BibTex RIS Cite

Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications

Year 2013, Volume: 41 Issue: 3, 289 - 299, 01.09.2013

Abstract

PAMAM dendrimers are a novel class of spherical, well-designed branching polymers with interior cavities and abundant terminal groups on the surface which can form stable complexes with drugs, plasmid DNA, oligonucleotides and antibodies. Biodegradability, non-toxicity, non-immunogenicity and multifunctionality of PAMAM dendrimer are the key factors which facilitate steady increase of its application in drug delivery, gene transfection, tumor therapy, and diagnostics applications with precision and selectivity. This review deals with the major topics of PAMAM dendrimers including structure, synthesis, toxicity, surface modification, and also possible new applications of these spherical polymers.

References

  • 1. R. Contreras, A. Marrero, E. Alvarez, F. Travieso, G. Tillan, Starburst PAMAM dendrimers (-NH2, -OH) G4 effects on E coli growth monitored by microcalorimetry, Revista Cenic Ciencias Biologicas, 36 (2005).
  • 2. D.G. Schcharbin, B. Klajnert, M. Bryszewska, Dendrimers in gene transfection, Biochemistry (Moscow), 74 (2009) 1070.
  • 3. H. Yoo, P. Sazani, L.R. Juliano, PAMAM dendrimers as delivery agents for antisense oligonucleotides, Pharmaceutical research, 16 (1999) 1799.
  • 4. S. Jana, A. Gandhi, K.K. Sen, S.K. Basu, Dendrimers: synthesis, properties, biomedical and drug delivery applications, American Journal of Pharm. Tech. Research, 2 (2012) 32.
  • 5. H.M. Brothers, L.T. Piehler, D.A. Tomalia, Slabgel and capillary electrophoretic characterization of polyamidoamine dendrimers, Journal of Chromatography A, 814 (1998) 233.
  • 6. J.D. Eichman, A.U. Bielinska, J.F. Kukowska-Latallo, J.R. Baker, The use of PAMAM dendrimers in the efficient transfer of genetic material into cells, PSTT, 3 (2000) 232.
  • 7. M. Labieniec, T. Gabryelak, Preliminary biological evaluation of poli(amidoamine) (PAMAM) dendrimer G3.5 on selected parameters of rat liver mitochondria, Mitochondrion, 8 (2008) 305.
  • 8. M. Najlah, A. D’Emanuele, Crossing cellular barriers using dendrimer nanotechnologies, Current Opinion in Pharmacology, 6 (2006) 522.
  • 9. G. Cevc, U. Vierl, Nanotechnology and the transdermal route: A state of the art review and critical appraisal, Journal of Controlled Release, 141 (2010) 277.
  • 10. S.H. Medina, E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev., 109 (2009) 3147.
  • 11. D. Shcharbin, J. Mazur, M. Szwedzka, M. Wasiak, B. Palecz, M. Przybyszewska, M. Zaborski, M. Bryszewska, Interaction between PAMAM 45 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence, Colloids and Surfaces B: Biointerfaces, 58 (2007) 286.
  • 12. S. Duan, T. Kouketsu, S. Kazama, K. Yamada, Development of PAMAM dendrimer composite membranes for CO2 separation, Journal of Membrane Science, 283 (2006) 2.
  • 13. W.J. Joo, T.L. Choi, S.K. Lee, Y. Chung, M.S. Jung, J.M. Kim, Electronically controlled nonvolatile memory device using PAMAM dendrimer, Organic Electronics, 7 (2006) 600.
  • 14. P.R. Prasanna1, P. Selvaman, E. Gomathi, Waste water treatment through dendrimer – conjugated magnetic nanoparticles, International Journal of Chem. Tech. Research, 5 (2013) 1239.
  • 15. S.C. Raghu, S. Berchmans, K.P. Phani, V. Yegnaraman, PAMAM dendrimers as anchors for the preparation of electrocatalytically active ultrathin metallic films, Chem. Asian J., 2 (2007) 775.
  • 16. S. Sekowski, A. Kazmiercakb, J. Mazurc, M. Przybyszewskad, M. Zaborskid, D. Schcharbina, T. Gabryelak, The interaction between PAMAM G3.5 dendrimer, Cd2+, dendrimer–Cd2+ complexes and human serum albumin, Colloids and Surfaces B: Biointerfaces, 69 (2009) 95.
  • 17. M. Labieniec, C. Watala, PAMAM dendrimers – diverse biomedical applications facts and unresolved questions, Cent. Eur. J. Biol., 4 (2009) 434.
  • 18. S. Sadekar, H. Ghandehari, Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery, Advanced Drug Delivery Reviews, 64 (2012) 571.
  • 19. J. Zhou, J. Wu, N. Hafdi, J.P. Behr, P. Erbacherc, L. Peng, PAMAM dendrimers for efficient siRNA delivery and potent gene silencing, Chem. Commun., 22 (2006) 2362.
  • 20. W. Chen, D.A. Tomalia, J.L. Thomas, Unusual pHdependent polarity changes in PAMAM dendrimers: Evidence for pH-responsive conformational changes, Macromolecules, 33 (2000) 9169.
  • 21. S.P. Mukherjee, H.J. Byrne, Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation, Nanomedicine: Nanotechnology, Biology, and Medicine, 9 (2013) 202.
  • 22. C.L. Waite, C.M. Roth, PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma, Bioconjug. Chem., 20 (2009) 1908.
  • 23. A. Janaszewska, M. Ciolkowski, D. Wrobel, J.F. Petersen, M. Ficker, J.B. Christensen, M. Bryszewska, B. Klajnert, Modified PAMAM dendrimer with 4- carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines, Nanomedicine: Nanotechnology, Biology, and Medicine, 9 (2013) 461.
  • 24. V. Trivedi, U. Patel, B. Bhimani, D. Daslaniya, G. Patel, B. Vyas, Dendrimer: polymer of 21st century, IJPRBS, 1 (2012) 1.
  • 25. R. Esfand, D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications, DDT, 6 (2001) 427.
  • 26. X. Shi, S. Wang, S. Meshinchi, M.E.V. Antwerp, X. Bi, I. Lee, J.R. Baker, Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging, small, 3 (2007) 1245.
  • 27. R.P. Prajapat, B. Soni, S. Jain, A. Bhandari, Dendrimer: A polymer of 21st century, WebmedCentral: Pharmaceutical Sciences, 1 (2011) 1.
  • 28. N. Stojanovic, L.D. Murphy, B.D. Wagner, Fluorescence-based comparative binding studies of the supramolecular host properties of PAMAM dendrimers using anilinonaphthalene sulfonates: Unusual host-dependent fluorescence titration behavior, Sensors, 10 (2010) 4053.
  • 29. M. Tajabadia, M.E. Khosroshahia, S. Bonakdar, An efficient method of SPION synthesis coated with third generation PAMAM, Colloids and Surfaces A: Physicochem Eng Aspects, 431 (2013) 18.
  • 30. D.A. Tomalia, Starburst/cascade dendrimers: Fundamental building blocks for a new nanoscopic chemistry set, Adv. Muter., 6 (1994) 529.
  • 31. D.A. Tomalia, Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic organic chemistry, Aldrichimica ACTA, 37 (2004) 39.
  • 32. R.W.J. Scott, O.M. Wilson, R.M. Crooks, Synthesis, characterization, and applications of dendrimerencapsulated nanoparticles, J. Phys. Chem. B., 109 (2005) 692.
  • 33. C.S. Braun, J.A. Vetro, D.A. Tomalia, G.S. Koe, J.G. Koe, C.R. Middaugh, Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles, Journal of pharmaceutical sciences, 94 (2005) 423.
  • 34. A. Buczkowski, P. Urbaniak, B. Palcez, Thermochemical and spectroscopic studies on the supramolecular complex of PAMAM-NH2 G4 dendrimer and 5-fluorouracil in aqueous solution, International Journal of Pharmaceutics, 428 (2012) 178.
  • 35. P.K. Maiti, T. Cuang, S.T. Lin, W.A. Goddard, Effect of solvent and pH on the structure of PAMAM dendrimers, Macromolecules, 38 (2005) 979.
  • 36. K. Inoue, Functional dendrimers, hyperbranched and star polymers, Prog. Polym. Sci., 25 (2000) 453.
  • 37. Y. Sayed-Sweet, D.M. Hedstrand, R. Spinder, D.A. Tomalia, Hydrophobically modified poly(amidoamine) (PAMAM) dendrimers: their properties at the air– water interface and use as nanoscopic container molecules, J. Mater. Chem., 7 (1997) 1199.
  • 38. M. Doshi, Dendrimer and its application, International Journal of Pharmaceutical Sciences Review and Research, 7 (2011) 104.
  • 39. P.K. Maiti, T. Cagin, G. Wang, W.A. Goddard, Structure of PAMAM dendrimers: Generations 1 through 11, Macromolecules, 37 (2004) 6236.
  • 40. M. Ina, Dendrimer: a novel drug delivery system, Journal of Drug Delivery & Therapeutics, 1 (2011) 70.
  • 41. D.A. Tomalia, A.M. Naylor, W.A. Goddard, Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter, Angew. Chem. Int. Ed. Engl., 29 (1990) 138.
  • 42. A.W. Bosman, H.M. Janssen, E.W. Meijer, About dendrimers: Structure, physical properties, and applications, Chem. Rev., 99 (1999) 1665.
  • 43. J. Peterson, A. Ebber, V. Allikmaa, M. Lopp, Synthesis and CZE analysis of PAMAM dendrimers with an Ethylenediamine core, Proc. Estonian. Acad. Sci. Chem., 50 (2001) 156.
  • 44. U. Baos, J.B. Christensen, P.M.H. Heegaard, Dendrimers: design, synthesis and chemical properties, J. Mater. Chem., 16 (2006) 3785.
  • 45. C.J. Hawker, J.M.J. Frkchet, Preparation of polymers with controlled molecular architecture a new convergent approach to dendritic macromolecules, J. Am. Chem. SOC., 112 (1990) 7638.
  • 46. H.S. Medina, M.E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev., 109 (2009) 3141.
  • 47. D. Astruc, L. Liang, A. Rapakousiou, J. Ruiz, Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions a bridge between dendritic architectures and nanomaterials, Accounts of chemical research, 45 (2012) 630.
  • 48. S.C. Han, J.H. Kim, J.W. Lee, Convergent synthesis of PAMAM dendrimers containing tetra(ethyleneoxide) at core using click chemistry, Bull Korean Chem. Soc., 33 (2012) 3501.
  • 49. S. Hong, A.U. Bielinska, A. Mecke, B. Keszler, J.L. Beals, X. Shi, L. Balogh, B.G. Orr, J.R. Baker, M.M.B. Holl, Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport, Bioconjugate Chem., 15 (2004) 774.
  • 50. R. Khodadust, G. Unsoy, S. Yalcin, G. Gunduz, U. Gunduz, PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations, J. Nanopart. Res., 15 (2013) 1488.
  • 51. I.J. Majoros, B. Keszler, S. Woehler, T. Bull, J.R. Baker, Acetylation of poly(amidoamine) dendrimers, Macromolecules, 36 (2003) 5526.
  • 52. D. Luo, K. Haverstick, N. Belcheva, E. Han, M. Saltzman, Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery, Macromolecules, 35 (2002) 3456.
  • 53. P. Singh, U. Gupta, A. Asthana, N.K. Jain, Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice, Bioconjugate Chem., 19 (2008) 2239.
  • 54. V.K. Yellepeddi, A. Kumar, S. Palakurthi, Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro, Anticancer research, 29 (2009) 2933.
  • 55. S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications—reflections on the field, Advanced Drug Delivery Reviews, 57 (2005) 2106.
  • 56. J. Hu, Y. Cheng, Q. Wu, L. Zhao, T. Xu, Host-guest chemistry of dendrimer-drug complexes 2 effects of molecular properties of guests and surface functionalities of dendrimers, J. Phys. Chem. B., 113 (2009) 10650.
  • 57. E. Markatou, V. Gionis, G.D. Chryssikos, S. Hatziantoniou, A. Georgopoulos, C. Demetzos, Molecular interactions between dimethoxycurcumin and Pamam dendrimer carriers, International Journal of Pharmaceutics, 339 (2007) 231.
  • 58. L. Zhao, Y. Cheng, J. Hu, Q. Wu, T. Xu, Hostguest chemistry of dendrimer-drug complexes 3 competitive binding of multiple drugs by a single dendrimer for combination therapy, J. Phys. Chem. B., 113 (2009) 14172.
  • 59. E.R. Gillies, J.M.J. Frechet, Dendrimers and dendritic polymers in drug delivery, DDT, 10 (2005) 35.
  • 60. A. Malik, S. Chaudhary, G. Garg, A. Tomar, Dendrimers: A tool for drug delivery, Advances in Biological Research, 6 (2012) 165.
  • 61. A.R. Menjoge, A.L. Rinderknecht, R.S. Navath, M. Faridnia, C.J. Kim, R. Romero, R.K. Miller, R.M. Kannan, Transfer of PAMAM dendrimers across human placenta: Prospects of its use as drug carrier during pregnancy, Journal of Controlled Release, 150 (2011) 326.
  • 62. G.S. Yu, Y.M. Bae, H. Choi, B. Kong, I.S. Choi, J.S. Choi, Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency, Bioconjugate Chem., 22 (2011) 1046.
  • 63. A.U. Bielinska, C. Chen, J. Johnson, J.R. Baker, DNA Complexing with Polyamidoamine Dendrimers: Implications for Transfection, Bioconjugate Chem., 10 (1999) 843.
  • 64. H. Wang, H.B. Shi, S.K. Yin, Polyamidoamine dendrimers as gene delivery carriers in the inner ear: How to improve transfection efficiency (Review), Experimental And Therapeutic Medicine, 2 (2011) 777.
  • 65. A.E. Beezer, A.S. King, I.K. Martin, J.C. Mitchel, L.J. Twyman, C.F. Wain, Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives, Tetrahedron, 59 (2003) 3873.
  • 66. M. Markowics, P. Szymanski, M. Ciszewski, A. Klys, E. Mikiciuk-olasik, Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy, J. Biol. Phys., 38 (2012) 637.
  • 67. S.H. Medina, Development of targeted, enzymeactivated, dendrimer-drug nano-conjugates for hepatic cancer therapy, dissertation in the University of Michigan, (2012).
  • 68. N. Shao, Y. Su, J. Hu, J. Zhang, H. Zhang, Y. Cheng, Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity, International Journal of Nanomedicine, 6 (2011) 3361.
  • 69. C. Yiyun, X. Tongwen, Dendrimers as potential drug carriers part I solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers, European Journal of Medicinal Chemistry, 40 (2005) 1188.
  • 70. H. Yoo, R.L. Juliano, Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers, Nucleic acid Research, 28 (2000) 4225.
  • 71. K. Borowska, B. Laskowska, A. Magon, B. Mysliwiec, M. Pyda, S. Wolowiec, PAMAM dendrimers as solubilizers and hosts for 8-methoxypsoralene enabling transdermal diffusion of the guest, International Journal of Pharmaceutics, 398 (2010) 185.
  • 72. A.S. Chauhan, N.K. Jain, P.V. Diwan, A.J. Khopade, Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats, Journal of Drug Targeting, 12 (2004) 575.
  • 73. P. Kolhe, E. Misra, R.M. Kannan, S. Kannan, M. LiehLai, Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers, International Journal of Pharmaceutics, 259 (2003) 143.
  • 74. A. Asthana, A.S. Chauhan, P.V. Diwan, N.K. Jain, Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic antiinflammatory active ingredient, AAPS PharmSciTech, 6 (2005) 536.
  • 75. J.F. Kukowska-Latallo, K.A. Candido, Z. Cao, S.S. Nigavekar, I.J. Majoros, T.P. Thomas, L.P. Balogh, M.K. Khan, J.R. Baker, Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res., 65 (2005) 5317.
  • 76. A. Papagiannaros, K. Dimas, G.T. Papaioannou, C. Demetzos, Doxorubicin–PAMAM dendrimer complex attached to liposomes: Cytotoxic studies against human cancer cell lines, International Journal of Pharmaceutics, 302 (2005) 29.
  • 77. A. Filipowicz, S. Wolowiec, Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers, International Journal of Pharmaceutics, 408 (2011) 152.
  • 78. K. Jain, P. Kesharwani, U. Gupta, N.K. Jain, Dendrimer toxicity: Let’s meet the challenge, International Journal of Pharmaceutics, 394 (2010) 122.
  • 79. A. Kumar, V.K. Yellepeddi, G.E. Davies, K.B. Strychar, S. Palakurthi, Enhanced gene transfection eff iciency by polyamidoamine (PAMAM) dendrimers modified with ornithine residues, International Journal of Pharmaceutics, 392 (2010) 294.
  • 80. C. Kojima, Y. Toi, A. Harada, K. Kono, Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy, Bioconjugate Chem., 18 (2007) 663.
  • 81. X. Tao, Y.J. Yang, S. Liu, Y.Z. Zheng, J. Fu, J.F. Chen, Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy, Acta Biomaterialia, 9 (2013) 6431.
  • 82. W.D. Jang, Y. Nakagishi, N. Nishiyama, S. Kawauchi, Y. Morimoto, M. Kikuchi, K. Kataoka, Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property, Journal of Controlled Release, 113 (2006) 73.
  • 83. W. Yang, R.F. Barth, G. Wu, S. Kawabata, T.J. Sferra, A.K. Bandyopadhyaya, W. Tjarks, A.K. Ferketich, M.L. Moeschberger, P.J. Binns, K.J. Riley, J.A. Coderre, M.J. Ciesielski, R.A. Fenstermaker, C.J. Wikstrand, Molecular targeting and treatment of EGFRvIIIpositive gliomas using boronated monoclonal antibody L8A4, Clin. Cancer Res., 12 (2006) 3792.
  • 84. S. Shukla, G. Wu, M. Chatterjee, W. Yang, M. Sediko, L.A. Diop, R. Mu, R. Muller, J.J. Sudimack, R.J. Lee, R.F. Barth, W. Tjarks, Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy, Bioconjugate Chem., 14 (2003) 158.
  • 85. Y. Umeda, C. Kojima, A. Harada, H. Horinaka, K. Kono, PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: Growing gold nanoparticles in the dendrimers for improvement of their photothermal properties, Bioconjugate Chem., 21 (2010) 1559.
  • 86. D. Wang, P.K. Kova, T. Minko, V. Nanayakkara, J. Kopecek, Synthesis of starlike N-(2-hydroxypropyl) methacrylamide copolymers: Potential drug carriers, Biomacromolecules, 1 (2000) 313.
  • 87. G. Wu, W. Yang, R.F. Barth, S. Kawabata, M. Swindall, A.K. Bandyopadhyaya, W. Tjarks, B. Khorsandi, T.E. Blue, A.K. Ferketich, M. Yang, G.A. Christoforidis, T.J. Sferra, P.J. Binns, K.J. Riley, M.J. Ciesielski, R.A. Fenstermaker, Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab, Clin. Cancer Res., 13 (2007) 1260.
  • 88. W. Yang, R.F. Barth, D.M. Adams, A.H. Soloway, Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors, Cancer Research, 57 (1997) 4333.
  • 89. C. Kojima, B. Turkbey, M. Ogawa, M. Bernardo, C.A.S. Regino, H. Bryant, P.L. Choyke, K. Kono, H. Kobayashi, Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics, Nanomedicine: Nanotechnology, Biology, and Medicine, 7 (2011) 1001.
  • 90. T. Barrett, G. Ravizzini, P.L. Choyke, H. Kobayashi, Dendrimers application related to bioimaging, IEEE Eng. Med. Biol. Mag., 28 (2009) 12.
  • 91. Y. Cheng, L. Zhao, Y. Li, T. Xu, Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives, Chem. Soc. Rev., 40 (2011) 2673.
  • 92. T.F. Vandamme, L. Brobeck, Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide, Journal of Controlled Release, 102 (2005) 23.

Poli amidoamin Pamam Nanopartiküller: Sentezi ve Biyomedikal Uygulamaları

Year 2013, Volume: 41 Issue: 3, 289 - 299, 01.09.2013

Abstract

P AMAM dendrimerler, bir merkezden büyüyen çok düzgün bir yapıya sahip, çok dallı ve küresel üç boyutlu moleküllerdir. İç yüzeylerinde bulunan boşluklar ve dış yüzeylerinde yeralan çok sayıda terminal grup sayesinde plazmid DNA, oligonükleotidler, antikorlar ve çeşitli ilaçlarla stabil kompleksler oluşturabilirler. PAMAM dendrimerlerin toksik ve immunojenik özellik taşımamaları, bunun yanısıra biyobozunur ve çok fonksiyonlu olmaları; ilaç taşıma, gen transfeksiyonu , tümör terapisi ve tanısal uygulamalarda çok önemli bir role sahip olmalarını sağlamıştır. Bu derleme, PAMAM dendrimerlerin yapısı, sentezi, toksisitesi, yüzey modifikasyonları ve yeni uygulama alanlarını ele almaktadır

References

  • 1. R. Contreras, A. Marrero, E. Alvarez, F. Travieso, G. Tillan, Starburst PAMAM dendrimers (-NH2, -OH) G4 effects on E coli growth monitored by microcalorimetry, Revista Cenic Ciencias Biologicas, 36 (2005).
  • 2. D.G. Schcharbin, B. Klajnert, M. Bryszewska, Dendrimers in gene transfection, Biochemistry (Moscow), 74 (2009) 1070.
  • 3. H. Yoo, P. Sazani, L.R. Juliano, PAMAM dendrimers as delivery agents for antisense oligonucleotides, Pharmaceutical research, 16 (1999) 1799.
  • 4. S. Jana, A. Gandhi, K.K. Sen, S.K. Basu, Dendrimers: synthesis, properties, biomedical and drug delivery applications, American Journal of Pharm. Tech. Research, 2 (2012) 32.
  • 5. H.M. Brothers, L.T. Piehler, D.A. Tomalia, Slabgel and capillary electrophoretic characterization of polyamidoamine dendrimers, Journal of Chromatography A, 814 (1998) 233.
  • 6. J.D. Eichman, A.U. Bielinska, J.F. Kukowska-Latallo, J.R. Baker, The use of PAMAM dendrimers in the efficient transfer of genetic material into cells, PSTT, 3 (2000) 232.
  • 7. M. Labieniec, T. Gabryelak, Preliminary biological evaluation of poli(amidoamine) (PAMAM) dendrimer G3.5 on selected parameters of rat liver mitochondria, Mitochondrion, 8 (2008) 305.
  • 8. M. Najlah, A. D’Emanuele, Crossing cellular barriers using dendrimer nanotechnologies, Current Opinion in Pharmacology, 6 (2006) 522.
  • 9. G. Cevc, U. Vierl, Nanotechnology and the transdermal route: A state of the art review and critical appraisal, Journal of Controlled Release, 141 (2010) 277.
  • 10. S.H. Medina, E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev., 109 (2009) 3147.
  • 11. D. Shcharbin, J. Mazur, M. Szwedzka, M. Wasiak, B. Palecz, M. Przybyszewska, M. Zaborski, M. Bryszewska, Interaction between PAMAM 45 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence, Colloids and Surfaces B: Biointerfaces, 58 (2007) 286.
  • 12. S. Duan, T. Kouketsu, S. Kazama, K. Yamada, Development of PAMAM dendrimer composite membranes for CO2 separation, Journal of Membrane Science, 283 (2006) 2.
  • 13. W.J. Joo, T.L. Choi, S.K. Lee, Y. Chung, M.S. Jung, J.M. Kim, Electronically controlled nonvolatile memory device using PAMAM dendrimer, Organic Electronics, 7 (2006) 600.
  • 14. P.R. Prasanna1, P. Selvaman, E. Gomathi, Waste water treatment through dendrimer – conjugated magnetic nanoparticles, International Journal of Chem. Tech. Research, 5 (2013) 1239.
  • 15. S.C. Raghu, S. Berchmans, K.P. Phani, V. Yegnaraman, PAMAM dendrimers as anchors for the preparation of electrocatalytically active ultrathin metallic films, Chem. Asian J., 2 (2007) 775.
  • 16. S. Sekowski, A. Kazmiercakb, J. Mazurc, M. Przybyszewskad, M. Zaborskid, D. Schcharbina, T. Gabryelak, The interaction between PAMAM G3.5 dendrimer, Cd2+, dendrimer–Cd2+ complexes and human serum albumin, Colloids and Surfaces B: Biointerfaces, 69 (2009) 95.
  • 17. M. Labieniec, C. Watala, PAMAM dendrimers – diverse biomedical applications facts and unresolved questions, Cent. Eur. J. Biol., 4 (2009) 434.
  • 18. S. Sadekar, H. Ghandehari, Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery, Advanced Drug Delivery Reviews, 64 (2012) 571.
  • 19. J. Zhou, J. Wu, N. Hafdi, J.P. Behr, P. Erbacherc, L. Peng, PAMAM dendrimers for efficient siRNA delivery and potent gene silencing, Chem. Commun., 22 (2006) 2362.
  • 20. W. Chen, D.A. Tomalia, J.L. Thomas, Unusual pHdependent polarity changes in PAMAM dendrimers: Evidence for pH-responsive conformational changes, Macromolecules, 33 (2000) 9169.
  • 21. S.P. Mukherjee, H.J. Byrne, Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation, Nanomedicine: Nanotechnology, Biology, and Medicine, 9 (2013) 202.
  • 22. C.L. Waite, C.M. Roth, PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma, Bioconjug. Chem., 20 (2009) 1908.
  • 23. A. Janaszewska, M. Ciolkowski, D. Wrobel, J.F. Petersen, M. Ficker, J.B. Christensen, M. Bryszewska, B. Klajnert, Modified PAMAM dendrimer with 4- carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines, Nanomedicine: Nanotechnology, Biology, and Medicine, 9 (2013) 461.
  • 24. V. Trivedi, U. Patel, B. Bhimani, D. Daslaniya, G. Patel, B. Vyas, Dendrimer: polymer of 21st century, IJPRBS, 1 (2012) 1.
  • 25. R. Esfand, D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications, DDT, 6 (2001) 427.
  • 26. X. Shi, S. Wang, S. Meshinchi, M.E.V. Antwerp, X. Bi, I. Lee, J.R. Baker, Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging, small, 3 (2007) 1245.
  • 27. R.P. Prajapat, B. Soni, S. Jain, A. Bhandari, Dendrimer: A polymer of 21st century, WebmedCentral: Pharmaceutical Sciences, 1 (2011) 1.
  • 28. N. Stojanovic, L.D. Murphy, B.D. Wagner, Fluorescence-based comparative binding studies of the supramolecular host properties of PAMAM dendrimers using anilinonaphthalene sulfonates: Unusual host-dependent fluorescence titration behavior, Sensors, 10 (2010) 4053.
  • 29. M. Tajabadia, M.E. Khosroshahia, S. Bonakdar, An efficient method of SPION synthesis coated with third generation PAMAM, Colloids and Surfaces A: Physicochem Eng Aspects, 431 (2013) 18.
  • 30. D.A. Tomalia, Starburst/cascade dendrimers: Fundamental building blocks for a new nanoscopic chemistry set, Adv. Muter., 6 (1994) 529.
  • 31. D.A. Tomalia, Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic organic chemistry, Aldrichimica ACTA, 37 (2004) 39.
  • 32. R.W.J. Scott, O.M. Wilson, R.M. Crooks, Synthesis, characterization, and applications of dendrimerencapsulated nanoparticles, J. Phys. Chem. B., 109 (2005) 692.
  • 33. C.S. Braun, J.A. Vetro, D.A. Tomalia, G.S. Koe, J.G. Koe, C.R. Middaugh, Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles, Journal of pharmaceutical sciences, 94 (2005) 423.
  • 34. A. Buczkowski, P. Urbaniak, B. Palcez, Thermochemical and spectroscopic studies on the supramolecular complex of PAMAM-NH2 G4 dendrimer and 5-fluorouracil in aqueous solution, International Journal of Pharmaceutics, 428 (2012) 178.
  • 35. P.K. Maiti, T. Cuang, S.T. Lin, W.A. Goddard, Effect of solvent and pH on the structure of PAMAM dendrimers, Macromolecules, 38 (2005) 979.
  • 36. K. Inoue, Functional dendrimers, hyperbranched and star polymers, Prog. Polym. Sci., 25 (2000) 453.
  • 37. Y. Sayed-Sweet, D.M. Hedstrand, R. Spinder, D.A. Tomalia, Hydrophobically modified poly(amidoamine) (PAMAM) dendrimers: their properties at the air– water interface and use as nanoscopic container molecules, J. Mater. Chem., 7 (1997) 1199.
  • 38. M. Doshi, Dendrimer and its application, International Journal of Pharmaceutical Sciences Review and Research, 7 (2011) 104.
  • 39. P.K. Maiti, T. Cagin, G. Wang, W.A. Goddard, Structure of PAMAM dendrimers: Generations 1 through 11, Macromolecules, 37 (2004) 6236.
  • 40. M. Ina, Dendrimer: a novel drug delivery system, Journal of Drug Delivery & Therapeutics, 1 (2011) 70.
  • 41. D.A. Tomalia, A.M. Naylor, W.A. Goddard, Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter, Angew. Chem. Int. Ed. Engl., 29 (1990) 138.
  • 42. A.W. Bosman, H.M. Janssen, E.W. Meijer, About dendrimers: Structure, physical properties, and applications, Chem. Rev., 99 (1999) 1665.
  • 43. J. Peterson, A. Ebber, V. Allikmaa, M. Lopp, Synthesis and CZE analysis of PAMAM dendrimers with an Ethylenediamine core, Proc. Estonian. Acad. Sci. Chem., 50 (2001) 156.
  • 44. U. Baos, J.B. Christensen, P.M.H. Heegaard, Dendrimers: design, synthesis and chemical properties, J. Mater. Chem., 16 (2006) 3785.
  • 45. C.J. Hawker, J.M.J. Frkchet, Preparation of polymers with controlled molecular architecture a new convergent approach to dendritic macromolecules, J. Am. Chem. SOC., 112 (1990) 7638.
  • 46. H.S. Medina, M.E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev., 109 (2009) 3141.
  • 47. D. Astruc, L. Liang, A. Rapakousiou, J. Ruiz, Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions a bridge between dendritic architectures and nanomaterials, Accounts of chemical research, 45 (2012) 630.
  • 48. S.C. Han, J.H. Kim, J.W. Lee, Convergent synthesis of PAMAM dendrimers containing tetra(ethyleneoxide) at core using click chemistry, Bull Korean Chem. Soc., 33 (2012) 3501.
  • 49. S. Hong, A.U. Bielinska, A. Mecke, B. Keszler, J.L. Beals, X. Shi, L. Balogh, B.G. Orr, J.R. Baker, M.M.B. Holl, Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport, Bioconjugate Chem., 15 (2004) 774.
  • 50. R. Khodadust, G. Unsoy, S. Yalcin, G. Gunduz, U. Gunduz, PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations, J. Nanopart. Res., 15 (2013) 1488.
  • 51. I.J. Majoros, B. Keszler, S. Woehler, T. Bull, J.R. Baker, Acetylation of poly(amidoamine) dendrimers, Macromolecules, 36 (2003) 5526.
  • 52. D. Luo, K. Haverstick, N. Belcheva, E. Han, M. Saltzman, Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery, Macromolecules, 35 (2002) 3456.
  • 53. P. Singh, U. Gupta, A. Asthana, N.K. Jain, Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice, Bioconjugate Chem., 19 (2008) 2239.
  • 54. V.K. Yellepeddi, A. Kumar, S. Palakurthi, Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro, Anticancer research, 29 (2009) 2933.
  • 55. S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications—reflections on the field, Advanced Drug Delivery Reviews, 57 (2005) 2106.
  • 56. J. Hu, Y. Cheng, Q. Wu, L. Zhao, T. Xu, Host-guest chemistry of dendrimer-drug complexes 2 effects of molecular properties of guests and surface functionalities of dendrimers, J. Phys. Chem. B., 113 (2009) 10650.
  • 57. E. Markatou, V. Gionis, G.D. Chryssikos, S. Hatziantoniou, A. Georgopoulos, C. Demetzos, Molecular interactions between dimethoxycurcumin and Pamam dendrimer carriers, International Journal of Pharmaceutics, 339 (2007) 231.
  • 58. L. Zhao, Y. Cheng, J. Hu, Q. Wu, T. Xu, Hostguest chemistry of dendrimer-drug complexes 3 competitive binding of multiple drugs by a single dendrimer for combination therapy, J. Phys. Chem. B., 113 (2009) 14172.
  • 59. E.R. Gillies, J.M.J. Frechet, Dendrimers and dendritic polymers in drug delivery, DDT, 10 (2005) 35.
  • 60. A. Malik, S. Chaudhary, G. Garg, A. Tomar, Dendrimers: A tool for drug delivery, Advances in Biological Research, 6 (2012) 165.
  • 61. A.R. Menjoge, A.L. Rinderknecht, R.S. Navath, M. Faridnia, C.J. Kim, R. Romero, R.K. Miller, R.M. Kannan, Transfer of PAMAM dendrimers across human placenta: Prospects of its use as drug carrier during pregnancy, Journal of Controlled Release, 150 (2011) 326.
  • 62. G.S. Yu, Y.M. Bae, H. Choi, B. Kong, I.S. Choi, J.S. Choi, Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency, Bioconjugate Chem., 22 (2011) 1046.
  • 63. A.U. Bielinska, C. Chen, J. Johnson, J.R. Baker, DNA Complexing with Polyamidoamine Dendrimers: Implications for Transfection, Bioconjugate Chem., 10 (1999) 843.
  • 64. H. Wang, H.B. Shi, S.K. Yin, Polyamidoamine dendrimers as gene delivery carriers in the inner ear: How to improve transfection efficiency (Review), Experimental And Therapeutic Medicine, 2 (2011) 777.
  • 65. A.E. Beezer, A.S. King, I.K. Martin, J.C. Mitchel, L.J. Twyman, C.F. Wain, Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives, Tetrahedron, 59 (2003) 3873.
  • 66. M. Markowics, P. Szymanski, M. Ciszewski, A. Klys, E. Mikiciuk-olasik, Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy, J. Biol. Phys., 38 (2012) 637.
  • 67. S.H. Medina, Development of targeted, enzymeactivated, dendrimer-drug nano-conjugates for hepatic cancer therapy, dissertation in the University of Michigan, (2012).
  • 68. N. Shao, Y. Su, J. Hu, J. Zhang, H. Zhang, Y. Cheng, Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity, International Journal of Nanomedicine, 6 (2011) 3361.
  • 69. C. Yiyun, X. Tongwen, Dendrimers as potential drug carriers part I solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers, European Journal of Medicinal Chemistry, 40 (2005) 1188.
  • 70. H. Yoo, R.L. Juliano, Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers, Nucleic acid Research, 28 (2000) 4225.
  • 71. K. Borowska, B. Laskowska, A. Magon, B. Mysliwiec, M. Pyda, S. Wolowiec, PAMAM dendrimers as solubilizers and hosts for 8-methoxypsoralene enabling transdermal diffusion of the guest, International Journal of Pharmaceutics, 398 (2010) 185.
  • 72. A.S. Chauhan, N.K. Jain, P.V. Diwan, A.J. Khopade, Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats, Journal of Drug Targeting, 12 (2004) 575.
  • 73. P. Kolhe, E. Misra, R.M. Kannan, S. Kannan, M. LiehLai, Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers, International Journal of Pharmaceutics, 259 (2003) 143.
  • 74. A. Asthana, A.S. Chauhan, P.V. Diwan, N.K. Jain, Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic antiinflammatory active ingredient, AAPS PharmSciTech, 6 (2005) 536.
  • 75. J.F. Kukowska-Latallo, K.A. Candido, Z. Cao, S.S. Nigavekar, I.J. Majoros, T.P. Thomas, L.P. Balogh, M.K. Khan, J.R. Baker, Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res., 65 (2005) 5317.
  • 76. A. Papagiannaros, K. Dimas, G.T. Papaioannou, C. Demetzos, Doxorubicin–PAMAM dendrimer complex attached to liposomes: Cytotoxic studies against human cancer cell lines, International Journal of Pharmaceutics, 302 (2005) 29.
  • 77. A. Filipowicz, S. Wolowiec, Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers, International Journal of Pharmaceutics, 408 (2011) 152.
  • 78. K. Jain, P. Kesharwani, U. Gupta, N.K. Jain, Dendrimer toxicity: Let’s meet the challenge, International Journal of Pharmaceutics, 394 (2010) 122.
  • 79. A. Kumar, V.K. Yellepeddi, G.E. Davies, K.B. Strychar, S. Palakurthi, Enhanced gene transfection eff iciency by polyamidoamine (PAMAM) dendrimers modified with ornithine residues, International Journal of Pharmaceutics, 392 (2010) 294.
  • 80. C. Kojima, Y. Toi, A. Harada, K. Kono, Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy, Bioconjugate Chem., 18 (2007) 663.
  • 81. X. Tao, Y.J. Yang, S. Liu, Y.Z. Zheng, J. Fu, J.F. Chen, Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy, Acta Biomaterialia, 9 (2013) 6431.
  • 82. W.D. Jang, Y. Nakagishi, N. Nishiyama, S. Kawauchi, Y. Morimoto, M. Kikuchi, K. Kataoka, Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property, Journal of Controlled Release, 113 (2006) 73.
  • 83. W. Yang, R.F. Barth, G. Wu, S. Kawabata, T.J. Sferra, A.K. Bandyopadhyaya, W. Tjarks, A.K. Ferketich, M.L. Moeschberger, P.J. Binns, K.J. Riley, J.A. Coderre, M.J. Ciesielski, R.A. Fenstermaker, C.J. Wikstrand, Molecular targeting and treatment of EGFRvIIIpositive gliomas using boronated monoclonal antibody L8A4, Clin. Cancer Res., 12 (2006) 3792.
  • 84. S. Shukla, G. Wu, M. Chatterjee, W. Yang, M. Sediko, L.A. Diop, R. Mu, R. Muller, J.J. Sudimack, R.J. Lee, R.F. Barth, W. Tjarks, Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy, Bioconjugate Chem., 14 (2003) 158.
  • 85. Y. Umeda, C. Kojima, A. Harada, H. Horinaka, K. Kono, PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: Growing gold nanoparticles in the dendrimers for improvement of their photothermal properties, Bioconjugate Chem., 21 (2010) 1559.
  • 86. D. Wang, P.K. Kova, T. Minko, V. Nanayakkara, J. Kopecek, Synthesis of starlike N-(2-hydroxypropyl) methacrylamide copolymers: Potential drug carriers, Biomacromolecules, 1 (2000) 313.
  • 87. G. Wu, W. Yang, R.F. Barth, S. Kawabata, M. Swindall, A.K. Bandyopadhyaya, W. Tjarks, B. Khorsandi, T.E. Blue, A.K. Ferketich, M. Yang, G.A. Christoforidis, T.J. Sferra, P.J. Binns, K.J. Riley, M.J. Ciesielski, R.A. Fenstermaker, Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab, Clin. Cancer Res., 13 (2007) 1260.
  • 88. W. Yang, R.F. Barth, D.M. Adams, A.H. Soloway, Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors, Cancer Research, 57 (1997) 4333.
  • 89. C. Kojima, B. Turkbey, M. Ogawa, M. Bernardo, C.A.S. Regino, H. Bryant, P.L. Choyke, K. Kono, H. Kobayashi, Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics, Nanomedicine: Nanotechnology, Biology, and Medicine, 7 (2011) 1001.
  • 90. T. Barrett, G. Ravizzini, P.L. Choyke, H. Kobayashi, Dendrimers application related to bioimaging, IEEE Eng. Med. Biol. Mag., 28 (2009) 12.
  • 91. Y. Cheng, L. Zhao, Y. Li, T. Xu, Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives, Chem. Soc. Rev., 40 (2011) 2673.
  • 92. T.F. Vandamme, L. Brobeck, Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide, Journal of Controlled Release, 102 (2005) 23.
There are 92 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Negar Taghavi Pourian Azar This is me

Pelin Mutlu This is me

Rouhollah Khodadust This is me

Ufuk Gunduz This is me

Publication Date September 1, 2013
Published in Issue Year 2013 Volume: 41 Issue: 3

Cite

APA Azar, N. T. P., Mutlu, P., Khodadust, R., Gunduz, U. (2013). Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications. Hacettepe Journal of Biology and Chemistry, 41(3), 289-299.
AMA Azar NTP, Mutlu P, Khodadust R, Gunduz U. Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications. HJBC. September 2013;41(3):289-299.
Chicago Azar, Negar Taghavi Pourian, Pelin Mutlu, Rouhollah Khodadust, and Ufuk Gunduz. “Poly Amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 41, no. 3 (September 2013): 289-99.
EndNote Azar NTP, Mutlu P, Khodadust R, Gunduz U (September 1, 2013) Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications. Hacettepe Journal of Biology and Chemistry 41 3 289–299.
IEEE N. T. P. Azar, P. Mutlu, R. Khodadust, and U. Gunduz, “Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications”, HJBC, vol. 41, no. 3, pp. 289–299, 2013.
ISNAD Azar, Negar Taghavi Pourian et al. “Poly Amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 41/3 (September 2013), 289-299.
JAMA Azar NTP, Mutlu P, Khodadust R, Gunduz U. Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications. HJBC. 2013;41:289–299.
MLA Azar, Negar Taghavi Pourian et al. “Poly Amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications”. Hacettepe Journal of Biology and Chemistry, vol. 41, no. 3, 2013, pp. 289-9.
Vancouver Azar NTP, Mutlu P, Khodadust R, Gunduz U. Poly amidoamine PAMAM Nanoparticles: Synthesis and Biomedical Applications. HJBC. 2013;41(3):289-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc