BibTex RIS Cite

Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial

Year 2014, Volume: 42 Issue: 1, 129 - 141, 01.03.2014

Abstract

Acrylamide hydrogel was prepared by γ-irradiating ofthe aqueous solution of acrylamide monomer with 4.65 kGy γ-rays. Spectroscopic, thermal and mechanical properties, swelling properties, diffusional behavior of water, diffusion coefficients and network properties of AAm hydrogel are examined. In vitro swelling and in vivo biocompatibility of acrylamide hydrogel were investigated. The swellings of AAm hydrogelare investigated in distilled water, human serum and some simulated physiological fluids such as phosphate buffer at pH 7.4, glycine-HCl buffer at pH 1.1 physiological saline solution. For the analysis of human sera biocompatibility, acrylamide hydrogel was incubated in 10 different human sera for 24 hours and its biocompatibility with some biochemical parameters have been investigated. No significant difference in values before and after the test procedures has been found. AAm hydrogel was subcutaneously implanted in rats for up to 10 weeks and the tissue response to these implants was studied. Histological analysis indicated that tissue reaction at the implant site progressed from an initial acute inflammatory response characterized. No necrosis, tumorigenesis or infection was observed at the implant site up to 10 weeks. In vivo studies indicated that the radiation induced acrylamide hydrogel was found to be well-tolerated, non-toxic and highly biocompatible.

References

  • A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Del. Rev., 54 (2002) 3.
  • N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm., 50 (2000) 27.
  • A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug. Del. Rev., 64 (2012) 18.
  • K. Pal, A.K. Banthia, D.K. Majumdar, Polymeric hydrogels: characterization and biomedical applications –a mini review, Design. Monom. Polym., 12 (2009) 197.
  • A. Singh, P.K. Sharma, V.K. Garg, G. Garg, Hydrogels: a review, Int. J. Pharm. Sci. Rev. Res.,4 (2010) 97.
  • I. Gibas, H. Janik, Review: synthetic polymer hydrogels for biomedical applications, Chem. Chem. Technol., 4 (2010) 297.
  • W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: a review, Polym. Plas. Technol. Eng., 50 (2011) 1475.
  • S. Dwivedi, P. Khatri, G.R. Mehra, V. Kumar, Hydrogel-a conceptual overview, Int. J. Pharm. Biol. Arch., 2 (2011) 1588.
  • D. Seliktar, Designing cell-compatible hydrogels for biomedical applications, Science, 336 (2012) 1124.
  • N. Das, Preparation methods and properties of hydrogel: A review, Int. J. Pharm. Pharm. Sci., 5 (2013) 112.
  • S. Unver Saraydin, D. Saraydin, Histopatological effect characteristics of various biomaterials and monomers used in polymeric biomaterial production in Biomaterials - Physics and Chemistry Edited by Prof. Rosario Pignatello, p: 425-444 InTech, 2011 Rijeka, Croatia.
  • O. Guven, M. Sen, E. Karadag, D. Saraydın, A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes, Radiat. Phys. Chem., 56 (1999) 381.
  • IAEA-TECDOC-1324, Radiation synthesis and modification of polymers for biomedical applications IAEA, Vienna, Austria (2002) p. 199.
  • IAEA-TECDOC-1420, Advances in radiation chemistry of polymers, IAEA, Vienna, Austria (2004) p.125.
  • M.M. Alam, M.F. Mina, F. Akhtar. Effect of gamma rays in the preparation of polymer hydrogel from acrylamide monomer, Chin. J. Polym. Sci., 21 (2003) 437.
  • Z. Zicheng, L. Qian, L. Donghui, Z. Xin, L. Shuhua, Z. Lihua, Preparation of polyacrylamide hydrogels by radiation technique, Radiat. Phys. Chem., 30 (1987) 307.
  • D. Saraydın,E. Karadag, O. Guven, Acrylamide/ maleic acid hydrogels, Polym. Adv. Technol., 6 (1995) 719.
  • E. Karadag, D. Saraydın, O. Guven, Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers, Macromol. Mater. Eng., 286 (2001) 34.
  • D. Saraydın, E. Karadag, O. Guven, Highly swollen hydrogels – Cross–linked acrylamide–crotonic acid copolymers, Tr. J. Chem., 19 (1995) 179.
  • D. Saraydın, E. Karadag, O. Guven, The releases of agrochemicals from radiation induced acrylamide crotonic acid hydrogel, Polym. Bull., 41 (1998) 577.
  • D. Saraydın, E. Karadag, O. Guven, Super water– retainer hydrogels: Crosslinked acrylamide/succinic acid copolymers, Polym. J., 29 (1999) 631.
  • D. Saraydın, H.N. Oztop, E. Karadag, Y. Caldiran, O. Guven, Influence of some amino acids on the dynamic swelling behavior of radiation–induced acrylamide hydrogel, App. Biochem. Biotechnol., 82 (1999) 115.
  • D. Saraydın, E. Karadag, Y. Caldiran, O. Guven, Nicotine–selective radiation–induced poly (acrylamide/maleic acid) hydrogels, Radiat. Phys. Chem., 60 (2001) 203.
  • D. Saraydın, Y. Işıkver, E. Karadag, N. Sahiner, O. Guven. In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids, NIMB-B, 187 (2002) 340.
  • E. Karadag, D. Saraydın, N Sahiner, O. Guven, Radiation induced acrylamide/citric acid hydrogels and their swelling behaviors, J. Macromol. Sci. Pure Appl. Chem., 38 (2001) 1105.
  • Z.Y. Ding, J.J. Aklonis, R. Salovey, Model filled polymers. 6. Determination of the cross-link density of polymeric beads by swelling,J. Polym. Sci. Part B: Polym. Phys., 29 (1991) 1035.
  • J. Rosiak, K. Burczak, T. Czolozynska, W. Pekala, Radiation crosslinked hydrogels from acrylamide water solutions, Radiat. Phys. Chem., 22 (1983) 907.
  • D. Saraydın, Y. Caldiran, In vitro dynamic swelling behaviors of polyhydroxamic acid hydrogels in the simulated physiological body fluid,Polym. Bull., 46 (2001) 91.
  • D. Saraydın, E. Karadag, S. Cetinkaya, O. Guven, Preparation of acrylamide maleic–acid hydrogels and their biocompatibility with some biochemical parameters of human serum, Radiat. Phys. Chem., 46 (1995) 1049.
  • E. Karadag, D. Saraydın, S, Cetinkaya, O. Guven, In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide–based hydrogels,Biomaterials, 17 (1996) 67.
  • S. Ünver Saraydın, H.E. Bulut, Ü. Özüm, Z. D. Şahin İnan, Z. Akın Polat, Y. Yalman, D. Saraydın, Evaluation of the cytotoxic effects of various monomers in vitro also their effects on Apoptosis and GFAP immunolocalization in rat spinal cord in vivo, HealthMED, 5 (2011) 17.
  • D. Saraydın, E. Koptagel, S. Unver–Saraydin, E. Karadag, O. Guven, In vivo biocompatibility of radiation induced acrylamide and acrylamide/ maleic acid hydrogels, J. Mat. Sci., 36 (2001) 2473.
  • D. Saraydın, S. Unver Saraydın, E. Karadag, E. Koptagel, O. Guven, In vivo biocompatibility of radiation crosslinked acrylamide copolymers, NIMB-B, 217 (2004) 281.
  • R. Jeyanthi, K.P. Rao, In vivo biocompatibility of collagen poly(hydroxyethyl methacrylate) hydrogels, Biomaterials, 11 (1990) 238.
  • K. Smetana, Jr., J. Vacik, D. Souckova, Z. Krcova, J. Sulc, The influence of hydrogel functional-groups on cell behavior,J. Biomed. Met. Res., 24 (1990) 463.

Radyasyonla sentezlenen akrilamid hidrojeli: Hazırlama, karakterizasyon ve biyomateryal olarak kullanılabilirliği

Year 2014, Volume: 42 Issue: 1, 129 - 141, 01.03.2014

Abstract

A krilamidin sulu çözeltisi 4.65 kGy dozunda γ-ışınları ışınlanarak akrilamid AAm hidrojeli hazırlandı. AAm hidrojelinin spektroskopik, ısıl, mekanik özellikleri, şişme özellikleri, difüzyon davranışları, difüzyon katsayıları ve ağ özellikleri bulunmuştur.Amm hidrojelininin vitro şişmesi damıtık su, insan serumu ve fosfat tamponu pH 7.4 , fizyolojik serum çözeltisi, glisin - HCl tamponu pH 1.1 gibi bazı yapay fizyolojik sıvılarda incelenmiştir. İnsan serumunun bazı biyokimyasal parametreleri ile akrilamid hidrojelinin in vitro biyouyumluluk analizi için, AAm hidrojeli ile 10 farklı insan serumu 24 saat etkileştirilmiştir. Denemeler öncesi ve sonrası biyokimyasal parametrelerinin sayısal değerleri açısından anlamlı bir fark bulunmamıştır. AAm hidrojelinin in vivo biyouyumluluğu için, AAm hidrojeli sıçanları karın derialtı dokusuna yerleştirildi. Bu implantların doku yanıtı 10 hafta boyunca incelendi. İmplant bölgesinde nekroz, tümörogenez ya da enfeksiyon 10 hafta boyunca gözlenmemiştir. İn vivo çalışmalar, radyasyonla sentezlenen akrilamid hidrojelinin iyi tolere edilebildiği, toksik olmadığı ve biyouyumlu olduğu bulunmuştur

References

  • A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Del. Rev., 54 (2002) 3.
  • N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm., 50 (2000) 27.
  • A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug. Del. Rev., 64 (2012) 18.
  • K. Pal, A.K. Banthia, D.K. Majumdar, Polymeric hydrogels: characterization and biomedical applications –a mini review, Design. Monom. Polym., 12 (2009) 197.
  • A. Singh, P.K. Sharma, V.K. Garg, G. Garg, Hydrogels: a review, Int. J. Pharm. Sci. Rev. Res.,4 (2010) 97.
  • I. Gibas, H. Janik, Review: synthetic polymer hydrogels for biomedical applications, Chem. Chem. Technol., 4 (2010) 297.
  • W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: a review, Polym. Plas. Technol. Eng., 50 (2011) 1475.
  • S. Dwivedi, P. Khatri, G.R. Mehra, V. Kumar, Hydrogel-a conceptual overview, Int. J. Pharm. Biol. Arch., 2 (2011) 1588.
  • D. Seliktar, Designing cell-compatible hydrogels for biomedical applications, Science, 336 (2012) 1124.
  • N. Das, Preparation methods and properties of hydrogel: A review, Int. J. Pharm. Pharm. Sci., 5 (2013) 112.
  • S. Unver Saraydin, D. Saraydin, Histopatological effect characteristics of various biomaterials and monomers used in polymeric biomaterial production in Biomaterials - Physics and Chemistry Edited by Prof. Rosario Pignatello, p: 425-444 InTech, 2011 Rijeka, Croatia.
  • O. Guven, M. Sen, E. Karadag, D. Saraydın, A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes, Radiat. Phys. Chem., 56 (1999) 381.
  • IAEA-TECDOC-1324, Radiation synthesis and modification of polymers for biomedical applications IAEA, Vienna, Austria (2002) p. 199.
  • IAEA-TECDOC-1420, Advances in radiation chemistry of polymers, IAEA, Vienna, Austria (2004) p.125.
  • M.M. Alam, M.F. Mina, F. Akhtar. Effect of gamma rays in the preparation of polymer hydrogel from acrylamide monomer, Chin. J. Polym. Sci., 21 (2003) 437.
  • Z. Zicheng, L. Qian, L. Donghui, Z. Xin, L. Shuhua, Z. Lihua, Preparation of polyacrylamide hydrogels by radiation technique, Radiat. Phys. Chem., 30 (1987) 307.
  • D. Saraydın,E. Karadag, O. Guven, Acrylamide/ maleic acid hydrogels, Polym. Adv. Technol., 6 (1995) 719.
  • E. Karadag, D. Saraydın, O. Guven, Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers, Macromol. Mater. Eng., 286 (2001) 34.
  • D. Saraydın, E. Karadag, O. Guven, Highly swollen hydrogels – Cross–linked acrylamide–crotonic acid copolymers, Tr. J. Chem., 19 (1995) 179.
  • D. Saraydın, E. Karadag, O. Guven, The releases of agrochemicals from radiation induced acrylamide crotonic acid hydrogel, Polym. Bull., 41 (1998) 577.
  • D. Saraydın, E. Karadag, O. Guven, Super water– retainer hydrogels: Crosslinked acrylamide/succinic acid copolymers, Polym. J., 29 (1999) 631.
  • D. Saraydın, H.N. Oztop, E. Karadag, Y. Caldiran, O. Guven, Influence of some amino acids on the dynamic swelling behavior of radiation–induced acrylamide hydrogel, App. Biochem. Biotechnol., 82 (1999) 115.
  • D. Saraydın, E. Karadag, Y. Caldiran, O. Guven, Nicotine–selective radiation–induced poly (acrylamide/maleic acid) hydrogels, Radiat. Phys. Chem., 60 (2001) 203.
  • D. Saraydın, Y. Işıkver, E. Karadag, N. Sahiner, O. Guven. In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids, NIMB-B, 187 (2002) 340.
  • E. Karadag, D. Saraydın, N Sahiner, O. Guven, Radiation induced acrylamide/citric acid hydrogels and their swelling behaviors, J. Macromol. Sci. Pure Appl. Chem., 38 (2001) 1105.
  • Z.Y. Ding, J.J. Aklonis, R. Salovey, Model filled polymers. 6. Determination of the cross-link density of polymeric beads by swelling,J. Polym. Sci. Part B: Polym. Phys., 29 (1991) 1035.
  • J. Rosiak, K. Burczak, T. Czolozynska, W. Pekala, Radiation crosslinked hydrogels from acrylamide water solutions, Radiat. Phys. Chem., 22 (1983) 907.
  • D. Saraydın, Y. Caldiran, In vitro dynamic swelling behaviors of polyhydroxamic acid hydrogels in the simulated physiological body fluid,Polym. Bull., 46 (2001) 91.
  • D. Saraydın, E. Karadag, S. Cetinkaya, O. Guven, Preparation of acrylamide maleic–acid hydrogels and their biocompatibility with some biochemical parameters of human serum, Radiat. Phys. Chem., 46 (1995) 1049.
  • E. Karadag, D. Saraydın, S, Cetinkaya, O. Guven, In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide–based hydrogels,Biomaterials, 17 (1996) 67.
  • S. Ünver Saraydın, H.E. Bulut, Ü. Özüm, Z. D. Şahin İnan, Z. Akın Polat, Y. Yalman, D. Saraydın, Evaluation of the cytotoxic effects of various monomers in vitro also their effects on Apoptosis and GFAP immunolocalization in rat spinal cord in vivo, HealthMED, 5 (2011) 17.
  • D. Saraydın, E. Koptagel, S. Unver–Saraydin, E. Karadag, O. Guven, In vivo biocompatibility of radiation induced acrylamide and acrylamide/ maleic acid hydrogels, J. Mat. Sci., 36 (2001) 2473.
  • D. Saraydın, S. Unver Saraydın, E. Karadag, E. Koptagel, O. Guven, In vivo biocompatibility of radiation crosslinked acrylamide copolymers, NIMB-B, 217 (2004) 281.
  • R. Jeyanthi, K.P. Rao, In vivo biocompatibility of collagen poly(hydroxyethyl methacrylate) hydrogels, Biomaterials, 11 (1990) 238.
  • K. Smetana, Jr., J. Vacik, D. Souckova, Z. Krcova, J. Sulc, The influence of hydrogel functional-groups on cell behavior,J. Biomed. Met. Res., 24 (1990) 463.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Dursun Saraydın This is me

Serpil Ünver Saraydın This is me

Erdener Karadağ This is me

Olgun Güven This is me

Publication Date March 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 1

Cite

APA Saraydın, D., Saraydın, S. Ü., Karadağ, E., Güven, O. (2014). Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial. Hacettepe Journal of Biology and Chemistry, 42(1), 129-141.
AMA Saraydın D, Saraydın SÜ, Karadağ E, Güven O. Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial. HJBC. March 2014;42(1):129-141.
Chicago Saraydın, Dursun, Serpil Ünver Saraydın, Erdener Karadağ, and Olgun Güven. “Radiation Synthesized Acrylamide Hydrogel: Preparation, Characterization and Usability As Biomaterial”. Hacettepe Journal of Biology and Chemistry 42, no. 1 (March 2014): 129-41.
EndNote Saraydın D, Saraydın SÜ, Karadağ E, Güven O (March 1, 2014) Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial. Hacettepe Journal of Biology and Chemistry 42 1 129–141.
IEEE D. Saraydın, S. Ü. Saraydın, E. Karadağ, and O. Güven, “Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial”, HJBC, vol. 42, no. 1, pp. 129–141, 2014.
ISNAD Saraydın, Dursun et al. “Radiation Synthesized Acrylamide Hydrogel: Preparation, Characterization and Usability As Biomaterial”. Hacettepe Journal of Biology and Chemistry 42/1 (March 2014), 129-141.
JAMA Saraydın D, Saraydın SÜ, Karadağ E, Güven O. Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial. HJBC. 2014;42:129–141.
MLA Saraydın, Dursun et al. “Radiation Synthesized Acrylamide Hydrogel: Preparation, Characterization and Usability As Biomaterial”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 1, 2014, pp. 129-41.
Vancouver Saraydın D, Saraydın SÜ, Karadağ E, Güven O. Radiation synthesized acrylamide hydrogel: Preparation, characterization and usability as biomaterial. HJBC. 2014;42(1):129-41.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc