stearyl methacrylate copolymer, Polymer, 46 (2005) 11157.
  • 27. F. Delie, M.J. Blanco-Prieto, Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules, 10 (2005) 65.
  • 28. R.W. Blevins (Eastman Chem. Co., USA), Copolymers of dioxolanes and maleic anhydride, Eur. Pat. 0522046 B1 (1991).
  • 29. A.S. Hoffman, Polymeric particulates to improve oral bioavailability of peptide drugs, Artif. Organs. 19 (1995) 458.
  • 30. I.Y. Galaev, B. Mattiasson, ‘Smart’ polymers and what they could do in biotechnology and medicine, Trends Biotechnol., 17 (1999) 335.
  • 31. J.L. Moreau, D. Kesselman, J. Fisher, Synthesis and properties of cyclic acetal biomaterials, J. Biomed. Mater. Res. A, 81 (2007) 594.
  • 32. M.W. Betz, P.C. Modi, J.F. Caccamese, D.P. Coletti, J.J. Sauk, J.P. Fisher, Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation, J. Biomed. Mater. Res. A., 86 (2008) 662.
  • 33. S. Kaihara, S. Matsumura, J.P. Fisher, Synthesis and characterization of cyclic acetal based degradable hydrogels, EU J. Pharm. Biopharm., 68 (2008) 67.
  • 34. N.A. Petasis, Expanding roles for organoboron compounds-versatile and valuable molecules for sythetic, biological and medicinal chemistry, Aust. J. Chem., 60 (2007) 795.
  • 35. W. Yang, X. Gao, B. Wang, Boronic acid compounds as potential pharmaceutical agents, Med. Res. Rev., 23 (2003) 346.
  • 36. S. Shi, H. Gao, G. Wu, J. Nie, Cyclic acetal as coinitiator for bimolecular photoinitiating systems, Polymer, 48 (2007) 2860.
  • 37. M. Patel, M.W. Betz, E. Geibel, K.J. Pateş, J.F. Caccamese, D.P. Coletti, J.J. Sauk, J.P. Fisher, Cyclic acetal hydroxyapatite nanocomposites for orbital bone regeneration, Tissue Eng Part A., 16 (2010) 55.
  • 38. J.F. Valliant, K.J. Guenther, A.S. King, P. Morel, P. Schaffer, OO. Sogbein, K.A. Stephenson, The medical chemistry of carborones, Coord. Chem. Rev., 232 (2002) 173.
  • 39. W. Chen, S.C. Mehta, D.R. Lu, Selective boron drug delivery to brain tumor for boron neutron capture therapy, Adv. Drug. Deliv. Rev., 26 (1997) 231.
  • 40. Z.M.O. Rzayev, M. Türk, G. Kahraman, E. Pişkin, Bioengineering functional copolymers, XIX. Synthesis of anhydride-organoboron functionalized copolymers and their interaction with cancer cells, Hacettepe J. Biol. & Chem., 39 (2011) 111.
  • 41. M. Türk, G. Kahraman, S.A. Khalilova, Z.M.O. Rzayev, S. Oğuztüzün, Bioengineering functional copolymers. XVII. Interaction of organoboron amide-ester branched derivatives of poly(acrylic acid) with cancer cells, J. Cancer Therapy, 2 (2011) 266.
  • 42. M.W. Hanna, A.L. Ashbauch, Nuclear magnetic resonance study of molecular complexes of 7, 7, 8, 8– tetracyanoquinodimethane and aromatic donors, J. Phys. Chem. 68 (1964) 81.
  • 43. T. Kelen, F. Tüdös, Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method, J. Macromol. Sci. Part A: Chem. 9 (1975) 1.
  • 44. P. Comes, W.W. Franke, Composition, structure and function of HeLa cell nuclear envelope, I. Structural data, Z. Zellforsch., 107 (1970) 240.

Biyomühendislik Fonksiyonel Kopolimerleri. XX. Yeni Antikanser Aktif Poli maleik anhidrid-alt-2- vinil-1,3-dioxolan ve Organoboron Amid-Ester Dallanmış Türevleri

Year 2012, Volume: 40 Issue: 2, 183 - 194, 01.04.2012

Abstract

Y eni biyomühendislik alternatif kopolimerinin ve organobor amid ve a-hidroksi-w-metoksi-poli etilen oksit PEO ile dallanmış türevlerinin sentezi, 1 Seçilen reaksiyon şartlarında homopolimerleşmeyen maleik anhidriti MA ve 2-vinil-1,3-dioksolan VDO monomerlerinin kompleks-radikal alternatif kopolimerizasyonu, 2 sentezlenenpoli MA-alt-VDO makromoleküllerinin 2-amino-etildifenilboronat ile amidolizi ve 3 PEO ile esterleşmesi yöntemleri kulllanarak gerçekleştirilmiştir. Monomerlerin kompleks oluşumu K ve kopolimerleşme sabitleri r1 ve r2 , çok fonksiyonel gruplar içeren kopolimerlerin yapısı, içeriği ve ısısal özellikleri kimyasal analiz alkali titrasyon , FTIR-ATR and NMR spektroskopisi ve TGA-DSC ile karakterize edilmiştir. İyonize olabilen, hidrofilik/hidrofobik, organobor, anhidrit-karboksil-amid-ester-eter gibi gruplar içeren bu kopolimerlerin HeLa hücrelerine sitotoksik etkisi araştırılmış ve organobor-PEO kopolimer < poli MAalt-VDO < organobor kopolimer sırasında olduğu belirlenmiştir

References

  • 1. K. Ulbrich, T. Etrych, P. Chytil, M. Jelnkova, B. Rhova, J. Cont. Release, 87 (2003) 33.
  • 2. GB. Butler, Cyclopolymerization and cyclocopolymerization, (1992). New York, Marcel Dekker.
  • 3. S. Iwatsuki, Y. Yamashita, The charge transfer complex formation between p-dioxene and maleic anhydride and their participation in polymerization, Makromol. Chem., 89 (1965) 205.
  • 4. T. Kokubo, S. Iwatsuki, Y. Tamashita, Studies on the charge-transfer complex and polymerization. XVII. The reactivity of the charge-transfer complex in alternating radical copolymerization of vinyl ethers and maleic anhydride, Macromol., 1 (1968) 482.
  • 5. T. Kokubo, S. Iwatsuki, Y. Tamashita, Studies on the charge-transfer complex and polymerizations, Part XIX. Spontaneous copolymerization of 1.2-dimethoxyethylen and p-dioxene with maleic anhydride, Makromol. Chem., 123 (1969) 256.
  • 6. K. Fujimori, Copolymerization of 2,3-dihydropyran and ethyl vinyl ether with maleic anhydride, J. Macromol. Sci.-Chem A, 9 (1975) 495.
  • 7. Z.M. Rzayev, L.V. Bryksina, S.I. Sadikh-zade, Charge Transfer Complexes of maleic anhydride in radical homo-and copolymerization, J. Polym. Sci. Part 1: Symp., 42 (1973) 519.
  • 8. M.J. Han, K.H. Kim, T.J. Cho, K.B. Choi, Synthesis and characterization of poly[(3,4-dihydro-2hpyran)-alt-(maleic anhydride)] and its derivatives: Biologically active polymers, J. Polym. Sci. Part A: Polym. Chem., 28 (1990) 2719.
  • 9. M.J. Han, K.S. Kim, T.J. Cho, K.H. Kim, J.Y. Chang, Polyribonucleotide Analogs: Synthesis and Physicochemical Properties, Macromolecules, 27 (1994) 2896.
  • 10. I.G. Donaruma, Anionic polymeric drugs, (1980), New York, Wiley.
  • 11. H.K. Can, A.L. Doğan, Z.M.O. Rzayev, A.H. Üner, A. Güner, Synthesis and antitumor activity of poly(3,4- dihydro-2H-pyran-co-maleic anhydride-co-vinylacetate), J. Appl. Polym. Sci., 96 (2005) 2352.
  • 12. Z.MO. Rzayev, M. Türk, A. Uzgören, Bioengineering functional copolymers. XV. Synthesis and characterization of poly(N-isopropyl acrylamideco-3,4-dihydro-2H-pyran-alt-maleic anhydride) s and their PEO branched derivatives, J. Polym. Sci. Part A: Polym. Chem., 48 (2010) 4285.
  • 13. M. Türk, Z.M.O. Rzayev, S.A. Khalilova, Bioengineering functional copolymers. XIV. Synthesis and interaction of poly(isopropyl acrylamide-co-2,3-dihydro-2Hpyran-alt-maleic anhydride)s with SCLC cancer cells, Bioorg. Med. Chem., 18 (2010) 7975.
  • 14. Y.K. Han, S.K. Choi, Synthesis and polymerization of 8,9-benzo-2-methylene-1,4,6-trioxaspiro[4,4] nonane (BMTN), J. Polym. Sci. Polym. Chem. Ed., 21 (1983) 353.
  • 15. T. Otsu, H. Inoue, Alternative copolymerization of vinyl sulfides with maleic anhydride, III. Alternative copolymerization, Makromol. Chem., 128 (1969) 31.
  • 16. K. Fujimori, A. Wickramasinghe, The reactivity of the charge-transfer complex od butyl vinyl ether and maleic anhydride in the radical terpolymerization of butyl vinyl ether, Austral. J. Chem., 33 (1980) 189
  • 17. A.I. Smirnov, G.I. Deryabina, A.B. Kalabina, T.L. Petrova, IL. Stoyachenko, VB. Golubev, VP. Zubov, Inves-tigation of alternating copolymerization mechanizm of vinyl ethers with derivatives of maleic acid, Vysokomol. Soyed. A., 20 (1978) 1794.
  • 18. Z.M.O. Rzayev, Complex-radical alternating copolymerization, Prog. Polym. Sci., 25 (2000) 163.
  • 19. L.M. Croll, H.D.H. Stover, Mechanism of selfassembly and rupture of crosslinked microspheres and microgels at the oil-water interface, Langmuir, 19 (2003) 10077.
  • 20. M.Q. Zhu, L.H. Wei, M. Li, L. Jiang, F.S. Du, Z.C. Li, A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof, Chem. Commun. 4 (2001) 365.
  • 21. M.C. Davies, J.V. Dawkins, D.J. Hourston, Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization, Polymer, 46 (2005) 1739.
  • 22. G. Kahraman, O. Beskardes, Z.M.O. Rzaev, E. Piskin, Bioengineering polyfunctional copolymers. VII. Synthesis and characterization of copolymers of p-vinylphenyl boronic.acid with maleic and citraconic anhydrides and their self-assembled macrobranched supramolecular architectures, Polymer 45 (2004) 5813
  • 23. E. Chernikova, P. Terpugova, C. Bui, B. Charleux, Effect of comonomer composition on the controlled free-radical copolymerization of styrene and maleic anhydride by reversible addition–fragmentation chain transfer (RAFT), Polymer, 44 (2003) 4101.
  • 24. H. Kesim, Z.M.O. Rzaev, S. Dinçer, E. Piskin, Functional bioengineering copolymers. I. Synthesis and characterization of amphiphilic poly(Nisopropylacrylamide-co-maleic anhydride) and its macrobranched derivatives, Polymer, 44 (2003) 2897.
  • 25. M.C. Davies, J.V. Dawkins, D.J. Hourston, E. Meehan, Molar mass determination of poly(octadecenealt-maleic anhydride) copolymers by size exclusion chromatography and dilute solution viscometry, Polymer, 43 (2002) 4311.
  • 26. J. Zhou, L. Wang, C. Wang, T. Chen, H. Yu, Q. Yang, Synthesis and self-assembly of amphiphilic maleic anhydride–stearyl methacrylate copolymer, Polymer, 46 (2005) 11157.
  • 27. F. Delie, M.J. Blanco-Prieto, Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules, 10 (2005) 65.
  • 28. R.W. Blevins (Eastman Chem. Co., USA), Copolymers of dioxolanes and maleic anhydride, Eur. Pat. 0522046 B1 (1991).
  • 29. A.S. Hoffman, Polymeric particulates to improve oral bioavailability of peptide drugs, Artif. Organs. 19 (1995) 458.
  • 30. I.Y. Galaev, B. Mattiasson, ‘Smart’ polymers and what they could do in biotechnology and medicine, Trends Biotechnol., 17 (1999) 335.
  • 31. J.L. Moreau, D. Kesselman, J. Fisher, Synthesis and properties of cyclic acetal biomaterials, J. Biomed. Mater. Res. A, 81 (2007) 594.
  • 32. M.W. Betz, P.C. Modi, J.F. Caccamese, D.P. Coletti, J.J. Sauk, J.P. Fisher, Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation, J. Biomed. Mater. Res. A., 86 (2008) 662.
  • 33. S. Kaihara, S. Matsumura, J.P. Fisher, Synthesis and characterization of cyclic acetal based degradable hydrogels, EU J. Pharm. Biopharm., 68 (2008) 67.
  • 34. N.A. Petasis, Expanding roles for organoboron compounds-versatile and valuable molecules for sythetic, biological and medicinal chemistry, Aust. J. Chem., 60 (2007) 795.
  • 35. W. Yang, X. Gao, B. Wang, Boronic acid compounds as potential pharmaceutical agents, Med. Res. Rev., 23 (2003) 346.
  • 36. S. Shi, H. Gao, G. Wu, J. Nie, Cyclic acetal as coinitiator for bimolecular photoinitiating systems, Polymer, 48 (2007) 2860.
  • 37. M. Patel, M.W. Betz, E. Geibel, K.J. Pateş, J.F. Caccamese, D.P. Coletti, J.J. Sauk, J.P. Fisher, Cyclic acetal hydroxyapatite nanocomposites for orbital bone regeneration, Tissue Eng Part A., 16 (2010) 55.
  • 38. J.F. Valliant, K.J. Guenther, A.S. King, P. Morel, P. Schaffer, OO. Sogbein, K.A. Stephenson, The medical chemistry of carborones, Coord. Chem. Rev., 232 (2002) 173.
  • 39. W. Chen, S.C. Mehta, D.R. Lu, Selective boron drug delivery to brain tumor for boron neutron capture therapy, Adv. Drug. Deliv. Rev., 26 (1997) 231.
  • 40. Z.M.O. Rzayev, M. Türk, G. Kahraman, E. Pişkin, Bioengineering functional copolymers, XIX. Synthesis of anhydride-organoboron functionalized copolymers and their interaction with cancer cells, Hacettepe J. Biol. & Chem., 39 (2011) 111.
  • 41. M. Türk, G. Kahraman, S.A. Khalilova, Z.M.O. Rzayev, S. Oğuztüzün, Bioengineering functional copolymers. XVII. Interaction of organoboron amide-ester branched derivatives of poly(acrylic acid) with cancer cells, J. Cancer Therapy, 2 (2011) 266.
  • 42. M.W. Hanna, A.L. Ashbauch, Nuclear magnetic resonance study of molecular complexes of 7, 7, 8, 8– tetracyanoquinodimethane and aromatic donors, J. Phys. Chem. 68 (1964) 81.
  • 43. T. Kelen, F. Tüdös, Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method, J. Macromol. Sci. Part A: Chem. 9 (1975) 1.
  • 44. P. Comes, W.W. Franke, Composition, structure and function of HeLa cell nuclear envelope, I. Structural data, Z. Zellforsch., 107 (1970) 240.
There are 44 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gülten Kahraman This is me

Mustafa Türk This is me

Zakir M.o. Rzayev This is me

Ernur A. Söylemez This is me

Serpil Oğuztüzün This is me

Publication Date April 1, 2012
Published in Issue Year 2012 Volume: 40 Issue: 2

Cite

APA Kahraman, G., Türk, M., Rzayev, Z. M., Söylemez, E. A., et al. (2012). Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​. Hacettepe Journal of Biology and Chemistry, 40(2), 183-194.
AMA Kahraman G, Türk M, Rzayev ZM, Söylemez EA, Oğuztüzün S. Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​. HJBC. April 2012;40(2):183-194.
Chicago Kahraman, Gülten, Mustafa Türk, Zakir M.o. Rzayev, Ernur A. Söylemez, and Serpil Oğuztüzün. “Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly Maleic Anhydride-Alt-2-Vinyl-1,3-Dioxolane and Its Organoboron Amide-Ester Branched Derivatives ​”. Hacettepe Journal of Biology and Chemistry 40, no. 2 (April 2012): 183-94.
EndNote Kahraman G, Türk M, Rzayev ZM, Söylemez EA, Oğuztüzün S (April 1, 2012) Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​. Hacettepe Journal of Biology and Chemistry 40 2 183–194.
IEEE G. Kahraman, M. Türk, Z. M. Rzayev, E. A. Söylemez, and S. Oğuztüzün, “Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​”, HJBC, vol. 40, no. 2, pp. 183–194, 2012.
ISNAD Kahraman, Gülten et al. “Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly Maleic Anhydride-Alt-2-Vinyl-1,3-Dioxolane and Its Organoboron Amide-Ester Branched Derivatives ​”. Hacettepe Journal of Biology and Chemistry 40/2 (April 2012), 183-194.
JAMA Kahraman G, Türk M, Rzayev ZM, Söylemez EA, Oğuztüzün S. Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​. HJBC. 2012;40:183–194.
MLA Kahraman, Gülten et al. “Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly Maleic Anhydride-Alt-2-Vinyl-1,3-Dioxolane and Its Organoboron Amide-Ester Branched Derivatives ​”. Hacettepe Journal of Biology and Chemistry, vol. 40, no. 2, 2012, pp. 183-94.
Vancouver Kahraman G, Türk M, Rzayev ZM, Söylemez EA, Oğuztüzün S. Bioengineering Functional Copolymers. XX. Synthesis of Novel Anticancer Active Poly maleic anhydride-alt-2-vinyl-1,3-dioxolane and its Organoboron Amide-Ester Branched Derivatives ​. HJBC. 2012;40(2):183-94.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc