BibTex RIS Cite

Modification of cellulose by RAFT mediated graft copolymerization

Year 2014, Volume: 42 Issue: 1, 1 - 7, 01.03.2014

Abstract

Cellulose is the most abundant organic material on the earth: it is the main constituent of plants, also pres- ent in bacteria, fungi, algae and even in animals. Despite all its advantageous properties like high strength, durability, thermal stability, biocompatibility, biodegradability, relatively low cost and low density, cellulose lacks some of the versatile properties of synthetic polymers. Therefore, chemical modification of the cellulose structure is necessary in most cases to overcome the existing drawbacks. The synthesis of cellulosic graft copolymers through the introduction of branches grafts of synthetic polymers that impart specific proper- ties onto the cellulose substrate is one of the key ways of modifying the physical and chemical properties of cellulose. The recent advances in the field of controlled radical polymerization CRP methods provide unique opportunities to tailor the surface properties of graft copolymers by controlling the graft length, the architec- ture and the composition. This study reviews our previous works investigating the modification of cellulose via graft copolymerization mediated by Reversible Addition Fragmentation chain Transfer RAFT polymerization, one of the most powerful CRP methods.

References

  • D. Roy, M. Semsarilar, J. T. Guthrie, S. Perrier, Cellulose modification by polymer grafting: a review, Chem. Soc. Rev., 38 (2009) 2046.
  • J. Kim, S. Yun, Discovery of Cellulose as a Smart Material, Macromolecules, 39 (2006) 4202.
  • D. Nyström, J. Lindqvist, E. Östmark, A. Hult, E. Malmström, Superhydrophobic bio-fibre surfaces via tailored grafting architect, Chem. Commun. (2006) 3594.
  • J. Lindqvist, D. Nyström, E. Östmark, P. Antoni, A. Carlmark, M. Johansson, A. Hult, E. Malmström, Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP, Biomacromolecules, 9 (2008) 2139.
  • K.C. Gupta, K. Khandekar, Temperature- responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide, Biomacromolecules, 4 (2003) 758.
  • D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed., 44 (2005) 3358.
  • H.A. Krassig, in Cellulose and Its Derivatives: chemistry, biochemistry and applications, ed. J.F. Kennedy, G.O. Phillips, D.J. Wedlock, P.A. Williams, Ellis Horwood Limited, Chichester, 1985, pp. 3–25.
  • Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction, J. Am. Chem. Soc., 124 (2002) 9074.
  • Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose iα from synchrotron x-ray and neutron fiber diffraction, J. Am. Chem. Soc., 125 (2003) 14300.
  • H.A. Krassig, Cellulose-structure, accessibility and reactivity, Gordon and Breach Science Publisher, Yverdon, 1993.
  • K. Ward, Jr, Chemical modification of papermaking fibers, Marcel Dekker Inc., New York, 1973.
  • V.T. Stannett, H.B. Hopfenberg, in Cellulose and Cellulose Derivatives, ed. N.M. Bikales and L. Segal, John Wiley and Sons, New York, 5 (1971) 907.
  • H.A. Krassig, V. Stannett, Graft co-polymerization to celllulose and its derivatives, Adv. Polym. Sci., 1965, 111.
  • A. Hebeish, J.T. Guthrie, The chemistry and technology of cellulosic copolymers, Springer-Verlag, Berlin, 1981.
  • R.K. Samal, P.K. Sahoo, H. S. Samantaray, S.P. Bhattacharjee, Graft copolymerization of cellulose, cellulose derivatives, and lignocellulose, J. Macromol. Sci. R. M. C., 26 (1986) 81.
  • H. Bessbousse, M. Barsbay, O. Güven, T.L. Wade, M.C. Clochard, European Patent No: 11306648.4– 2113, Method for preparing a functionalized 28. M. Barsbay, O. Güven, M. H. Stenzel, C. Barner-Kowollik, nanoporous track-etched PVDF membrane with RAFT polymerization, 2013.
  • M. Barsbay, O. Güven, H. Bessbousse, T. L. Wade, F. Beuneu, M. C. Clochard, Nanopore size tuning of polymeric membranes using the RAFT mediated radical polymerization, J. Membr. Sci., 445 (2013) 135.
  • M. Barsbay, O. Güven, RAFT mediated grafting of poly(acrylic acid) (PAA) from polyethylene/ polypropylene (PE/PP) nonwoven fabric via 30. Y. Kodama, M. Barsbay, O. Güven, Radiation-induced preirradiation, Polymer, 54 (2013) 4838.
  • M. Barsbay, O. Güven, A Short review of the radiation- induced raft-mediated graft copolymerization: a powerful combination for modifying the surface properties of polymers in a controlled manner, Radiat. Phys. Chem. 78 (2009) 1054.
  • W.H. Daly, T.S. Evenson, S.T. Iacono, R.W. Jones, Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation, Macromol. Symp., 174 (2001) 155.
  • A. Carlmark, E. Malmstrom, Atom transfer radical polymerization from cellulose fibers at ambient temperature, J. Am. Chem. Soc., 124 (2002) 900.
  • M. Coskun, M.M. Temuz, Grafting studies onto cellulose by atom-transfer radical polymerization, Polym. Int., 54 (2005) 342.
  • D. W. Shen, H. Yong, The synthesis of CDA-g- PMMA copolymers through atom transfer radical polymerization, Polymer, 45 (2005) 7091.
  • D. W. Shen, H. Yu, Y. Huang, Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly, Cellulose, 13 (2006) 235.
  • D.M. Haddleton, C. Waterson, Phenolic ester-based initiators for transition metal mediated living polymerization, Macromolecules, 32 (1999) 8732.
  • P. Vlcek, M. Janata, P. Latalova, J. Kriz, E. Cadova, L. Toman, Controlled grafting of cellulose diacetate, Polymer, 47 (2006) 2587.
  • D. Plackett, K. Jankova, H. Egsgaard, S. Hvilsted, Modification of jute fibers with polystyrene via atom transfer radical polymerization, Biomacromolecules, 6 (2005) 2474. T. P. Davis, L. Barner, Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization, Macromolecules 40 (2007) 7140.
  • M. Barsbay, O. Güven, M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, L. Barner, RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via-radiation, Polymer 50 (2009) 973. and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces, Radiat. Phys. Chem. 94 (2014) 98.
  • H. Iwata, I. Hirata, Y. Ikada, Atomic force microscopic images of solvated polymer brushes, Langmuir 13 (1997) 3063.

RAFT aracılıklı aşı kopolimerizasyonu ile selülozun modifikasyonu

Year 2014, Volume: 42 Issue: 1, 1 - 7, 01.03.2014

Abstract

S elüloz dünyada en sık bulunan organik maddedir: bitkilerin temel bileşenidir, bakterilerde, mantarlarda, alglerde ve hatta hayvanlarda bile bulunur. Yüksek derecede mukavemet, ısıl kararlılık, biyouyumluluk, biyobozunurluk, nispeten uygun maliyet ve düşük yoğunluk gibi avantajlı özellikleri olsa da, sentetik polimerlerin kimi kullanışlı özelliklerini taşımamaktadır. Bu nedenle, birçok durumda selülozun yapısının eksikliklerinin giderilmesi amacıyla modifiye edilmesi gerekmektedir. Selülozun kimyasal ve fiziksel özelliklerinin modifiye edilmesinde kullanılan önemli yollardan biri, istenilen özellikleri taşıyan sentetik polimer zincirlerinin aşılarının selüloz yapısına katılması suretiyle selülozik aşı kopolimerlerin sentezlenmesidir. Kontrollü radikal polimerizasyonu CRP alanındaki son gelişmeler, aşılanan zincirlerin uzunluklarının, yapısının ve bileşiminin kontrol edilmesiyle aşı kopolimerlerin yüzey özelliklerinin ayarlanması adına eşsiz imkanlar sağlamıştır. Bu çalışma, en başarılı CRP yöntemlerinden biri olan Tersinir Katılma-Ayrılma Zincir Aktarım RAFT polimerizasyonu aracılıklı aşı kopolimerizasyonu ile selülozun modifikasyonunu inceleyen daha önceki çalışmalarımızı derlemektedir

References

  • D. Roy, M. Semsarilar, J. T. Guthrie, S. Perrier, Cellulose modification by polymer grafting: a review, Chem. Soc. Rev., 38 (2009) 2046.
  • J. Kim, S. Yun, Discovery of Cellulose as a Smart Material, Macromolecules, 39 (2006) 4202.
  • D. Nyström, J. Lindqvist, E. Östmark, A. Hult, E. Malmström, Superhydrophobic bio-fibre surfaces via tailored grafting architect, Chem. Commun. (2006) 3594.
  • J. Lindqvist, D. Nyström, E. Östmark, P. Antoni, A. Carlmark, M. Johansson, A. Hult, E. Malmström, Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP, Biomacromolecules, 9 (2008) 2139.
  • K.C. Gupta, K. Khandekar, Temperature- responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide, Biomacromolecules, 4 (2003) 758.
  • D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed., 44 (2005) 3358.
  • H.A. Krassig, in Cellulose and Its Derivatives: chemistry, biochemistry and applications, ed. J.F. Kennedy, G.O. Phillips, D.J. Wedlock, P.A. Williams, Ellis Horwood Limited, Chichester, 1985, pp. 3–25.
  • Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction, J. Am. Chem. Soc., 124 (2002) 9074.
  • Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose iα from synchrotron x-ray and neutron fiber diffraction, J. Am. Chem. Soc., 125 (2003) 14300.
  • H.A. Krassig, Cellulose-structure, accessibility and reactivity, Gordon and Breach Science Publisher, Yverdon, 1993.
  • K. Ward, Jr, Chemical modification of papermaking fibers, Marcel Dekker Inc., New York, 1973.
  • V.T. Stannett, H.B. Hopfenberg, in Cellulose and Cellulose Derivatives, ed. N.M. Bikales and L. Segal, John Wiley and Sons, New York, 5 (1971) 907.
  • H.A. Krassig, V. Stannett, Graft co-polymerization to celllulose and its derivatives, Adv. Polym. Sci., 1965, 111.
  • A. Hebeish, J.T. Guthrie, The chemistry and technology of cellulosic copolymers, Springer-Verlag, Berlin, 1981.
  • R.K. Samal, P.K. Sahoo, H. S. Samantaray, S.P. Bhattacharjee, Graft copolymerization of cellulose, cellulose derivatives, and lignocellulose, J. Macromol. Sci. R. M. C., 26 (1986) 81.
  • H. Bessbousse, M. Barsbay, O. Güven, T.L. Wade, M.C. Clochard, European Patent No: 11306648.4– 2113, Method for preparing a functionalized 28. M. Barsbay, O. Güven, M. H. Stenzel, C. Barner-Kowollik, nanoporous track-etched PVDF membrane with RAFT polymerization, 2013.
  • M. Barsbay, O. Güven, H. Bessbousse, T. L. Wade, F. Beuneu, M. C. Clochard, Nanopore size tuning of polymeric membranes using the RAFT mediated radical polymerization, J. Membr. Sci., 445 (2013) 135.
  • M. Barsbay, O. Güven, RAFT mediated grafting of poly(acrylic acid) (PAA) from polyethylene/ polypropylene (PE/PP) nonwoven fabric via 30. Y. Kodama, M. Barsbay, O. Güven, Radiation-induced preirradiation, Polymer, 54 (2013) 4838.
  • M. Barsbay, O. Güven, A Short review of the radiation- induced raft-mediated graft copolymerization: a powerful combination for modifying the surface properties of polymers in a controlled manner, Radiat. Phys. Chem. 78 (2009) 1054.
  • W.H. Daly, T.S. Evenson, S.T. Iacono, R.W. Jones, Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation, Macromol. Symp., 174 (2001) 155.
  • A. Carlmark, E. Malmstrom, Atom transfer radical polymerization from cellulose fibers at ambient temperature, J. Am. Chem. Soc., 124 (2002) 900.
  • M. Coskun, M.M. Temuz, Grafting studies onto cellulose by atom-transfer radical polymerization, Polym. Int., 54 (2005) 342.
  • D. W. Shen, H. Yong, The synthesis of CDA-g- PMMA copolymers through atom transfer radical polymerization, Polymer, 45 (2005) 7091.
  • D. W. Shen, H. Yu, Y. Huang, Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly, Cellulose, 13 (2006) 235.
  • D.M. Haddleton, C. Waterson, Phenolic ester-based initiators for transition metal mediated living polymerization, Macromolecules, 32 (1999) 8732.
  • P. Vlcek, M. Janata, P. Latalova, J. Kriz, E. Cadova, L. Toman, Controlled grafting of cellulose diacetate, Polymer, 47 (2006) 2587.
  • D. Plackett, K. Jankova, H. Egsgaard, S. Hvilsted, Modification of jute fibers with polystyrene via atom transfer radical polymerization, Biomacromolecules, 6 (2005) 2474. T. P. Davis, L. Barner, Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization, Macromolecules 40 (2007) 7140.
  • M. Barsbay, O. Güven, M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, L. Barner, RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via-radiation, Polymer 50 (2009) 973. and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces, Radiat. Phys. Chem. 94 (2014) 98.
  • H. Iwata, I. Hirata, Y. Ikada, Atomic force microscopic images of solvated polymer brushes, Langmuir 13 (1997) 3063.
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Murat Barsbay This is me

Olgun Güven This is me

Publication Date March 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 1

Cite

APA Barsbay, M., & Güven, O. (2014). Modification of cellulose by RAFT mediated graft copolymerization. Hacettepe Journal of Biology and Chemistry, 42(1), 1-7.
AMA Barsbay M, Güven O. Modification of cellulose by RAFT mediated graft copolymerization. HJBC. March 2014;42(1):1-7.
Chicago Barsbay, Murat, and Olgun Güven. “Modification of Cellulose by RAFT Mediated Graft Copolymerization”. Hacettepe Journal of Biology and Chemistry 42, no. 1 (March 2014): 1-7.
EndNote Barsbay M, Güven O (March 1, 2014) Modification of cellulose by RAFT mediated graft copolymerization. Hacettepe Journal of Biology and Chemistry 42 1 1–7.
IEEE M. Barsbay and O. Güven, “Modification of cellulose by RAFT mediated graft copolymerization”, HJBC, vol. 42, no. 1, pp. 1–7, 2014.
ISNAD Barsbay, Murat - Güven, Olgun. “Modification of Cellulose by RAFT Mediated Graft Copolymerization”. Hacettepe Journal of Biology and Chemistry 42/1 (March 2014), 1-7.
JAMA Barsbay M, Güven O. Modification of cellulose by RAFT mediated graft copolymerization. HJBC. 2014;42:1–7.
MLA Barsbay, Murat and Olgun Güven. “Modification of Cellulose by RAFT Mediated Graft Copolymerization”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 1, 2014, pp. 1-7.
Vancouver Barsbay M, Güven O. Modification of cellulose by RAFT mediated graft copolymerization. HJBC. 2014;42(1):1-7.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc