BibTex RIS Cite

Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​

Year 2016, Volume: 44 Issue: 1, 35 - 45, 01.03.2016

Abstract

This study was carried out to evaluate the efficacies of organic acid citric, malic and gallic acids treatments at 1% and 2% concentrations for prevention and removal of E. coli biofilms. Antibiofilm effects of organic acids were compared with chlorine 100 ppm and 200 ppm on both microtitration plate and stainless steel coupons for 5, 10 and 20 min. Results indicated that citric acid treatments when compared to the chlorine tre- atments were effective for inhibition and removal of E. coli biofilms. On the other hand, gallic acid treatments were found to be more effective than malic acid treatments. On stainless steel surfaces, the inhibition and re- moval of biofilms were observed to be higher than those found on microtitration plates. Moreover, the inhibiti- on and removal ratios were calculated to be higher with increasing concentrations of sanitizers, on 24-h biofilm, on stainless steel coupons and with 20 min treatments. The results of this study indicates chlorine treatments could be replaced by organic acid treatments for inhibition and removal of biofilm formations of E. coli strains on different food contact surfaces. In addition, organic acid treatments are safe-to-use potential alternatives in industrial applications to chlorine treatments which is toxic to health and environment.

References

  • P. Naves, G. del Prado, L. Huelves, M. Gracia, V. Ruiz, J. Blanco, G. Dahbi, M. Blanco, M.C. Ponte, F. Soriano, Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains, Microb. Pathog., 45 (2008) 86-91.
  • H.C. Flemming, Biofouling in water systems-cases, causes and counter measures, Appl. Microbiol. Biotechnol., 59 (2002) 629-640.
  • N. Oulahal, W. Brice, A. Martial, P. Degraeve, Quantitative analysis of survival of Staphylococcus aureus or Listeria innocua on two types of surfaces: Polypropylene and stainless steel in contact with three different dairy products, Food. Cont., 19 (2008) 178-185.
  • P. Cos, K. Tote, T. Horemans, L. Maes, Biofilms an extra hurdle for effective antimicrobial therapy, Curr. Pharm. Des., 16 (2010) 2279-2295.
  • M. Simoes, Antimicrobial strategies effective against infectious bacterial biofilms, Curr. Med. Chem., 18 (2011) 2129-2145.
  • V. Deibel, Biofilms, Int. J. Food. Safety, 1 (2003) 6-7. 7. R.H. Schmidt, D.J. Erickson, S. Sims, P. Wolff, Characteristics of food contact surface materials, Stainless steel. Food. Prot. Trends., 32 (2012) 574–584.
  • D.M.C. Pompermayer, C.C. Gaylarde, The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene, Food. Microbiol., 17 (2000) 361-365.
  • J.W. Austin, G. Berferin, Development of bacterial biofilms in dairy processing lines, J. Dairy. Res., 62 (1995) 509-519.
  • G. Mauriello, E. De Luca, A. La Storia, F. Villani, D. Ercolini, Antimicrobial activity of a nisin-activated plastic film for food packaging, Lett. Appl. Microbiol., 41 (2005) 464- 469.
  • D. Bermşdez-Aguirre, G.V Barbosa-Cánovas, Disinfection of selected vegetables under nonthermal treatments: chlorine, acid citric, ultraviolet light and ozone, Food. Cont., 29 (2012) 82-90.
  • K. Aarnisalo, J. Lunden, H. Korkeala, G. Wirtanen, Susceptibitity of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures, Food. Sci. Technol., 40 (2007) 1041-1048.
  • J.R. Knowles, S. Roller, D.B. Murray, A.S. Naidu, Antimicrobial action of carvacrol at different stages of dual species biofilm development by Staphylococcus aureus and Salmonella enterica Typhimurium, Appl. Environ. Microbiol., 71 (2005) 797-803.
  • M.J. Saavedra, A. Borges, C. Dia, A. Aires, R.N. Bennett, E.S. Rosa, M. Simões Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria, Med. Chem., 6 (2010) 174-183.
  • F.M. Husain, I. Ahmad, M. Asıf, Q. Tahseen, Influence of clove oil on certain quarum sensing regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila, J. Biosci., 38 (2013) 835-844.
  • S. Eswaranandam, N.S. Hettiarachchy, M.G. Johnson, Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli, O157:H7, and Salmonella gaminara, J. Food. Sci., 69 (2004) 79-84.
  • M.Y. Akbas, H. Olmez, Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids, Lett. Appl. Microbiol., 44 (2007) 619-624.
  • K.F. Over, N. Hettiarachchy, M.G. Johnson, B. Davis, Effects of organic acids and plant extracts on Escherichia coli O157:H7 Listeria monocytogenes and Salmonella Typhimurium in broth culture model and chicken meat systems, J. Food. Sci., 74 (2009) 515-521.
  • USDA-FSIS, Safe and suitable ingredients used in the production of meat and poultry products, 2010, Directive 7120.1.rev.2.www.isis.usda.gov.OPPD E /dad/ FISIS directives/7120.1.Rev2.pdf Accessed January 11, (2011) .
  • K. Nahar, S.M. Ullah, N. Islam, Osmotic adjustment and quality response of five tomato cultivars (Lycopersicon esculentumMill) following water deficit stress under subtropical climate, Asian J. Plant. Sci., 10 (2011) 153-157.
  • E. Shirzadeh, M. Kazemi, Effect of malic acid and calcium treatments on quality characteristics of apple fruits during storage. Am. J. Plant. Physiol., 6 (2011) 176- 182.
  • R.M. Raybaudi-Massilia, J. Mosqueda-Melgar, O. Martin- Belloso, Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices, Food Cont., 20 (2009) 105-112.
  • L.R. Beuchat, D.A. Golden, Antimicrobials occurring naturally in foods, Food Technol., 43 (1989) 134-142.
  • R. Singla, H. Goel, A. Gangulli. Novel synergistic approach to exploit the bactericidal efficacy of commercial disinfectants on the biofilms of Salmonella enterica serovar Typhimurium, J. Biosci. Bioeng., 118 (2014) 34-40.
  • E. Obreque-Slier, A. Peña-Neira, R. López-Solís, F. Zamora-Marín, J. Ricardo da Silva, O.Laurean, Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening, J Agri Food Chem., 58 (2010) 3591-3599.
  • A. Chanwitheesuk, A. Teerawutgulrag, J.D. Kilburn, N. Rakariyatham, Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem., 100 (2007) 1044-1048.
  • A. Borges, M.J. Saavedra, M. Simões, The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria, Biofouling, 28 (2012) 755-767.
  • S. Stepanovic, D. Vukovic, I. Dakic, B. Savic, M. Svabic-Vlahovic, A modified microtiter-plate test for quantification of staphylococcal biofilm formation, J. Microbiol. Methods, 40 (2000) 175–179.
  • B. Pitts, M.A. Hamilton, N. Zelver, P.S. Stewart, A microtiter-plate screening method for biofilm disinfection and removal, J. Microbiol. Methods, 54 (2003) 269–276.
  • N.G. Chorianopoulos, D.S. Tsoukleris, E.Z. Panagou, P. Falaras, G.J.E. Nychas, Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiol., 28 (2011) 164-170.
  • T.F.C. Mah, GA. O’Toole, Mechanisms of biofilm reisitance to antimicrobila agents. Trends in Microbiol., 9 (2001) 34-39.
  • H. Anwar, JW. Costerton, Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrob. Agents. Chemother., 34 (1990) 1666-1671.
  • A. Mangalappalli-Illathu, J. Lawrence, G. Swerhone, D. Korber, Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions, Int. J. Food Microbiol., 123 (2008) 109-120.
  • J.B. Xavier, C. Picioreanu, S.A. Rani, M.C.M. van Loosdrecht, P.S. Stewart, Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study, Microbiology, 151 (2005) 3817-3832.
  • P.S. Stewart, J. Rayner, F. Roe, W.M. Rees, Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates, J. Appl. Microbiol., 91 (2001) 525-532.
  • M. Fletcher, GI. Loeb, Influence of substratum charactecristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol., 37 (1979) 67–72.
  • S.C. Marques, J.G.O.S. Rezende, L.A.F. Alves, B.C. Silva, E. Alves, L.R. Abreu, R.H. Piccoli Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers, Braz. J. Microbiol., 38 (2007) 538–543.
  • Corpe WA. Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC, editors. Adsorption of microorganisms to surfaces. New York : John Wiley& Sons; p. 105-144. domonad to solid surfaces. Appl. Environ. Microbiol., 37 (1980) 67-72.
  • V. Williams, M. Fletcher Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl. Environ. Microbiol., 62 (1996) 100-104.
  • R.M. Donlan, JW. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinic. Microbiol. Rev., 15 (2002) 167-193.
  • F.W. Hyde, M. Alberg, K. Smith, Comparison of fluorinated polymers against stainless steel, glass, and polypropylene in microbial biofilm adherence and removal. J. Ind. Microbiol. Biotech., 19 (1997) 142–149.
  • C.N. Haas, RS. Engelbrecht, Physiological alterations of vegetative microorganisms resulting from chlorination, J. Water Pollut. Cont. Fed., 52 (1980) 1976–1989.
  • S. Doores, Organic Acids. In: Antimicrobials in Foods, Second Edition., (1993), Ch. 4, pp. 95-136. A. L. Branen and P. M. Davidson, eds. Marcel Dekker, Inc., New York.
  • Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 82 (2003) 632–639.
  • Y.S. Ahn, DH. Shin, Antimicrobial effects of organic acid and ethanol on several foodborne microorganisms, Kor J. Food. Sci. Technol., 31 (1999) 1315-1323.

E. coli Biyofilmlerinin Önlenmesi ve Ortadan Kaldırılmasında Organik Asit Uygulamalarının Etkileri

Year 2016, Volume: 44 Issue: 1, 35 - 45, 01.03.2016

Abstract

B u çalışmada, E. coli biyofilmlerinin önlenmesi ve ortadan kaldırılmasında %1 ve %2 derişimlerdeki organik asit sitrik, malik ve gallik uygulamalarının etkileri araştırılmıştır. Organik asitlerin antibiyofilm etkileri klor uygulamaları 100 ppm ve 200 ppm ile 5, 10 ve 20 dakika süresince mikrotitrasyon plaklarında ve paslanmaz çelik kuponlarda karşılaştırılmıştır. Sonuçlar biyofilmlerin önlenme ve ortadan kaldırılmasında, klor uygulamaları ile karşılaştırıldığında, sitrik asit uygulamalarının etkili olduğunu göstermiştir. Gallik asit uygulamaları ise malik asit uygulamalarından daha etkili bulunmuştur. Çelik yüzeylerde, biyofilm önlenmesi ve ortadan kaldırılması oranları mikrotitrasyon plaklarından daha yüksek bulunmuştur. Ayrıca, biyofilm önlenme ve ortadan kaldırılma oranları, sanitizerların artan derişimlerinde, 24 saatlik biyofilm tabakası üzerinde, çelik yüzeylerde ve 20 dakikalık uygulamalarla daha yüksek değerlerde bulunmuştur. Çalışmanın sonuçları, farklı gıda ile temas eden yüzeylerde, E. coli biyofilmlerinin önlenmesi ve ortadan kaldırılmasında, organik asit uygulamalarının klor uygulamalarının yerini alabileceğini göstermektedir. Ayrıca organik asitler, endüstriyel uygulamalarda kullanılan sağlığa ve çevreye toksik etkili olan klorun kullanımının güvenli potansiyel alternatifleri olabilir

References

  • P. Naves, G. del Prado, L. Huelves, M. Gracia, V. Ruiz, J. Blanco, G. Dahbi, M. Blanco, M.C. Ponte, F. Soriano, Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains, Microb. Pathog., 45 (2008) 86-91.
  • H.C. Flemming, Biofouling in water systems-cases, causes and counter measures, Appl. Microbiol. Biotechnol., 59 (2002) 629-640.
  • N. Oulahal, W. Brice, A. Martial, P. Degraeve, Quantitative analysis of survival of Staphylococcus aureus or Listeria innocua on two types of surfaces: Polypropylene and stainless steel in contact with three different dairy products, Food. Cont., 19 (2008) 178-185.
  • P. Cos, K. Tote, T. Horemans, L. Maes, Biofilms an extra hurdle for effective antimicrobial therapy, Curr. Pharm. Des., 16 (2010) 2279-2295.
  • M. Simoes, Antimicrobial strategies effective against infectious bacterial biofilms, Curr. Med. Chem., 18 (2011) 2129-2145.
  • V. Deibel, Biofilms, Int. J. Food. Safety, 1 (2003) 6-7. 7. R.H. Schmidt, D.J. Erickson, S. Sims, P. Wolff, Characteristics of food contact surface materials, Stainless steel. Food. Prot. Trends., 32 (2012) 574–584.
  • D.M.C. Pompermayer, C.C. Gaylarde, The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene, Food. Microbiol., 17 (2000) 361-365.
  • J.W. Austin, G. Berferin, Development of bacterial biofilms in dairy processing lines, J. Dairy. Res., 62 (1995) 509-519.
  • G. Mauriello, E. De Luca, A. La Storia, F. Villani, D. Ercolini, Antimicrobial activity of a nisin-activated plastic film for food packaging, Lett. Appl. Microbiol., 41 (2005) 464- 469.
  • D. Bermşdez-Aguirre, G.V Barbosa-Cánovas, Disinfection of selected vegetables under nonthermal treatments: chlorine, acid citric, ultraviolet light and ozone, Food. Cont., 29 (2012) 82-90.
  • K. Aarnisalo, J. Lunden, H. Korkeala, G. Wirtanen, Susceptibitity of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures, Food. Sci. Technol., 40 (2007) 1041-1048.
  • J.R. Knowles, S. Roller, D.B. Murray, A.S. Naidu, Antimicrobial action of carvacrol at different stages of dual species biofilm development by Staphylococcus aureus and Salmonella enterica Typhimurium, Appl. Environ. Microbiol., 71 (2005) 797-803.
  • M.J. Saavedra, A. Borges, C. Dia, A. Aires, R.N. Bennett, E.S. Rosa, M. Simões Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria, Med. Chem., 6 (2010) 174-183.
  • F.M. Husain, I. Ahmad, M. Asıf, Q. Tahseen, Influence of clove oil on certain quarum sensing regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila, J. Biosci., 38 (2013) 835-844.
  • S. Eswaranandam, N.S. Hettiarachchy, M.G. Johnson, Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli, O157:H7, and Salmonella gaminara, J. Food. Sci., 69 (2004) 79-84.
  • M.Y. Akbas, H. Olmez, Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids, Lett. Appl. Microbiol., 44 (2007) 619-624.
  • K.F. Over, N. Hettiarachchy, M.G. Johnson, B. Davis, Effects of organic acids and plant extracts on Escherichia coli O157:H7 Listeria monocytogenes and Salmonella Typhimurium in broth culture model and chicken meat systems, J. Food. Sci., 74 (2009) 515-521.
  • USDA-FSIS, Safe and suitable ingredients used in the production of meat and poultry products, 2010, Directive 7120.1.rev.2.www.isis.usda.gov.OPPD E /dad/ FISIS directives/7120.1.Rev2.pdf Accessed January 11, (2011) .
  • K. Nahar, S.M. Ullah, N. Islam, Osmotic adjustment and quality response of five tomato cultivars (Lycopersicon esculentumMill) following water deficit stress under subtropical climate, Asian J. Plant. Sci., 10 (2011) 153-157.
  • E. Shirzadeh, M. Kazemi, Effect of malic acid and calcium treatments on quality characteristics of apple fruits during storage. Am. J. Plant. Physiol., 6 (2011) 176- 182.
  • R.M. Raybaudi-Massilia, J. Mosqueda-Melgar, O. Martin- Belloso, Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices, Food Cont., 20 (2009) 105-112.
  • L.R. Beuchat, D.A. Golden, Antimicrobials occurring naturally in foods, Food Technol., 43 (1989) 134-142.
  • R. Singla, H. Goel, A. Gangulli. Novel synergistic approach to exploit the bactericidal efficacy of commercial disinfectants on the biofilms of Salmonella enterica serovar Typhimurium, J. Biosci. Bioeng., 118 (2014) 34-40.
  • E. Obreque-Slier, A. Peña-Neira, R. López-Solís, F. Zamora-Marín, J. Ricardo da Silva, O.Laurean, Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening, J Agri Food Chem., 58 (2010) 3591-3599.
  • A. Chanwitheesuk, A. Teerawutgulrag, J.D. Kilburn, N. Rakariyatham, Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem., 100 (2007) 1044-1048.
  • A. Borges, M.J. Saavedra, M. Simões, The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria, Biofouling, 28 (2012) 755-767.
  • S. Stepanovic, D. Vukovic, I. Dakic, B. Savic, M. Svabic-Vlahovic, A modified microtiter-plate test for quantification of staphylococcal biofilm formation, J. Microbiol. Methods, 40 (2000) 175–179.
  • B. Pitts, M.A. Hamilton, N. Zelver, P.S. Stewart, A microtiter-plate screening method for biofilm disinfection and removal, J. Microbiol. Methods, 54 (2003) 269–276.
  • N.G. Chorianopoulos, D.S. Tsoukleris, E.Z. Panagou, P. Falaras, G.J.E. Nychas, Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiol., 28 (2011) 164-170.
  • T.F.C. Mah, GA. O’Toole, Mechanisms of biofilm reisitance to antimicrobila agents. Trends in Microbiol., 9 (2001) 34-39.
  • H. Anwar, JW. Costerton, Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrob. Agents. Chemother., 34 (1990) 1666-1671.
  • A. Mangalappalli-Illathu, J. Lawrence, G. Swerhone, D. Korber, Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions, Int. J. Food Microbiol., 123 (2008) 109-120.
  • J.B. Xavier, C. Picioreanu, S.A. Rani, M.C.M. van Loosdrecht, P.S. Stewart, Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study, Microbiology, 151 (2005) 3817-3832.
  • P.S. Stewart, J. Rayner, F. Roe, W.M. Rees, Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates, J. Appl. Microbiol., 91 (2001) 525-532.
  • M. Fletcher, GI. Loeb, Influence of substratum charactecristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol., 37 (1979) 67–72.
  • S.C. Marques, J.G.O.S. Rezende, L.A.F. Alves, B.C. Silva, E. Alves, L.R. Abreu, R.H. Piccoli Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers, Braz. J. Microbiol., 38 (2007) 538–543.
  • Corpe WA. Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC, editors. Adsorption of microorganisms to surfaces. New York : John Wiley& Sons; p. 105-144. domonad to solid surfaces. Appl. Environ. Microbiol., 37 (1980) 67-72.
  • V. Williams, M. Fletcher Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl. Environ. Microbiol., 62 (1996) 100-104.
  • R.M. Donlan, JW. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinic. Microbiol. Rev., 15 (2002) 167-193.
  • F.W. Hyde, M. Alberg, K. Smith, Comparison of fluorinated polymers against stainless steel, glass, and polypropylene in microbial biofilm adherence and removal. J. Ind. Microbiol. Biotech., 19 (1997) 142–149.
  • C.N. Haas, RS. Engelbrecht, Physiological alterations of vegetative microorganisms resulting from chlorination, J. Water Pollut. Cont. Fed., 52 (1980) 1976–1989.
  • S. Doores, Organic Acids. In: Antimicrobials in Foods, Second Edition., (1993), Ch. 4, pp. 95-136. A. L. Branen and P. M. Davidson, eds. Marcel Dekker, Inc., New York.
  • Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 82 (2003) 632–639.
  • Y.S. Ahn, DH. Shin, Antimicrobial effects of organic acid and ethanol on several foodborne microorganisms, Kor J. Food. Sci. Technol., 31 (1999) 1315-1323.
There are 44 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Meltem Yeşilçimen Akbaş This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 44 Issue: 1

Cite

APA Yeşilçimen Akbaş, M. (2016). Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​. Hacettepe Journal of Biology and Chemistry, 44(1), 35-45.
AMA Yeşilçimen Akbaş M. Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​. HJBC. March 2016;44(1):35-45.
Chicago Yeşilçimen Akbaş, Meltem. “Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. Coli Biofilms ​”. Hacettepe Journal of Biology and Chemistry 44, no. 1 (March 2016): 35-45.
EndNote Yeşilçimen Akbaş M (March 1, 2016) Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​. Hacettepe Journal of Biology and Chemistry 44 1 35–45.
IEEE M. Yeşilçimen Akbaş, “Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​”, HJBC, vol. 44, no. 1, pp. 35–45, 2016.
ISNAD Yeşilçimen Akbaş, Meltem. “Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. Coli Biofilms ​”. Hacettepe Journal of Biology and Chemistry 44/1 (March 2016), 35-45.
JAMA Yeşilçimen Akbaş M. Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​. HJBC. 2016;44:35–45.
MLA Yeşilçimen Akbaş, Meltem. “Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. Coli Biofilms ​”. Hacettepe Journal of Biology and Chemistry, vol. 44, no. 1, 2016, pp. 35-45.
Vancouver Yeşilçimen Akbaş M. Effectiveness of Organic Acid Treatments for Inhibition and Removal of E. coli Biofilms ​. HJBC. 2016;44(1):35-4.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc