BibTex RIS Cite

Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice

Year 2014, Volume: 42 Issue: 2, 183 - 192, 01.06.2014

Abstract

Optimization of medium conditions for Cd II adsorption by pumice was studied through experimental designs. A multi step response surface methodology RSM including 26-2 fractional factorial design FFD , steepest ascent and central composite design CCD was successfully applied to optimize the adsorption conditions for Cd II ions from aqueous solutions. The most influential medium parameters were determined as pH, initial Cd II concentration and temperature via FFD. Then steepest ascent was used to determine the neighborhood region of the optimum point. Finally, CCD was applied to develop a response surface for optimization of adsorption conditions. The optimum conditions for Cd II adsorption were evaluated to be 7.01, 107.14 mg/L and 32.48°C for pH, initial Cd II concentration and temperature, respectively. A quadratic model was developed by CCD to represent Cd II ions adsorption.

References

  • 1. A. Voegelin, K. Barmettler, R. Kretzschmar, Heavy metal release from contaminated soils comparison of column leaching and batch extraction results, Journal of Environmental Quality, 32, (2003) 865–875.
  • 2. F.X. Han, A. Banin, G.B. Triplett, Redistribution of heavy metals in arid-zone soils under a wettingdrying cycle soil moisture regime, Soil Science, 166 (2001) 18–28
  • 3. I.N. Lester, Heavy Metals in Wastewater and Sludge Treatment Processes; CRC Press Inc.: Boca Raton, FL, U.S.A, 1987.
  • 4. O. Ozay, S. Ekici, Y. Baran, S. Kubilay, N. Aktas, N. Sahiner, Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments, Desalination, 260 (2010) 57-64.
  • 5. D.H. Kim, M.C. Shin, H.D. Choi, C.I. Seo, K.T. Baek, Removal mechanisms of copper using steel making slag: Adsorption and precipitation, Desalination, 223 (2007) 283-289.
  • 6. T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, T.S.Y. Choong, Rice husk as a potentially low cost bio sorbent for heavy metal and dye removal: An overview. Desalination, 175 (2004) 305-316.
  • 7. Y. Al-Degs, M.A.M. Khraisheh., M.F. Tutunji, Sorption of lead ions on diatomite and manganese oxides modified diatomite, Water Res., 15 (2001) 3724– 3728.
  • 8. M. Jiang., X. Jin, X. Lu, Z. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252 (2010) 33-39.
  • 9. J.D. Nsami, J.K. Mbadcam, The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue, Journal of Chemistry, DOI: 10.1155/2013/469170 (2013) 1-7.
  • 10. M. Alshabanat, G. Alsenani, R. Almufarij, Removal of Crystal Violet Dye fromAqueous Solutions onto Date Palm Fiber by Adsorption Technique, Journal of Chemistry, 10.1155/2013/210239 (2013) 1-6.
  • 11. M.R. Panuccio, A. Sorgonà, M. Rizzo, G. Cacco, Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies, Journal of Environmental Management, 90 (2009) 364-374.
  • 12. S. Yadanaparthi, D. Graybill, R. Wandruszka, Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters, Journal of Hazardous Materials, 171 (2009) 1-15.
  • 13. N. Milosavljevi, M. Risti, A. Peric-Gruji, J. Filipovi, S. Strba , Z. Rakocevi , M. Krusi , Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution, Chemical Engineering Journal, 165 (2010) 554-562.
  • 14. R. Leyva-Ramos, J.R. Rangel-Mendez, J. MendozaBarron, L. Fuentes-Rubio, R.M. Guerrero-Coronado, Adsorption of cadmium(II) from aqueous solution onto activated carbon, Water Science and Technology, 35 (1997), 205–211.
  • 15. J.K. Fawell, Cadmium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality, World Health Organization, Switzerland, 2008.
  • 16. P. Catalfamo, I. Arrigo, P. Primerano, F. Corigliano, Use of zeolitized pumice waste as a water softening agent, Journal of Hazardous Materials, 147 (2006) 513-517.
  • 17. R.H. Myers, D.C. Montgomery, Response Surface Methodology. USA : John Wiley & Sons Inc,2002
  • 18. J. Li, Z. Chen, H. Yao, Y. Xu, Optimization of stress medium enhance hydroxyl radical inhibition by water-soluble protein from germinated millet, LWT - Food Science and Technology, 40 (2007) 1630-1636.
  • 19. Y.P. Zhuang, B. Chen, J. Chu, S. Zhang, Medium optimization for meilingmycin production by Streptomyces nanchangensis using response surface methodology, Process Biochemistry, 41 (2006) 405– 409.
  • 20. D.C. Montgomery, Design and Analysis of Experiments. Fifth edition, John Wiley & Sons, New York, 2001.
  • 21. G-Q. Xu, J. Chu, Y-P. Zhuang, Y-H. Wang, S-L. Zhang, Effects of vitamins on the lactic acid biosynthesis of Lactobacillus paracasei NERCB 0401, Biochemical Engineering Journal, 38 (2008) 189–197.
  • 22. T. Şahan, H. Ceylan, N. Şahiner, N. Aktaş, Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor, Bioresour. Technol., 101 (2010) 4520-4526.
  • 23. T. Şahan, D. Öztürk, Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology, Clean Techn. Environ. Policy, DOI 10.1007/s10098-013-0673-8 (2013) 1-13.
  • 24. M.S. Mansour, M.E. Ossman, H.A. Farag, Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust, Desalination, 272 (2011) 301-305.
  • 25. V. Singh, S. Pandeya, S.K. Singh, R. Sanghi, Removal of cadmium from aqueous solutions by adsorption using poly (acrylamide) modified guar gum–silica nanocomposites, Sep. Purif. Technol., 67 (2009) 251-261.
  • 26. T. Hasani, H. Eisazadeh, Removal of Cd (II) by using polypyrrole and its nanocomposites, Synthetic Metals, 175 (2013) 15-20.
  • 27. T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons, J. Environ. Sci., 23 (2011) 1989-1998.
  • 28. R. Gündoğan, B. Acemioğlu, M.H. Alma, Copper (II) Adsorption from Aqueous Solution by Herbaceous Peat. J. Colloid Interf. Sci., 269, (2004) 303–309.
  • 29. Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat, Water Res., 33 (1999) 578–584.
  • 30. A.Y. Dursun, A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger, Biochemical Engineering Journal, 28 (2006) 187–195.
  • 31. S.S. Gupta, K.G. Bhattacharyya, Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials B, 128 (2006) 247–257.
  • 32. W. Wang, H. Chena, A. Wang, Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite, Separation and Purification Technology, 55 (2007) 157–164.
  • 33. D. Borah, K. Senapati, Adsorption of Cd(II) from aqueous solution onto pyrite, Fuel, 85 (12-13), (2006) 1929-1934.
  • 34. I. Kula, M. Uğurlu, H. Karaoğlu, A. Çelik, Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation, Bioresource Technology, 99 (2008) 492–501.
  • 35. Y.C. Sharma, Thermodynamics of removal of cadmium by adsorption on indigenous clay, Chemical Engineering Journal, 145 (2008) 64–68.
  • 36. A. Roy, J. Bhattacharya, A binary and ternary adsorption study of wastewater Cd(II), Ni(II) and Co(II) by c-Fe2O3 nanotubes, Separation and Purification Technology, 115 (2013) 172-179.
  • 37. Y.C. Sharma, S.N. Kaul, C.H. Weng, Adsorptive separation of cadmium from aqueous solutions and wastewaters by riverbed sand, Environmental Pollution, 150 (2007) 251-257.
  • 38. H.K. An, B.Y. Park, D.S. Kim, Crab shell for the removal of heavy metals from aqueous solution, Water Res., 35 (2001) 3551-3556.
  • 39. C.A. Toles, W.E. Marshall, Copper ion removal by almond shell carbons and commercial carbons: batch and column studies, Sep. Sci. Technol., 37 (2001) 2369–2383.
  • 40. G.Y. Yan, T. Viraraghavan, Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource Technol., 78 (2001) 243-249.
  • 41. T. Mathialagan, T. Viraraghavan, Adsorption of cadmium from aqueous solutions by perlite, Journal of Hazardous Materials, B94 (2002) 291–303.
  • 42. K.K. Singh, A.K. Singh, S.H. Hasan, Low cost biosorbent wheat bran for the removal of cadmium from wastewater: Kinetic and equilibrium studies, Bioresource Technology, 97 (2006) 994–1001.
  • 43. Y-S. Ho, A.E. Ofomaja, Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent, Biochemical Engineering Journal, 30 (2006) 117– 123.
  • 44. K.G. Bhattacharyya, S.S. Gupta, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) Ions from water onto kaolinite: influence of acid activation, Adsorpt. Sci. Technol., 27 (2009) 47–68.

Ponza ile sulu çözeltilerden Cd II iyonlarının adsorpsiyon koşullarının cevap yüzey yöntemi CYY ile optimizasyonu

Year 2014, Volume: 42 Issue: 2, 183 - 192, 01.06.2014

Abstract

P onza ile Cd II adsorpsiyonu için ortam koşullarının optimizasyonu deneysel tasarım ile çalışılmıştır. 26-2 Fraksiyonel faktoriyel tasarım FFD , en yüksek artış ve merkezi kompozit tasarımı MKT içeren çok basamaklı bir cevap yüzey yöntemi CYY , sulu çözeltilerden Cd II iyonlarının adsorpsiyon koşullarını optimize etmek için başarılı bir şekilde uygulanmıştır. En etkili ortam parametreleri FFD ile pH, başlangıç Cd II derişimi ve sıcaklık olarak belirlenmiştir. Daha sonra optimum noktaya yakın aralıkların belirlenmesi için en dik artış yöntemi uygulanmıştır. Son olarak, adsorpsiyon koşullarının optimizasyonunda bir cevap yüzeyi geliştirmek için MKT uygulanmıştır. Cd II adsorpsiyonu için optimum koşullar pH, başlangıç Cd II derişimi ve sıcaklık için sırasıyla 7.01, 107.14 mg/L ve 32.48°C olarak belirlenmiştir. Cd II iyonlarının adsorpsiyonunu açıklamak için MKT ile bir kuadratik model geliştirilmiştir.

References

  • 1. A. Voegelin, K. Barmettler, R. Kretzschmar, Heavy metal release from contaminated soils comparison of column leaching and batch extraction results, Journal of Environmental Quality, 32, (2003) 865–875.
  • 2. F.X. Han, A. Banin, G.B. Triplett, Redistribution of heavy metals in arid-zone soils under a wettingdrying cycle soil moisture regime, Soil Science, 166 (2001) 18–28
  • 3. I.N. Lester, Heavy Metals in Wastewater and Sludge Treatment Processes; CRC Press Inc.: Boca Raton, FL, U.S.A, 1987.
  • 4. O. Ozay, S. Ekici, Y. Baran, S. Kubilay, N. Aktas, N. Sahiner, Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments, Desalination, 260 (2010) 57-64.
  • 5. D.H. Kim, M.C. Shin, H.D. Choi, C.I. Seo, K.T. Baek, Removal mechanisms of copper using steel making slag: Adsorption and precipitation, Desalination, 223 (2007) 283-289.
  • 6. T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, T.S.Y. Choong, Rice husk as a potentially low cost bio sorbent for heavy metal and dye removal: An overview. Desalination, 175 (2004) 305-316.
  • 7. Y. Al-Degs, M.A.M. Khraisheh., M.F. Tutunji, Sorption of lead ions on diatomite and manganese oxides modified diatomite, Water Res., 15 (2001) 3724– 3728.
  • 8. M. Jiang., X. Jin, X. Lu, Z. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252 (2010) 33-39.
  • 9. J.D. Nsami, J.K. Mbadcam, The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue, Journal of Chemistry, DOI: 10.1155/2013/469170 (2013) 1-7.
  • 10. M. Alshabanat, G. Alsenani, R. Almufarij, Removal of Crystal Violet Dye fromAqueous Solutions onto Date Palm Fiber by Adsorption Technique, Journal of Chemistry, 10.1155/2013/210239 (2013) 1-6.
  • 11. M.R. Panuccio, A. Sorgonà, M. Rizzo, G. Cacco, Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies, Journal of Environmental Management, 90 (2009) 364-374.
  • 12. S. Yadanaparthi, D. Graybill, R. Wandruszka, Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters, Journal of Hazardous Materials, 171 (2009) 1-15.
  • 13. N. Milosavljevi, M. Risti, A. Peric-Gruji, J. Filipovi, S. Strba , Z. Rakocevi , M. Krusi , Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution, Chemical Engineering Journal, 165 (2010) 554-562.
  • 14. R. Leyva-Ramos, J.R. Rangel-Mendez, J. MendozaBarron, L. Fuentes-Rubio, R.M. Guerrero-Coronado, Adsorption of cadmium(II) from aqueous solution onto activated carbon, Water Science and Technology, 35 (1997), 205–211.
  • 15. J.K. Fawell, Cadmium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality, World Health Organization, Switzerland, 2008.
  • 16. P. Catalfamo, I. Arrigo, P. Primerano, F. Corigliano, Use of zeolitized pumice waste as a water softening agent, Journal of Hazardous Materials, 147 (2006) 513-517.
  • 17. R.H. Myers, D.C. Montgomery, Response Surface Methodology. USA : John Wiley & Sons Inc,2002
  • 18. J. Li, Z. Chen, H. Yao, Y. Xu, Optimization of stress medium enhance hydroxyl radical inhibition by water-soluble protein from germinated millet, LWT - Food Science and Technology, 40 (2007) 1630-1636.
  • 19. Y.P. Zhuang, B. Chen, J. Chu, S. Zhang, Medium optimization for meilingmycin production by Streptomyces nanchangensis using response surface methodology, Process Biochemistry, 41 (2006) 405– 409.
  • 20. D.C. Montgomery, Design and Analysis of Experiments. Fifth edition, John Wiley & Sons, New York, 2001.
  • 21. G-Q. Xu, J. Chu, Y-P. Zhuang, Y-H. Wang, S-L. Zhang, Effects of vitamins on the lactic acid biosynthesis of Lactobacillus paracasei NERCB 0401, Biochemical Engineering Journal, 38 (2008) 189–197.
  • 22. T. Şahan, H. Ceylan, N. Şahiner, N. Aktaş, Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor, Bioresour. Technol., 101 (2010) 4520-4526.
  • 23. T. Şahan, D. Öztürk, Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology, Clean Techn. Environ. Policy, DOI 10.1007/s10098-013-0673-8 (2013) 1-13.
  • 24. M.S. Mansour, M.E. Ossman, H.A. Farag, Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust, Desalination, 272 (2011) 301-305.
  • 25. V. Singh, S. Pandeya, S.K. Singh, R. Sanghi, Removal of cadmium from aqueous solutions by adsorption using poly (acrylamide) modified guar gum–silica nanocomposites, Sep. Purif. Technol., 67 (2009) 251-261.
  • 26. T. Hasani, H. Eisazadeh, Removal of Cd (II) by using polypyrrole and its nanocomposites, Synthetic Metals, 175 (2013) 15-20.
  • 27. T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons, J. Environ. Sci., 23 (2011) 1989-1998.
  • 28. R. Gündoğan, B. Acemioğlu, M.H. Alma, Copper (II) Adsorption from Aqueous Solution by Herbaceous Peat. J. Colloid Interf. Sci., 269, (2004) 303–309.
  • 29. Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat, Water Res., 33 (1999) 578–584.
  • 30. A.Y. Dursun, A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger, Biochemical Engineering Journal, 28 (2006) 187–195.
  • 31. S.S. Gupta, K.G. Bhattacharyya, Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials B, 128 (2006) 247–257.
  • 32. W. Wang, H. Chena, A. Wang, Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite, Separation and Purification Technology, 55 (2007) 157–164.
  • 33. D. Borah, K. Senapati, Adsorption of Cd(II) from aqueous solution onto pyrite, Fuel, 85 (12-13), (2006) 1929-1934.
  • 34. I. Kula, M. Uğurlu, H. Karaoğlu, A. Çelik, Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation, Bioresource Technology, 99 (2008) 492–501.
  • 35. Y.C. Sharma, Thermodynamics of removal of cadmium by adsorption on indigenous clay, Chemical Engineering Journal, 145 (2008) 64–68.
  • 36. A. Roy, J. Bhattacharya, A binary and ternary adsorption study of wastewater Cd(II), Ni(II) and Co(II) by c-Fe2O3 nanotubes, Separation and Purification Technology, 115 (2013) 172-179.
  • 37. Y.C. Sharma, S.N. Kaul, C.H. Weng, Adsorptive separation of cadmium from aqueous solutions and wastewaters by riverbed sand, Environmental Pollution, 150 (2007) 251-257.
  • 38. H.K. An, B.Y. Park, D.S. Kim, Crab shell for the removal of heavy metals from aqueous solution, Water Res., 35 (2001) 3551-3556.
  • 39. C.A. Toles, W.E. Marshall, Copper ion removal by almond shell carbons and commercial carbons: batch and column studies, Sep. Sci. Technol., 37 (2001) 2369–2383.
  • 40. G.Y. Yan, T. Viraraghavan, Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource Technol., 78 (2001) 243-249.
  • 41. T. Mathialagan, T. Viraraghavan, Adsorption of cadmium from aqueous solutions by perlite, Journal of Hazardous Materials, B94 (2002) 291–303.
  • 42. K.K. Singh, A.K. Singh, S.H. Hasan, Low cost biosorbent wheat bran for the removal of cadmium from wastewater: Kinetic and equilibrium studies, Bioresource Technology, 97 (2006) 994–1001.
  • 43. Y-S. Ho, A.E. Ofomaja, Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent, Biochemical Engineering Journal, 30 (2006) 117– 123.
  • 44. K.G. Bhattacharyya, S.S. Gupta, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) Ions from water onto kaolinite: influence of acid activation, Adsorpt. Sci. Technol., 27 (2009) 47–68.
There are 44 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Dilara Öztürk

Tekin Şahan This is me

Erkan Dişli This is me

Nahit Aktaş This is me

Publication Date June 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 2

Cite

APA Öztürk, D., Şahan, T., Dişli, E., Aktaş, N. (2014). Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice. Hacettepe Journal of Biology and Chemistry, 42(2), 183-192.
AMA Öztürk D, Şahan T, Dişli E, Aktaş N. Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice. HJBC. June 2014;42(2):183-192.
Chicago Öztürk, Dilara, Tekin Şahan, Erkan Dişli, and Nahit Aktaş. “Optimization With Response Surface Methodology RSM of Adsorption Conditions of Cd II Ions from Aqueous Solutions by Pumice”. Hacettepe Journal of Biology and Chemistry 42, no. 2 (June 2014): 183-92.
EndNote Öztürk D, Şahan T, Dişli E, Aktaş N (June 1, 2014) Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice. Hacettepe Journal of Biology and Chemistry 42 2 183–192.
IEEE D. Öztürk, T. Şahan, E. Dişli, and N. Aktaş, “Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice”, HJBC, vol. 42, no. 2, pp. 183–192, 2014.
ISNAD Öztürk, Dilara et al. “Optimization With Response Surface Methodology RSM of Adsorption Conditions of Cd II Ions from Aqueous Solutions by Pumice”. Hacettepe Journal of Biology and Chemistry 42/2 (June 2014), 183-192.
JAMA Öztürk D, Şahan T, Dişli E, Aktaş N. Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice. HJBC. 2014;42:183–192.
MLA Öztürk, Dilara et al. “Optimization With Response Surface Methodology RSM of Adsorption Conditions of Cd II Ions from Aqueous Solutions by Pumice”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 2, 2014, pp. 183-92.
Vancouver Öztürk D, Şahan T, Dişli E, Aktaş N. Optimization with response surface methodology RSM of adsorption conditions of Cd II ions from aqueous solutions by pumice. HJBC. 2014;42(2):183-92.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc