BibTex RIS Cite

Radiation induced synthesis of molecularly imprinted polymers

Year 2014, Volume: 42 Issue: 1, 99 - 104, 01.03.2014

Abstract

Tunable properties fascinate scientists because of the opportunity to develop functional materials for stimuli- responsive, sensing and biomimetic applications. Over half a century ago, advances allowed the realisation of molecularly imprinted polymers.They enable to specifically target sugars, pesticides, herbicides, viruses, drugs and amino acid together with their derivatives.In fact, due to their simplicity, ability of building robust polymer networks, reusability and low costs, molecularly imprinted polymers MIPs still are of great interest both in academia and industry.They enable the use of lot of techniques for their implementation although our attention will be addressed to the ones realised via gamma-irradiation.

References

  • 1. L. Pauling, Theory of the structure and process of formation of antibodies, J. Am. Chem. Soc., 62 (1940) 2643.
  • 2. G. Wulf, A. Sarhan, Macromolecular colloquim, Angevv. Chem. Int. Ed. Engl., 11 (1972) 341.
  • 3. L. Andersson, B. Sellergren, K. Mosbach, Imprinting of amino acid derivatives in macroporous polymers, Tetrahedron Lett., 25 (1984) 5211.
  • 4. Z. Ateş, O. Güven, Radiation-induced molecular imprinting of D-glucose onto poly(2-hydroxyethyl methacrylate) matrices using various crosslinking agents, Rad. Phys. Chem., 79 (2010) 219.
  • 5. Y. Jin, M. Jiang, Y. Shi, Y. Lin, Y. Peng, K. Dai, B. Lu, Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method, Anal. Chim. Acta, 612 (2008) 105.
  • 6. T.A. Sergeyeva, O.O. Brovko, E.V. Piletska, S.A. Piletsky, L.A. Goncharova, L.V. Karabanova, L.M. Sergeyeva, A.V. El’skaya, Porous molecularly imprinted polymer membranes and polymeric particles, Anal. Chim. Acta, 582 (2007) 311.
  • 7. D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, D. Wang, A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles, J. Am. Chem. Soc., 129 (2007) 7859.
  • 8. M.L. Rañada, M. Akbulut, L. Abad, O. Güven, Molecularly imprinted poly(n-vinyl imidazole) based polymers grafted onto nonwoven fabrics for recognition/removal of phloretic acid, Radiat. Phys. Chem., 94 (2014) 93.
  • 9. B. Sellergren, K.J. Shea, Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases, J. Chromatogr. A., 690 (1995) 29.
  • 10. H. Yan, K.H. Row, Characteristic and synthetic approach of molecularly ımprinted polymer. Int. J. Molecul. Sci., 7 (2006) 155.
  • 11. N. Pérez-Moral, A.G. Mayes, Comparative study of imprinted polymer particles prepared by different polymerisation methods, Anal. Chim. Acta, 504 (2004) 15.
  • 12. A. Poma, A.P.F. Turner, S.A. Piletsky, Advances in the manufacture of MIP nanoparticles, Trend. Biotechnol., 28 (2010) 629.
  • 13. F. Liu, X. Liu, S.C. Ng, H.S. Chan, Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan, Sensor. Actuat. B, 113 (2006) 234.
  • 14. D. Lakshmi, M. Akbulut, P.K. Ivanova-Mitseva, M.J. Whitcombe, E.V. Piletska, K. Karim, O. Güven, S.A. Piletsky, Computational design and preparation of MIPs for atrazine recognition on a conjugated polymercoated microtitre plate, Ind. Eng. Chem. Res., 52 (2013) 13910.
  • 15. N.W. Turner, C.W. Jeans, K.R. Brain, C.J. Allender, V. Hlady, D.W. Britt, From 3D to 2D: a review of the molecular imprinting of proteins, Biotechnol. Prog., 22 (2006) 1474.
  • 16. C.J. Tan, Y.W. Tong, Molecularly imprinted beads by surface imprinting, Anal. Bioanal. Chem., 389 (2007) 369.
  • 17. F.J. Wolman, E.E. Smolko, O. Cascone, M. Grasselli, Peptide imprinted polymer synthesized by radiationinduced graft polymerization, React. Funct. Polym., 66 (2006) 1199.
  • 18. I. Mijangos, F. Navarro-Villoslada, A. Guerreiro, E.V. Piletska, I. Chianella, K. Karim, A.P.F. Turner, S.A. Piletsky, Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers, Biosens. Bioelectron., 22 (2006) 381.
  • 19. Y. Lu, C. Li, X. Wang, P. Sun, X. Xing, Influence of polymerization temperature on the molecular recognition of imprinted polymers, J. Chromatogr. B, 804 (2004) 53.
  • 20. D.J. O’Shannessy, B. Ekberg, K. Mosbach, Molecular imprinting of amino acid derivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles, Anal. Biochem., 177 (1989) 144.
  • 21. S.S. Milojkovic, D. Kostoski, J.J. Comor, J.M. Nedeljkovic, Radiation induced synthesis of molecularly imprinted polymers, Polymer, 38 (1997) 2853.
  • 22. K. Sreenivasan, A note on the selectivity of γ-radiation polymerised molecularly imprinted poly(HEMA), Polym. Gel. Network., 5 (1997) 17.
  • 23. K. Uezu, H. Nakamura, J. Kanno, T. Sugo, M. Goto, F. Nakashio, Metal ion-imprinted polymer prepared by the combination of surface template polymerization with postirradiation by gamma-rays, Macromolecules, 9297 (1997) 3888.
  • 24. K. Sreenivasan, Imparting cholesterol recognition sites in radiation polymerised poly(2-hydroxyethyl methacrylate) by molecular ımprinting, Polym. Int., 42(1997) 169.
  • 25. K. Sreenivasan, On the feasibility of using molecularly imprinted poly(HEMA) as a sensor component, Talanta, 44 (1997) 1137.
  • 26. K. Sreenivasan, R. Sivakumar, Imparting recognition sites in poly(HEMA) for two compounds through molecular imprinting, J. Appl. Polym. Sci., 71 (1998) 1823.
  • 27. N. Djourelov, Z. Ateş, O. Güven, M. Misheva, T. Suzuki, Positron annihilation lifetime spectroscopy of molecularly printed hydroxyethyl methacrylate based polymers, Polymer (Guildf)., 48 (2007) 2692.
  • 28. C. Warwick, A. Guerreiro, A. Gomez-Caballero, E. Wood, J. Kitson, J. Robinson, A. Soares, Conductance based sensing and analysis of soluble phosphates in wastewater, Biosens. Bioelectron., 52 (2013) 173.
  • 29. V.M. Biju, J. M. Gladis, T.P. Rao, Effect of gammairradiation of ion imprinted polymer (IIP) particles for the preconcentrative separation of dysprosium from other selected lanthanides, Talanta, 60 (2003) 747.
  • 30. F.J. Wolman, E.E. Smolko, O. Cascone, M. Grasselli, Peptide imprinted polymer synthesized by radiationinduced graft polymerization, React. Funct. Polym., 66 (2006) 1199.
  • 31. M. Kempe, K. Mosbach, Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase, J. Chromatogr. A, 664 (1994) 276.

Moleküler baskılı polimerlerin radyasyonla başlatılan sentezi

Year 2014, Volume: 42 Issue: 1, 99 - 104, 01.03.2014

Abstract

K ontrol edilebilir özellikler uyarılara tepki veren, algılayıcı ve biyo-taklitçi uygulamalar için fonksiyonel malzemelerin geliştirilmesi imkânı açısından bilim adamlarını etkiler. Yarım yüzyılı aşkın bir süre öncesinde gelişmeler, moleküler baskılı polimerlerin anlaşılmasına izin vermiştir. Bunlar şekerleri, pestisitleri, herbisitleri, virüsleri, ilaçları ve amino asitlerlerle birlikte onların türevlerini özgül olarak hedef alabilirler. Her ne kadar kolay olmaları, sağlam polimer ağların hazırlanabilmesi, tekrar kullanılabilirlik ve düşük maliyetlerine bağlı ise de moleküler baskılı polimerler hem akademi hem de endüstride halen büyük ilgi alanıdırlar. Bizim ilgimiz gama ışınlaması kullanılan yöntemleri kavramaya yönlenmiş olmasına rağmen uygulamaları için pek çok tekniğin kullanımına olanak sağlarlar

References

  • 1. L. Pauling, Theory of the structure and process of formation of antibodies, J. Am. Chem. Soc., 62 (1940) 2643.
  • 2. G. Wulf, A. Sarhan, Macromolecular colloquim, Angevv. Chem. Int. Ed. Engl., 11 (1972) 341.
  • 3. L. Andersson, B. Sellergren, K. Mosbach, Imprinting of amino acid derivatives in macroporous polymers, Tetrahedron Lett., 25 (1984) 5211.
  • 4. Z. Ateş, O. Güven, Radiation-induced molecular imprinting of D-glucose onto poly(2-hydroxyethyl methacrylate) matrices using various crosslinking agents, Rad. Phys. Chem., 79 (2010) 219.
  • 5. Y. Jin, M. Jiang, Y. Shi, Y. Lin, Y. Peng, K. Dai, B. Lu, Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method, Anal. Chim. Acta, 612 (2008) 105.
  • 6. T.A. Sergeyeva, O.O. Brovko, E.V. Piletska, S.A. Piletsky, L.A. Goncharova, L.V. Karabanova, L.M. Sergeyeva, A.V. El’skaya, Porous molecularly imprinted polymer membranes and polymeric particles, Anal. Chim. Acta, 582 (2007) 311.
  • 7. D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, D. Wang, A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles, J. Am. Chem. Soc., 129 (2007) 7859.
  • 8. M.L. Rañada, M. Akbulut, L. Abad, O. Güven, Molecularly imprinted poly(n-vinyl imidazole) based polymers grafted onto nonwoven fabrics for recognition/removal of phloretic acid, Radiat. Phys. Chem., 94 (2014) 93.
  • 9. B. Sellergren, K.J. Shea, Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases, J. Chromatogr. A., 690 (1995) 29.
  • 10. H. Yan, K.H. Row, Characteristic and synthetic approach of molecularly ımprinted polymer. Int. J. Molecul. Sci., 7 (2006) 155.
  • 11. N. Pérez-Moral, A.G. Mayes, Comparative study of imprinted polymer particles prepared by different polymerisation methods, Anal. Chim. Acta, 504 (2004) 15.
  • 12. A. Poma, A.P.F. Turner, S.A. Piletsky, Advances in the manufacture of MIP nanoparticles, Trend. Biotechnol., 28 (2010) 629.
  • 13. F. Liu, X. Liu, S.C. Ng, H.S. Chan, Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan, Sensor. Actuat. B, 113 (2006) 234.
  • 14. D. Lakshmi, M. Akbulut, P.K. Ivanova-Mitseva, M.J. Whitcombe, E.V. Piletska, K. Karim, O. Güven, S.A. Piletsky, Computational design and preparation of MIPs for atrazine recognition on a conjugated polymercoated microtitre plate, Ind. Eng. Chem. Res., 52 (2013) 13910.
  • 15. N.W. Turner, C.W. Jeans, K.R. Brain, C.J. Allender, V. Hlady, D.W. Britt, From 3D to 2D: a review of the molecular imprinting of proteins, Biotechnol. Prog., 22 (2006) 1474.
  • 16. C.J. Tan, Y.W. Tong, Molecularly imprinted beads by surface imprinting, Anal. Bioanal. Chem., 389 (2007) 369.
  • 17. F.J. Wolman, E.E. Smolko, O. Cascone, M. Grasselli, Peptide imprinted polymer synthesized by radiationinduced graft polymerization, React. Funct. Polym., 66 (2006) 1199.
  • 18. I. Mijangos, F. Navarro-Villoslada, A. Guerreiro, E.V. Piletska, I. Chianella, K. Karim, A.P.F. Turner, S.A. Piletsky, Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers, Biosens. Bioelectron., 22 (2006) 381.
  • 19. Y. Lu, C. Li, X. Wang, P. Sun, X. Xing, Influence of polymerization temperature on the molecular recognition of imprinted polymers, J. Chromatogr. B, 804 (2004) 53.
  • 20. D.J. O’Shannessy, B. Ekberg, K. Mosbach, Molecular imprinting of amino acid derivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles, Anal. Biochem., 177 (1989) 144.
  • 21. S.S. Milojkovic, D. Kostoski, J.J. Comor, J.M. Nedeljkovic, Radiation induced synthesis of molecularly imprinted polymers, Polymer, 38 (1997) 2853.
  • 22. K. Sreenivasan, A note on the selectivity of γ-radiation polymerised molecularly imprinted poly(HEMA), Polym. Gel. Network., 5 (1997) 17.
  • 23. K. Uezu, H. Nakamura, J. Kanno, T. Sugo, M. Goto, F. Nakashio, Metal ion-imprinted polymer prepared by the combination of surface template polymerization with postirradiation by gamma-rays, Macromolecules, 9297 (1997) 3888.
  • 24. K. Sreenivasan, Imparting cholesterol recognition sites in radiation polymerised poly(2-hydroxyethyl methacrylate) by molecular ımprinting, Polym. Int., 42(1997) 169.
  • 25. K. Sreenivasan, On the feasibility of using molecularly imprinted poly(HEMA) as a sensor component, Talanta, 44 (1997) 1137.
  • 26. K. Sreenivasan, R. Sivakumar, Imparting recognition sites in poly(HEMA) for two compounds through molecular imprinting, J. Appl. Polym. Sci., 71 (1998) 1823.
  • 27. N. Djourelov, Z. Ateş, O. Güven, M. Misheva, T. Suzuki, Positron annihilation lifetime spectroscopy of molecularly printed hydroxyethyl methacrylate based polymers, Polymer (Guildf)., 48 (2007) 2692.
  • 28. C. Warwick, A. Guerreiro, A. Gomez-Caballero, E. Wood, J. Kitson, J. Robinson, A. Soares, Conductance based sensing and analysis of soluble phosphates in wastewater, Biosens. Bioelectron., 52 (2013) 173.
  • 29. V.M. Biju, J. M. Gladis, T.P. Rao, Effect of gammairradiation of ion imprinted polymer (IIP) particles for the preconcentrative separation of dysprosium from other selected lanthanides, Talanta, 60 (2003) 747.
  • 30. F.J. Wolman, E.E. Smolko, O. Cascone, M. Grasselli, Peptide imprinted polymer synthesized by radiationinduced graft polymerization, React. Funct. Polym., 66 (2006) 1199.
  • 31. M. Kempe, K. Mosbach, Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase, J. Chromatogr. A, 664 (1994) 276.
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Meshude Akbulut Söylemez This is me

Zeliha Ateş This is me

Olgun Güven This is me

Publication Date March 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 1

Cite

APA Söylemez, M. A., Ateş, Z., & Güven, O. (2014). Radiation induced synthesis of molecularly imprinted polymers. Hacettepe Journal of Biology and Chemistry, 42(1), 99-104.
AMA Söylemez MA, Ateş Z, Güven O. Radiation induced synthesis of molecularly imprinted polymers. HJBC. March 2014;42(1):99-104.
Chicago Söylemez, Meshude Akbulut, Zeliha Ateş, and Olgun Güven. “Radiation Induced Synthesis of Molecularly Imprinted Polymers”. Hacettepe Journal of Biology and Chemistry 42, no. 1 (March 2014): 99-104.
EndNote Söylemez MA, Ateş Z, Güven O (March 1, 2014) Radiation induced synthesis of molecularly imprinted polymers. Hacettepe Journal of Biology and Chemistry 42 1 99–104.
IEEE M. A. Söylemez, Z. Ateş, and O. Güven, “Radiation induced synthesis of molecularly imprinted polymers”, HJBC, vol. 42, no. 1, pp. 99–104, 2014.
ISNAD Söylemez, Meshude Akbulut et al. “Radiation Induced Synthesis of Molecularly Imprinted Polymers”. Hacettepe Journal of Biology and Chemistry 42/1 (March 2014), 99-104.
JAMA Söylemez MA, Ateş Z, Güven O. Radiation induced synthesis of molecularly imprinted polymers. HJBC. 2014;42:99–104.
MLA Söylemez, Meshude Akbulut et al. “Radiation Induced Synthesis of Molecularly Imprinted Polymers”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 1, 2014, pp. 99-104.
Vancouver Söylemez MA, Ateş Z, Güven O. Radiation induced synthesis of molecularly imprinted polymers. HJBC. 2014;42(1):99-104.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc