BibTex RIS Cite

Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand

Year 2013, Volume: 41 Issue: 1, 29 - 36, 01.03.2013

Abstract

Anovel application of chiral ligand-exchange capillary electrophoresis LE-CE was developed with polymeric nanoparticles as a chiral ligand and Cu 2+ as a central ion. Nanoparticles NPs were prepared by polymerization of N-methacryloyl-L-histidine methyl ester MAH and ethylene dimethacrylate EDMA . NPs were characterized by elemental analysis, fourier transform infrared spectroscopy FTIR , atomic force microscopy AFM . Average particle size and size distribution of NPs were also performed. Elemental analysis of MAH for nitrogen stoichiometry was found as 0.2 mmol/g polymer. CE systems that contain NPs in running buffer can be thought as pseudocapillary electrochromatography. Using this approach, enantiomer separation of ofloxacin was carried out by using LE-CE. The results demonstrated that NPs with chiral functionalized group interacted differently with structural enantiomers of ofloxacin. Factors affecting chiral resolution were studied. The optimum running conditions for the enantioseparation of ofloxacin were found to be a background electrolyte BGE pH 4.7 containing 70% ACN, 10 mM CuSO4, 40 mM NH4 2SO4 and 30 mg/mL NPs. Under these conditions, the enantioseparation of ofloxacin was successfully achieved. With this system, R-ofloxacin and S-ofloxacin levofloxacin were used to analysis capsules in the ofloxacin tablets.

References

  • B. Chankvetadze, Separation selectivity in chiral capillary electrophoresis with charged selectors, J. Chromatogr. A, 792 (1997) 269.
  • E.C. Peters, K. Lewandowski, M. Petro, F. Svec, J.M.J. Frechet, Chiral electrochromatography with a ‘moulded’ rigid monolithic capillary column, Anal. Commun., 35 (1998) 83.
  • S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89.
  • G. Gübitz, M.G. Schmid, Recent progress in chiral separations principles in capillary electrophoresis, Electrophoresis, 21 (2000) 4112.
  • B.Chankvetadze, G. Blaschke, Enantioseparations in capillary electro migration techniques: recent developments and future trends, J. Chromatogr. A, 906 (2001) 309.
  • G.K.E. Scriba, Selected fundamental aspects of chiral electromigration techniques and their application to pharmaceutical and biomedical analysis, J. Pharm. Biomed. Anal., 27 (2002) 373. 7. B. Chankvetadze, W. Linder, G.K. E. Scriba, Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector commentary on the feasibility of the concept, Anal. Chem., 76 (2004) 4256.
  • P.T.T. Ha, J. Hoogmartens, A.V. Schepdael, Recent advances in pharmaceutical applications of chiral capillary electrophoresis, J. Pharm. Biomed. Anal., 41 (2006) 1.
  • B. Chankvetadze, Monolithic chiral stationary phases for liquid phase-enantioseparation techniques, J. Sep. Sci., 33 (2010) 305.
  • M. Lammerhofer, Chiral recognition by enantioselec- tive liquid chromatography: Mechanisms and modern chiral stationary phases trends, J. Chromatogr. A, 1217 (2010) 814.
  • T.J. Ward, K.D. Ward, Chiral separations: A review of current topics and trends, Anal. Chem., 84 (2012) 626.
  • C. Aydoğan, A. Denizli, Electrochromatographic enantioseparation of amino acids using polybutyl- methacrylate-based chiral monolithic column by capillary electrochromatography, Chirality, 24 (2012) 606.
  • H. Hodl, M. G. Schmid, G. Gubitz, Chiral separation of amino acids and glycyl dipeptides by chiral ligand- exchange capillary electrophoresis comparing Cu(II), Co(II), Ni(II) and Zn(II) complexes of three different sugar acids,. J. Chromatogr. A, 1204 (2008) 210.
  • S. Kodama, A, Taga, A. Yamamoto, Y. Ito, Y. Honda, K. Suzuki, T. Yamashita, T. Kemmei, S. I. Aizawa, Enantioseparation of DL-isocitric acid by a chiral ligand exchange CE with Ni(II)-Dquinic acid system, Electrophoresis, 31 (2010) 3586.
  • H. Zhang, L. Qi, L. Mao, Y.Chen, Chiral separation using capillary electromigration techniques based on ligand exchange principle, Electrophoresis, 31 (2012) 1236.
  • E. Gassmann, J.E. Kuo, R.N. Zare,Electrokinetic Separation of Chiral Compounds, Science, 230 (1985) 813.
  • V. A. Davankov, Enantioselective ligand exchange in modern separation techniques, J. Chromatogr., A, 1000 (2003) 891.
  • M. G. Schmid, G. Gubitz, Advances in chiral separation using Electrophoresis, 28 (2007) 114. techniques
  • R.H. Drew, H.A. Gallis, Ofloxacin: its pharmacology, and pharmacokinetics, application, Pharmacoterapy, 8 (1988) 35. potential for clinical
  • S. Hara, K. Koga, K. Shudo, Molecular chirality, Kaga Kudojin (1993) Kyoto.
  • J.H. Yuk, C.H. Nigtingale, R. Quintiliani, K.R. Sweeney, Bioavailability and pharmacokinetics of ofloxacin in healthy volunteers, Antimicrob. Agents Chemother., 35 (1991) 384.
  • W. Bi, M. Tian, K.H. Row, Chiral separation and determination of ofloxacin enantiomers by ionic liquid-assisted ligand-exchange chromatography, Analyst, 136 (2011) 379.
  • X. Gao, G. Yao, N. Guo, F. An, X. Guo, A simple and rapid high performance liquid chromatography method to determine levofloxacin in human plasma and its use in a bioequivalence study, Drug Discov. Ther., 2 (2007) 136.
  • F.A. Wong, S.J. Juzwin, S.C. Flor, Rapid stereospecific high-performance liquid chromatographic determi- nation of ofloxacin in human plasma and urine, J. Pharm. Biomed. Anal., 15 (1997) 765.
  • E. Guihen, J.D. Glenon, Nanoparticles in Separation Science—Recent Developments, Anal. Lett., 36 (2003) 3309.
  • Z. Zhang, B. Yan, Y. Liao, H. Liu, Nanoparticle: is it promising in capillary electrophoresis ? Anal. Bioanal. Chem., 391 (2008) 925.
  • P. Viberg, M.J. Karlsson, P. Petersson, P. Spegel, S. Nilson, Nanoparticles as Pseudostationary Phase in Capillary Electrochromatography/ESI-MS, Anal. Chem., 74 (2002) 4595.
  • J. Krenkova, F. Foret, F. Svec, Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering, J. Sep. Sci., 35 (2012) 1266.
  • A.H. Duhan, S.M. Xie, L.M. Yuan, Nanoparticles as stationary and pseudo-stationary phases in chromatographic and electrochromatographic sepa- rations, Tr. Anal. Chem., 30 (2011) 484.
  • I. Perçin, V. Karakoç, S. Akgöl, E. Aksöz, A. Denizli, Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate, Mater. Sci. Eng. C, 32 (2012) 1133.
  • G.K.E. Scriba, Chiral recognition mechanisms in analytical separation sciences, Chromatographia, (2012) DOI 10.1007/s10337-012-2261-1.
  • Z. Chen, T. Hobo, Chemically L-phenylalaninamide-mo- dified monolithic silica column prepared by a sol-gel process for enantioseparation of dansyl amino acids by ligand echange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348.
  • T. Boer, R. Mal, R.A. Zeeuw, G.J. Jong, K. Ensing, Enantioseparation of ofloxacin in urine by capillary electrokinetic chromatography using charged cyclo- dextrins as chiral selectors and assessment of enantioconversion, Electrophoresis, 22 (2001) 1413.
  • X.X. Shi, L. Xu, H.Q. Duan, Y.P. Huang, Z.S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, J. Sep. Sci., 32 (2011) 1348.

L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması

Year 2013, Volume: 41 Issue: 1, 29 - 36, 01.03.2013

Abstract

L -histidin modifiye nanopartiküllerin kiral ligand ve Cu2+’nin merkez iyon olarak kullanılması ile yeni bir kiral ligand değişim kapiler elektroforez yöntemi geliştirildi. İlk olarak, MAH ve EDMA’nın polimerizasyonu ile polimerik nanopartiküller hazırlandı. Nanopartiküller atomik kuvvet mikroskobu AFM , FTIR ve elemental analiz ile karakterize edildi. Nanopartiküllerin elementel analizi sonucu polimerde 0.2 mmol/g azot olduğu bulundu. Elektrolit çözeltisi içerisinde nanopartiküller içeren kapiler elektroforez sistemi yalancı kapiler elektrokromatografi yöntemi olarak bilinir. Bu yaklaşım ile ofloksasinin enantiyoayırımı, ligand değişim kapiler elektroforez ile yapıldı. Kiral grup içeren nanopartiküller farklı şekilde ofloksasinin yapısal enantiomerleri ile etkileşim gösterdi. Kiral ayırmayı etkileyen faktörler incelendi. Ofloksasin için enantiyoayırma koşulları %70 ACN, 10 mM CuSO4, 40 mM NH4 2SO4 pH 4.7 ve 30 mg/mL nanopartikül olarak optimize edildi. Bu yöntem ile ofloksasinin enantiyoayrılması gerçekleştirildi ve ofloksasin tabletleri ile uygulması yapıldı

References

  • B. Chankvetadze, Separation selectivity in chiral capillary electrophoresis with charged selectors, J. Chromatogr. A, 792 (1997) 269.
  • E.C. Peters, K. Lewandowski, M. Petro, F. Svec, J.M.J. Frechet, Chiral electrochromatography with a ‘moulded’ rigid monolithic capillary column, Anal. Commun., 35 (1998) 83.
  • S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89.
  • G. Gübitz, M.G. Schmid, Recent progress in chiral separations principles in capillary electrophoresis, Electrophoresis, 21 (2000) 4112.
  • B.Chankvetadze, G. Blaschke, Enantioseparations in capillary electro migration techniques: recent developments and future trends, J. Chromatogr. A, 906 (2001) 309.
  • G.K.E. Scriba, Selected fundamental aspects of chiral electromigration techniques and their application to pharmaceutical and biomedical analysis, J. Pharm. Biomed. Anal., 27 (2002) 373. 7. B. Chankvetadze, W. Linder, G.K. E. Scriba, Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector commentary on the feasibility of the concept, Anal. Chem., 76 (2004) 4256.
  • P.T.T. Ha, J. Hoogmartens, A.V. Schepdael, Recent advances in pharmaceutical applications of chiral capillary electrophoresis, J. Pharm. Biomed. Anal., 41 (2006) 1.
  • B. Chankvetadze, Monolithic chiral stationary phases for liquid phase-enantioseparation techniques, J. Sep. Sci., 33 (2010) 305.
  • M. Lammerhofer, Chiral recognition by enantioselec- tive liquid chromatography: Mechanisms and modern chiral stationary phases trends, J. Chromatogr. A, 1217 (2010) 814.
  • T.J. Ward, K.D. Ward, Chiral separations: A review of current topics and trends, Anal. Chem., 84 (2012) 626.
  • C. Aydoğan, A. Denizli, Electrochromatographic enantioseparation of amino acids using polybutyl- methacrylate-based chiral monolithic column by capillary electrochromatography, Chirality, 24 (2012) 606.
  • H. Hodl, M. G. Schmid, G. Gubitz, Chiral separation of amino acids and glycyl dipeptides by chiral ligand- exchange capillary electrophoresis comparing Cu(II), Co(II), Ni(II) and Zn(II) complexes of three different sugar acids,. J. Chromatogr. A, 1204 (2008) 210.
  • S. Kodama, A, Taga, A. Yamamoto, Y. Ito, Y. Honda, K. Suzuki, T. Yamashita, T. Kemmei, S. I. Aizawa, Enantioseparation of DL-isocitric acid by a chiral ligand exchange CE with Ni(II)-Dquinic acid system, Electrophoresis, 31 (2010) 3586.
  • H. Zhang, L. Qi, L. Mao, Y.Chen, Chiral separation using capillary electromigration techniques based on ligand exchange principle, Electrophoresis, 31 (2012) 1236.
  • E. Gassmann, J.E. Kuo, R.N. Zare,Electrokinetic Separation of Chiral Compounds, Science, 230 (1985) 813.
  • V. A. Davankov, Enantioselective ligand exchange in modern separation techniques, J. Chromatogr., A, 1000 (2003) 891.
  • M. G. Schmid, G. Gubitz, Advances in chiral separation using Electrophoresis, 28 (2007) 114. techniques
  • R.H. Drew, H.A. Gallis, Ofloxacin: its pharmacology, and pharmacokinetics, application, Pharmacoterapy, 8 (1988) 35. potential for clinical
  • S. Hara, K. Koga, K. Shudo, Molecular chirality, Kaga Kudojin (1993) Kyoto.
  • J.H. Yuk, C.H. Nigtingale, R. Quintiliani, K.R. Sweeney, Bioavailability and pharmacokinetics of ofloxacin in healthy volunteers, Antimicrob. Agents Chemother., 35 (1991) 384.
  • W. Bi, M. Tian, K.H. Row, Chiral separation and determination of ofloxacin enantiomers by ionic liquid-assisted ligand-exchange chromatography, Analyst, 136 (2011) 379.
  • X. Gao, G. Yao, N. Guo, F. An, X. Guo, A simple and rapid high performance liquid chromatography method to determine levofloxacin in human plasma and its use in a bioequivalence study, Drug Discov. Ther., 2 (2007) 136.
  • F.A. Wong, S.J. Juzwin, S.C. Flor, Rapid stereospecific high-performance liquid chromatographic determi- nation of ofloxacin in human plasma and urine, J. Pharm. Biomed. Anal., 15 (1997) 765.
  • E. Guihen, J.D. Glenon, Nanoparticles in Separation Science—Recent Developments, Anal. Lett., 36 (2003) 3309.
  • Z. Zhang, B. Yan, Y. Liao, H. Liu, Nanoparticle: is it promising in capillary electrophoresis ? Anal. Bioanal. Chem., 391 (2008) 925.
  • P. Viberg, M.J. Karlsson, P. Petersson, P. Spegel, S. Nilson, Nanoparticles as Pseudostationary Phase in Capillary Electrochromatography/ESI-MS, Anal. Chem., 74 (2002) 4595.
  • J. Krenkova, F. Foret, F. Svec, Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering, J. Sep. Sci., 35 (2012) 1266.
  • A.H. Duhan, S.M. Xie, L.M. Yuan, Nanoparticles as stationary and pseudo-stationary phases in chromatographic and electrochromatographic sepa- rations, Tr. Anal. Chem., 30 (2011) 484.
  • I. Perçin, V. Karakoç, S. Akgöl, E. Aksöz, A. Denizli, Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate, Mater. Sci. Eng. C, 32 (2012) 1133.
  • G.K.E. Scriba, Chiral recognition mechanisms in analytical separation sciences, Chromatographia, (2012) DOI 10.1007/s10337-012-2261-1.
  • Z. Chen, T. Hobo, Chemically L-phenylalaninamide-mo- dified monolithic silica column prepared by a sol-gel process for enantioseparation of dansyl amino acids by ligand echange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348.
  • T. Boer, R. Mal, R.A. Zeeuw, G.J. Jong, K. Ensing, Enantioseparation of ofloxacin in urine by capillary electrokinetic chromatography using charged cyclo- dextrins as chiral selectors and assessment of enantioconversion, Electrophoresis, 22 (2001) 1413.
  • X.X. Shi, L. Xu, H.Q. Duan, Y.P. Huang, Z.S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, J. Sep. Sci., 32 (2011) 1348.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Cemil Aydoğan This is me

Veyis Karakoç This is me

Fatma Yılmaz This is me

Huma Shaikh This is me

Adil Denizli This is me

Publication Date March 1, 2013
Published in Issue Year 2013 Volume: 41 Issue: 1

Cite

APA Aydoğan, C., Karakoç, V., Yılmaz, F., Shaikh, H., et al. (2013). L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması. Hacettepe Journal of Biology and Chemistry, 41(1), 29-36.
AMA Aydoğan C, Karakoç V, Yılmaz F, Shaikh H, Denizli A. L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması. HJBC. March 2013;41(1):29-36.
Chicago Aydoğan, Cemil, Veyis Karakoç, Fatma Yılmaz, Huma Shaikh, and Adil Denizli. “L-Histidin Modifiye nanopartiküllerin Kiral Ligand Olarak kullanılması Ve Ligand değişim Kapiler Elektroforez yöntemi Ile Ofloksasinin enantiyoayrılması”. Hacettepe Journal of Biology and Chemistry 41, no. 1 (March 2013): 29-36.
EndNote Aydoğan C, Karakoç V, Yılmaz F, Shaikh H, Denizli A (March 1, 2013) L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması. Hacettepe Journal of Biology and Chemistry 41 1 29–36.
IEEE C. Aydoğan, V. Karakoç, F. Yılmaz, H. Shaikh, and A. Denizli, “L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması”, HJBC, vol. 41, no. 1, pp. 29–36, 2013.
ISNAD Aydoğan, Cemil et al. “L-Histidin Modifiye nanopartiküllerin Kiral Ligand Olarak kullanılması Ve Ligand değişim Kapiler Elektroforez yöntemi Ile Ofloksasinin enantiyoayrılması”. Hacettepe Journal of Biology and Chemistry 41/1 (March 2013), 29-36.
JAMA Aydoğan C, Karakoç V, Yılmaz F, Shaikh H, Denizli A. L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması. HJBC. 2013;41:29–36.
MLA Aydoğan, Cemil et al. “L-Histidin Modifiye nanopartiküllerin Kiral Ligand Olarak kullanılması Ve Ligand değişim Kapiler Elektroforez yöntemi Ile Ofloksasinin enantiyoayrılması”. Hacettepe Journal of Biology and Chemistry, vol. 41, no. 1, 2013, pp. 29-36.
Vancouver Aydoğan C, Karakoç V, Yılmaz F, Shaikh H, Denizli A. L-histidin modifiye nanopartiküllerin kiral ligand olarak kullanılması ve ligand değişim kapiler elektroforez yöntemi ile ofloksasinin enantiyoayrılması. HJBC. 2013;41(1):29-36.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc