BibTex RIS Cite

Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity

Year 2014, Volume: 42 Issue: 3, 435 - 442, 01.09.2014

Abstract

The Glutathione S-transferase GST, EC.2.5.1.18 catalyzes the conjugation of hydrophobic compounds inc- luding electrophilic centre to the glutathione GSH . In this study, purification of GST from bonito liver for the first time and examination of some metal ions’ effects on enzyme activity were aimed. Purification procedure was performed in two steps as preparation of homogenate and glutathione-agarose affinity chromatography. The purity of enzyme was controlled by SDS-PAGE, and it exhibited two bands. It was found as heterodimer structure. Additionally, effects of some metal ions were examined on the enzyme activity. For metal ions showing inhibitory effects, IC50 values were calculated by Activity% [metal ion] graphs and Ki constants and inhibition types were determined via Lineweaver-Burk graphs. Pb2+, Cr2+ and Fe3+ ions had not any effects on the enzyme activity. Yet, while Co2+ activated the enzyme, Ag+, Cu2+, Cd2+ and Zn2+ showed inhibitory effect. Inhibitory order was found as Cu2+>Ag+>Cd2+>Zn2+ with the K values of 0.166 ± 0.046 μM; 0.0146±0.0047 mM; 0.0883±0.0335 mM and 1.39±0.44 i mM respectively and enzyme was inhibited noncompetitively by these metals.

References

  • 1. J. Liska De Ann, The detoxification enzyme systems, Alternative Medicine Review, (3)3 (1998) 187-198.
  • 2. B. Koncuk Cebeci, Z. Alim, Ş. Beydemir, In vitro effects of pesticide exposure on the activity of the paraoxonase-1 enzyme from sheep liver microsomes, Turkish Journal of Chemistry 38 (2014) 512-520.
  • 3. W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-Transferase: the first enzymatic step in mercaptric acid formation, The Journal of Biological Chemistry 249 (1974) 7130-7139.
  • 4. R.N. Armstrong, Glutathione S-transferases: structure and mechanism of an rchetypical detoxication enzyme, Enzymology and Related Areas of Molecular Biology, 69 (1994) 1-44.
  • 5. P.J. Dierickx, Hepatic glutathione S-transferases in rainbow trout and their interaction with 2.4-dichlorophen-oxyacetic acid and 1,4-benzoquinone, Comparative Biochemistry and Physiology 82C (1985) 495-500.
  • 6. D.H. Huston, In: Bound and conjugated pesticide residues, D.D. Kaufman, G.G. Still, G.D. Paulson, and S.K. Bandal (eds), American Chemical Society, Washington D.C., U.S.A., pp.103-131. 1976.
  • 7. Y. Sugiyama, T. Yamada, N. Kaplowitz, Glutathione S-transferases in elasmobranch liver, Biochemical Journal, 199 (1981) 749–756.
  • 8. J. Stenersen, S. Kobro, M. Bjerke, U. Arend, Glutathione transferases in aquatic and terrestrial animals from nine phyla, Comparative Biochemistry and Physiology, 86C (1987) 73-82.
  • 9. S.I. Tomarev, R.D. Zinovieva, K. Guo, J. Piatigorsky, Squid glutathione S-transferase. Relationship with other glutathione S-transferases and S-crystallins of cephalopods, The Journal of BiologicalChemistry, 268 (1993) 4534-4542.
  • 10. S.E. Pemble, A.F. Wardle, J.B. Taylor, Glutathione S-transferase class kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue, Biochemical Journal, 319 (1996) 749-754.
  • 11. K. Kamisaka, W.H. Habig, J.N. Ketley, I.M. Arias, W.B. Jakoby, Multiple Forms of Human Glutathione S-Transferase and Their Affinity for Bilirubin, European Journal of Biochemistry, 60 (1975) 153-161.
  • 12. C.Y. Lee, L. Johnson, R.H. Cox, J.D. McKinney, S.M. Lee, Mouse liver glutathione S-transferase: biochemical and immunological characterization, The Journal of BiologicalChemistry, 256 (1981) 8110 - 8116.
  • 13. K. Asaoka, Affinity purification and characterization of glutathione S-transferase from bovine liver, Journal of Biochemistry, 95 (1984) 685-696.
  • 14. C.A. Telakowski-Hopkins, J.A. Rodkey, C.D. Bennett, A.Y.H. Lu, C.B. Pickett, Rat liver glutathione S-transferases: construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, The Journal of Biological Chemistry, 160 (1985) 5820-5825.
  • 15. G.L. Foureman, J.R. Bend, The hepatic glutathione transferases of the male little skate, Raja erinacea, Chemico-Biological Interactions, 49 (1984) 89-103.
  • 16. S.G. George, P. Young, Purification and properties of plaice liver cytosolic glutathione S- transferases, Marine Environmental Research, 24 (1988) 93-96.
  • 17. S.G. George, G. Buchanan, Isolation, properties and induction of plaice liver cytosolic glutathione-Stransferases, Fish Physiology and Biochemistry, 8 (1990) 437-449.
  • 18. R.J. Dominey, I.A. Nimmo, A.D. Cronshaw, J.D. Hayes, The major glutathione S-transferase in salmonid fish is homologous to the mammalian pi-class GST, Comparative Biochemistry and Physiology. 100B (1991) 93-98.
  • 19. P. Rouimi, P. Anglade, L. Debrauwer, J. Tulliez, Characterization of pig liver glutathione S-transferases using HPLC-electrospray-ionization mass spectrometry, Biochemical Journal, 317 (1996) 879-884.
  • 20. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochemistry, 40 (2005) 997-1026.
  • 21. H. Hu, Heavy metal poisoning. In: D.L. Kasper, E. Braunwald, A. Fauci, S. Hauser, D. Longo, J.L. Jameson (eds), Harrison’s principles of internal medicine, McGraw-Hill Medical Publishing Division, New York, U.S.A., pp. 2577-2580, 2005
  • 22. M.J. Kosnett, (2007) Heavy metal intoxication and chelators, In: B.G. Katzung (ed.), Basic and Clinical Pharmacology, McGraw-Hill, New York, U.S.A., pp. 945- 957.
  • 23. M. Waisberg, P. Joseph, B. Hale, D. Beyersman, Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology, 192 (2003) 95-117.
  • 24. C.M. Bolin, R. Basha, D. Cox, N.H. Zawia, B. Maloney, D.K. Lahiri, et al., Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain, The Journal of The Federation of American Societies for Experimental Biology, 20 (2006) 788-790.
  • 25. F. Monnet-Tschudi, M.G. Zurich, C. Boschat, A. Corbaz, P. Honegger, Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases, Reviews on Environmental Health, 21 (2006) 105-117.
  • 26. F.R.N. Gurd, P.E. Wilcox, Complex formation between metallic cations and proteins, peptides and amino acids, Advances in Protein Chemistry, 11 (1956) 311-427.
  • 27. B.L. Vallee, D.D. Ulmer, Biochemical effects of mercury, cadmium and lead, Annual Review of Biochemistry, 41 (1972) 91-128.
  • 28. J.H.R. Kägi, H.J. Hapke, Biochemical interactions of mercury, cadmium and lead. In: Nriagu JO (ed.) Changing Metal Cycles and Human Health. Berlin: Dahlem Konferenzen, (1984) bpp. 237–250.
  • 29. J.J.R. Fraústo da Silva, R.J.P. Williams, The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Clarendon Press. 1993.
  • 30. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72 (1976) 248-254.
  • 31. D.K. Laemmli, Cleavage of structural proteins during in assembly of the heat of bacteriophage T4. Nature, 227 (1970) 680.
  • 32. R.N. Armstrong, Structure, catalytic mechanism, and evolution of the glutathione transferases, Chemical Research in Toxicology, 10 (1) (1997) 2-18.
  • 33. J.D. Hayes, J.U. Flanagan, I.R. Jowsey, Glutathione transferases, Annual Review of Pharmacology and Toxicology, 45 (2005) 51-88.
  • 34. O. Baş, Dinitrocresol'ün (Rat rattus norvegicus) sıçan glutatyon S-transferaz enzim aktivitesine etkisi, Master's thesis, Uludağ University, Bursa, Turkey, 2006.
  • 35. N.P.E. Vermeulen, Role of metabolism in chemical toxicity. In: Ioannides C (ed), Metabolic And Toxicological Aspects, Boca Raton FL: CRC Press, (1996) pp. 29-53.
  • 36. U.A. Meyer, U.M. Zanger, R.C. Skoda, D. Grant, M. Blum, Genetic polymorphisms of drug metabolism. Prog Liver Diseases, 9 (1990) 307–323.
  • 37. J.C. Ritchie, T.P. Cloan, J.R. Idle, R.L. Smith, Ciba Foundation Symposium 76: Toxicological implications of polymorphic drug metabolism, Excerptra Medica, (1980) 219-244.
  • 38. A.K. Daly, S.I. Cholerton, W. Gregory, J. Idle, Metabolic polymorphisms, Pharmacology & Therapeutics, (1993) 129-160.
  • 39. K. Kawajiri, K. Nakachia, K. Imaib, A. Yoshiic, N. Shinodaa, J. Watanabe, Identification of genetically high risk individuals to lung canser by DNA polymorphisms of the cytochrome P4501A1 gene, Federation of European Biochemical Societies, 263 (1990) 131-133.
  • 40. D.W. Nebert, D.D. Peterson, A. Puga, Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin, Pharmacogenetics, 1 (1991) 68-78.
  • 41. O. Bandmann, J. Vaughan, P. Holmans, C.D. Marsden, N.W. Wood, Association of slow acetylator genotype for N-acetyltransferase 2 with famalial Parkinson’s disease, The Lancet 350 (1997) 1136-1139.
  • 42. S. Hussain, E. Meneghini, M. Moosmayer, D. Lacotte, B.M. Anner, Potent and reversible interaction of silver with pure Na, K-ATPase and Na K-ATPase liposomes, Biochimica et Biophysica Acta, 1190 (1994) 402-408.
  • 43. Y.M. Pamukoglu, F. Kargi, Copper (II) ion toxicity in activated sludge processes as function of operating parameters, Enzyme and Microbial Technology, 40 (2007) 1228-1233.
  • 44. M. Henczová, A. Kiss Deér, A. Filla, V. Komlósi, J. Mink, Effects of Cu2+ and Pb2+ on different fish species: Liver cytochrome P450-dependent monooxygenase activities and FTIR spectra, Comparative Biochemistry and Physiology Part C, 148 (2008) 53–60.
  • 45. S.K. Sharma, P. Goloubinoff, P. Christen, Heavy metal ions are potent inhibitors of protein folding, Biochemical and Biophysical Research Communications, 372 (2008) 341–345.
  • 46. H. Soyut, S. Beydemir, S.B. Ceyhun, O. Erdogan, E.D. Kaya, Changes in carbonic anhydrase activity and gene expression of Hsp70 in rainbow trout (Oncorhynchus mykiss) muscle after exposure to some metals, Turkish Journal of Veterinary and Animal Sciences, 36 (2012) 499–508.
  • 47. H. Soyut, S. Beydemir, Purification and some kinetic properties of carbonic anhydrase from rainbow trout (Oncorhynchus mykiss) liver and metal inhibition, ProteinandPeptide Letters, 15 (2008) 528-535.
  • 48. H. Soyut, S. Beydemir, O. Hisar, Effects of some metals on carbonic anhydrase from brains of rainbow trout, BiologicalTrace Element Research, 123 (2008) 179-190.
  • 49. K. Mounaji, M. Vlassi, N.E. Erraiss, M. Wegnez, A. Serrano, A. Soukri, In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites, Comparative Biochemistry and Physiology, Part B, 135 (2003) 241-254.
  • 50. E. Akkemik, P. Taşer, A. Bayindir, H. Budak, M. Ciftci, Purification and characterization of glutathione S-transferase from turkey liver and inhibition effects of some metal ions on enzyme activity, Environmental Toxicology and Pharmacology, 34 (2012) 888-894.
  • 51. M.S. Özaslan, Glutatyon S-Transferaz Enziminin Van Gölü Balığı (Chalcalburnus Tarichi Pallas) Karaciğerinden Saflaştırılması, Karakterizasyonu ve Bazı Metal İyonlarının Enzim Aktivitesi Üzerine Etkilerinin İncelenmesi, Master Thesis, Atatürk University, Erzurum, Turkey, 2014.

Glutatyon S-Transferaz Enziminin Palamut Sarda sarda Karaciğerinden Saflaştırılması ve Bazı Metal İyonların Enzim Aktivitesi Üzerine Etkilerinin İncelenmesi

Year 2014, Volume: 42 Issue: 3, 435 - 442, 01.09.2014

Abstract

G lutatyon S-transferaz GST, EC. 2.5.1.18 elektrofilik merkeze sahip hidrofobik bileşiklerin glutatyonla GSH konjugasyonunu katalizler. Sunulan bu çalışmada GST enziminin palamut karaciğerinden ilk kez saflaştırılması ve bazı metal iyonların enzim aktivitesi üzerine etkilerinin araştırılması amaçlanmıştır. Saflaştırma işlemi homojenatın hazırlanması ve glutatyon-agaroz afinite kromatografisi olmak üzere iki basamakta gerçekleştirildi. Enzimin saflığı SDS-PAGE ile kontrol edildi ve elektroforezde çift bant görüldü. Enzimin heterodimer yapıya sahip olduğu bulundu. Ayrıca bazı metal iyonların enzim aktivitesi üzerine etkileri incelendi. İnhibisyon etkisi gösteren metal iyonlar için IC değerleri % aktivite-[metal iyon] grafiğinden hesaplandı ve Ki sabitleri ve inhibisyon türleri Lineweaver-Burk grafiği kullanılarak belirlendi. Pb+2, Cr+2 ve Fe+3iyonları enzim aktivitesini etkilemediği, Co+2 iyonunun enzimi aktive ettiği, Ag+, Cu+2, Cd+2 ve Zn+2 inhibisyon etkisi gösterdiği bulundu. İnhibisyon sırası 0,166±0,046 µM; 14,6± 4,7 µM; 88,3±33,5 µM ve 1390±440 µM Ki sabitleriyle, Cu+2>Ag+>Cd+2>Zn+2 olarak bulundu. Bu metallerin hepsinin enzimi yarışmasız olarak inhibe ettiği tespit edildi

References

  • 1. J. Liska De Ann, The detoxification enzyme systems, Alternative Medicine Review, (3)3 (1998) 187-198.
  • 2. B. Koncuk Cebeci, Z. Alim, Ş. Beydemir, In vitro effects of pesticide exposure on the activity of the paraoxonase-1 enzyme from sheep liver microsomes, Turkish Journal of Chemistry 38 (2014) 512-520.
  • 3. W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-Transferase: the first enzymatic step in mercaptric acid formation, The Journal of Biological Chemistry 249 (1974) 7130-7139.
  • 4. R.N. Armstrong, Glutathione S-transferases: structure and mechanism of an rchetypical detoxication enzyme, Enzymology and Related Areas of Molecular Biology, 69 (1994) 1-44.
  • 5. P.J. Dierickx, Hepatic glutathione S-transferases in rainbow trout and their interaction with 2.4-dichlorophen-oxyacetic acid and 1,4-benzoquinone, Comparative Biochemistry and Physiology 82C (1985) 495-500.
  • 6. D.H. Huston, In: Bound and conjugated pesticide residues, D.D. Kaufman, G.G. Still, G.D. Paulson, and S.K. Bandal (eds), American Chemical Society, Washington D.C., U.S.A., pp.103-131. 1976.
  • 7. Y. Sugiyama, T. Yamada, N. Kaplowitz, Glutathione S-transferases in elasmobranch liver, Biochemical Journal, 199 (1981) 749–756.
  • 8. J. Stenersen, S. Kobro, M. Bjerke, U. Arend, Glutathione transferases in aquatic and terrestrial animals from nine phyla, Comparative Biochemistry and Physiology, 86C (1987) 73-82.
  • 9. S.I. Tomarev, R.D. Zinovieva, K. Guo, J. Piatigorsky, Squid glutathione S-transferase. Relationship with other glutathione S-transferases and S-crystallins of cephalopods, The Journal of BiologicalChemistry, 268 (1993) 4534-4542.
  • 10. S.E. Pemble, A.F. Wardle, J.B. Taylor, Glutathione S-transferase class kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue, Biochemical Journal, 319 (1996) 749-754.
  • 11. K. Kamisaka, W.H. Habig, J.N. Ketley, I.M. Arias, W.B. Jakoby, Multiple Forms of Human Glutathione S-Transferase and Their Affinity for Bilirubin, European Journal of Biochemistry, 60 (1975) 153-161.
  • 12. C.Y. Lee, L. Johnson, R.H. Cox, J.D. McKinney, S.M. Lee, Mouse liver glutathione S-transferase: biochemical and immunological characterization, The Journal of BiologicalChemistry, 256 (1981) 8110 - 8116.
  • 13. K. Asaoka, Affinity purification and characterization of glutathione S-transferase from bovine liver, Journal of Biochemistry, 95 (1984) 685-696.
  • 14. C.A. Telakowski-Hopkins, J.A. Rodkey, C.D. Bennett, A.Y.H. Lu, C.B. Pickett, Rat liver glutathione S-transferases: construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, The Journal of Biological Chemistry, 160 (1985) 5820-5825.
  • 15. G.L. Foureman, J.R. Bend, The hepatic glutathione transferases of the male little skate, Raja erinacea, Chemico-Biological Interactions, 49 (1984) 89-103.
  • 16. S.G. George, P. Young, Purification and properties of plaice liver cytosolic glutathione S- transferases, Marine Environmental Research, 24 (1988) 93-96.
  • 17. S.G. George, G. Buchanan, Isolation, properties and induction of plaice liver cytosolic glutathione-Stransferases, Fish Physiology and Biochemistry, 8 (1990) 437-449.
  • 18. R.J. Dominey, I.A. Nimmo, A.D. Cronshaw, J.D. Hayes, The major glutathione S-transferase in salmonid fish is homologous to the mammalian pi-class GST, Comparative Biochemistry and Physiology. 100B (1991) 93-98.
  • 19. P. Rouimi, P. Anglade, L. Debrauwer, J. Tulliez, Characterization of pig liver glutathione S-transferases using HPLC-electrospray-ionization mass spectrometry, Biochemical Journal, 317 (1996) 879-884.
  • 20. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochemistry, 40 (2005) 997-1026.
  • 21. H. Hu, Heavy metal poisoning. In: D.L. Kasper, E. Braunwald, A. Fauci, S. Hauser, D. Longo, J.L. Jameson (eds), Harrison’s principles of internal medicine, McGraw-Hill Medical Publishing Division, New York, U.S.A., pp. 2577-2580, 2005
  • 22. M.J. Kosnett, (2007) Heavy metal intoxication and chelators, In: B.G. Katzung (ed.), Basic and Clinical Pharmacology, McGraw-Hill, New York, U.S.A., pp. 945- 957.
  • 23. M. Waisberg, P. Joseph, B. Hale, D. Beyersman, Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology, 192 (2003) 95-117.
  • 24. C.M. Bolin, R. Basha, D. Cox, N.H. Zawia, B. Maloney, D.K. Lahiri, et al., Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain, The Journal of The Federation of American Societies for Experimental Biology, 20 (2006) 788-790.
  • 25. F. Monnet-Tschudi, M.G. Zurich, C. Boschat, A. Corbaz, P. Honegger, Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases, Reviews on Environmental Health, 21 (2006) 105-117.
  • 26. F.R.N. Gurd, P.E. Wilcox, Complex formation between metallic cations and proteins, peptides and amino acids, Advances in Protein Chemistry, 11 (1956) 311-427.
  • 27. B.L. Vallee, D.D. Ulmer, Biochemical effects of mercury, cadmium and lead, Annual Review of Biochemistry, 41 (1972) 91-128.
  • 28. J.H.R. Kägi, H.J. Hapke, Biochemical interactions of mercury, cadmium and lead. In: Nriagu JO (ed.) Changing Metal Cycles and Human Health. Berlin: Dahlem Konferenzen, (1984) bpp. 237–250.
  • 29. J.J.R. Fraústo da Silva, R.J.P. Williams, The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Clarendon Press. 1993.
  • 30. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72 (1976) 248-254.
  • 31. D.K. Laemmli, Cleavage of structural proteins during in assembly of the heat of bacteriophage T4. Nature, 227 (1970) 680.
  • 32. R.N. Armstrong, Structure, catalytic mechanism, and evolution of the glutathione transferases, Chemical Research in Toxicology, 10 (1) (1997) 2-18.
  • 33. J.D. Hayes, J.U. Flanagan, I.R. Jowsey, Glutathione transferases, Annual Review of Pharmacology and Toxicology, 45 (2005) 51-88.
  • 34. O. Baş, Dinitrocresol'ün (Rat rattus norvegicus) sıçan glutatyon S-transferaz enzim aktivitesine etkisi, Master's thesis, Uludağ University, Bursa, Turkey, 2006.
  • 35. N.P.E. Vermeulen, Role of metabolism in chemical toxicity. In: Ioannides C (ed), Metabolic And Toxicological Aspects, Boca Raton FL: CRC Press, (1996) pp. 29-53.
  • 36. U.A. Meyer, U.M. Zanger, R.C. Skoda, D. Grant, M. Blum, Genetic polymorphisms of drug metabolism. Prog Liver Diseases, 9 (1990) 307–323.
  • 37. J.C. Ritchie, T.P. Cloan, J.R. Idle, R.L. Smith, Ciba Foundation Symposium 76: Toxicological implications of polymorphic drug metabolism, Excerptra Medica, (1980) 219-244.
  • 38. A.K. Daly, S.I. Cholerton, W. Gregory, J. Idle, Metabolic polymorphisms, Pharmacology & Therapeutics, (1993) 129-160.
  • 39. K. Kawajiri, K. Nakachia, K. Imaib, A. Yoshiic, N. Shinodaa, J. Watanabe, Identification of genetically high risk individuals to lung canser by DNA polymorphisms of the cytochrome P4501A1 gene, Federation of European Biochemical Societies, 263 (1990) 131-133.
  • 40. D.W. Nebert, D.D. Peterson, A. Puga, Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin, Pharmacogenetics, 1 (1991) 68-78.
  • 41. O. Bandmann, J. Vaughan, P. Holmans, C.D. Marsden, N.W. Wood, Association of slow acetylator genotype for N-acetyltransferase 2 with famalial Parkinson’s disease, The Lancet 350 (1997) 1136-1139.
  • 42. S. Hussain, E. Meneghini, M. Moosmayer, D. Lacotte, B.M. Anner, Potent and reversible interaction of silver with pure Na, K-ATPase and Na K-ATPase liposomes, Biochimica et Biophysica Acta, 1190 (1994) 402-408.
  • 43. Y.M. Pamukoglu, F. Kargi, Copper (II) ion toxicity in activated sludge processes as function of operating parameters, Enzyme and Microbial Technology, 40 (2007) 1228-1233.
  • 44. M. Henczová, A. Kiss Deér, A. Filla, V. Komlósi, J. Mink, Effects of Cu2+ and Pb2+ on different fish species: Liver cytochrome P450-dependent monooxygenase activities and FTIR spectra, Comparative Biochemistry and Physiology Part C, 148 (2008) 53–60.
  • 45. S.K. Sharma, P. Goloubinoff, P. Christen, Heavy metal ions are potent inhibitors of protein folding, Biochemical and Biophysical Research Communications, 372 (2008) 341–345.
  • 46. H. Soyut, S. Beydemir, S.B. Ceyhun, O. Erdogan, E.D. Kaya, Changes in carbonic anhydrase activity and gene expression of Hsp70 in rainbow trout (Oncorhynchus mykiss) muscle after exposure to some metals, Turkish Journal of Veterinary and Animal Sciences, 36 (2012) 499–508.
  • 47. H. Soyut, S. Beydemir, Purification and some kinetic properties of carbonic anhydrase from rainbow trout (Oncorhynchus mykiss) liver and metal inhibition, ProteinandPeptide Letters, 15 (2008) 528-535.
  • 48. H. Soyut, S. Beydemir, O. Hisar, Effects of some metals on carbonic anhydrase from brains of rainbow trout, BiologicalTrace Element Research, 123 (2008) 179-190.
  • 49. K. Mounaji, M. Vlassi, N.E. Erraiss, M. Wegnez, A. Serrano, A. Soukri, In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites, Comparative Biochemistry and Physiology, Part B, 135 (2003) 241-254.
  • 50. E. Akkemik, P. Taşer, A. Bayindir, H. Budak, M. Ciftci, Purification and characterization of glutathione S-transferase from turkey liver and inhibition effects of some metal ions on enzyme activity, Environmental Toxicology and Pharmacology, 34 (2012) 888-894.
  • 51. M.S. Özaslan, Glutatyon S-Transferaz Enziminin Van Gölü Balığı (Chalcalburnus Tarichi Pallas) Karaciğerinden Saflaştırılması, Karakterizasyonu ve Bazı Metal İyonlarının Enzim Aktivitesi Üzerine Etkilerinin İncelenmesi, Master Thesis, Atatürk University, Erzurum, Turkey, 2014.
There are 51 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Uğur Güller This is me

Pınar Taşer This is me

Mehmet Çiftci This is me

Ömer İrfan Küfrevioğlu This is me

Publication Date September 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 3

Cite

APA Güller, U., Taşer, P., Çiftci, M., Küfrevioğlu, Ö. İ. (2014). Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity. Hacettepe Journal of Biology and Chemistry, 42(3), 435-442.
AMA Güller U, Taşer P, Çiftci M, Küfrevioğlu Öİ. Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity. HJBC. September 2014;42(3):435-442.
Chicago Güller, Uğur, Pınar Taşer, Mehmet Çiftci, and Ömer İrfan Küfrevioğlu. “Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity”. Hacettepe Journal of Biology and Chemistry 42, no. 3 (September 2014): 435-42.
EndNote Güller U, Taşer P, Çiftci M, Küfrevioğlu Öİ (September 1, 2014) Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity. Hacettepe Journal of Biology and Chemistry 42 3 435–442.
IEEE U. Güller, P. Taşer, M. Çiftci, and Ö. İ. Küfrevioğlu, “Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity”, HJBC, vol. 42, no. 3, pp. 435–442, 2014.
ISNAD Güller, Uğur et al. “Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity”. Hacettepe Journal of Biology and Chemistry 42/3 (September 2014), 435-442.
JAMA Güller U, Taşer P, Çiftci M, Küfrevioğlu Öİ. Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity. HJBC. 2014;42:435–442.
MLA Güller, Uğur et al. “Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 3, 2014, pp. 435-42.
Vancouver Güller U, Taşer P, Çiftci M, Küfrevioğlu Öİ. Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity. HJBC. 2014;42(3):435-42.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc