BibTex RIS Cite

Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids

Year 2016, Volume: 44 Issue: 3, 361 - 374, 01.09.2016

Abstract

Phenol and its derivatives are considered detrimental to environment and need to be removed from environ- ment. Enzymatic oxidation of chlorophenols is considered as viable option but leads to precipitate due to polymerization of phenolic compounds, which require additional step of flocculation towards safe discarding of contaminated waters. In present work, microemulsion organogel from cetyltrimethylammonium bromide reverse microemulsion and gelatin was prepared and used as immobilization matrix for horseradish peroxidase HRP, E.C.1.11.1.7 . The material was further hardened with silica to enhance aqueous solution stability. The composite material was studied for enzymatic kinetics and oxidation of chlorophenols and employed as catalyst in the presence of hydrogen peroxide to oxidize 2-chlorophenol 2-CP , 2,4-dichlorophenol 2,4 - DCP , and 2,4,6-trichlorophenol 2,4,6-TCP in an aqueous media. It was worth noting that phenols get converted to organic acids rather than typical polymerized products. The protective effect of composite material was observed which render the polymerization reaction of phenols. Michaeles-Menten constant and activity of enzyme in free and immobilized system were evaluated using three modified Michaeles-Menten equations and progressive curve experiments, respectively. The immobilized HRP followed Michaeles-Menten kinetics with lower reaction velocity constant Vmax and Michealis constant Km values comparable to free HRP. Further, following parameters were optimized: contact time, pH, hydrogen peroxide concentration, enzyme dose and analyte concentration. Under different optimized condition, the oxidative removal of phenol and their derivatives reaches up to 95-99% in phosphate buffer.

References

  • M. Akhtar, M.I. Bhanger, S. Iqbal, S.M. Hasany, Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations, J. Hazard. Mater., 128 (2006) 44-52.
  • B.N. Antizar, N.I. Galil, Simulation of bioremediation of chlorophenols in a sandy aquifer, Water Res., 37 (2003) 238-244.
  • G.Bayramoğlu, M.Y. Arıca, Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads, J. Hazard. Mater., 156 (2008)148-155.
  • Z. Ezerskis, Z. Jusys, Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography Chem., 73 (2001) 1929-1940.
  • M. Kucharska, J. Naumczyk, Degradation of selected chlorophenols by advanced oxidation processes, Environ. Prot. Engin., 35 (2009) 47-55.
  • N.V. Pradeep, A. Anupama, U.S. Hampannavar, Polymerization of phenol using free and immobilized horseradish peroxidase, J. Environ. Erath Sci., 2 (2012) 31-36.
  • C. Crecchio, P. Ruggiero, M.D.R. Pizzigallo, Polyphenoloxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds, Biotechnol. Bioeng., 48 (1995) 585-591.
  • J.N. Rodakiewicz, Phenols oxidizing enzymes in water- restricted media, Top. Catal., 11-12 (200) 419-434.
  • C. Oldfield, Enzymes in Water-in-oil Microemulsions (‘Reversed Micelles’): Principles and Applications, Biotechnol. Gen. Engin. Rev., 12 (1994) 255-327.
  • S. Roy, A. Dasgupta, P.K. Das, Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions, Langmuir, 22 (2006) 4567-4573.
  • A. Shome, S. Roy, P.K. Das, Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface, Langmuir, 23 (2007) 4130-4136.
  • Madamwar D.; Thakar A. Appl. Biochem. Biotechnol. 2004, 118, 361-372.
  • W.L. Hinze, I. Uemasu, F. Dai, J.M. Braun, Analytical and related applications of organogels, Curr. Opin. Colloid Interface Sci., 1 (1996) 502-513.
  • M. Schuleit, P.L. Luisi, Enzyme immobilization in silica-hardened organogels, Biotechnol. Bioeng., 72 (2001) 249-253.
  • T. Coradin, J. Livage, Synthesis, characterization and diffusion properties of biomimetic silica-coated gelatine beads, Mater. Sci. Eng., C, 25 (2005) 201-205.
  • F. Venditti, A. Ceglie, G. Palazzo, G. Colafemmina, F.J. Lopez, Removal of chromate from water by a new CTAB–silica gelatin composite, Colloid Interface Sci., 310 (2007) 353-361.
  • Iler RK. The Chemistry of Silica; Wiley, New York, 1997.
  • R. Mukkamala, H. Cheung, Acid and base effects on the morphology of composites formed from microemulsion polymerization and sol–gel processing, J. Mater. Sci., 32 (1997) 4687-4692.
  • Dowd JE.; Riggs DS. J. Biol. Chem. 1965, 240, 863- 869.
  • G. Bayramoglu, A. Akbulut, M.Y. Arica, Immobilization of tyrosinase on modified diatom biosilica: Enzymatic removal of phenolic compounds from aqueous solution, J. Hazard. Mater., 244-245 (2013) 528-536.
  • S.A. Mohamed, A.A. Darwish, R.M. El-Shishtawy, Immobilization of horseradish peroxidase on activated wool, Process Biochem., 48 (2013) 649- 655.
  • T.I. Davidenko, O.V. Oseychuk, O.V. Sevastyanov, I.I. Romanovskaya, Peroxidase Oxidation of Phenols, Appl. Bioch. Microbiol., 40 (2004) 542-546.
  • J. Cheng, S.Y. Ming, P. Zuo, Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater, Water Res., 40 (2006) 283-290.
  • Q. Huang, H. Selig, W.J. Weber, Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents: Rates of Non-extractable Product Formation, Environ. Sci. Technol., 36 (2002) 596-602.
  • R. Soomro, N. Memon, M.I. Bhanger, M.K. Samoon, Microemulsion based organogel -silica composite as feasible matrix for immobilization of horseradish peroxidase: application to oxidative removal of phenol from aqueous system, J. Chem. Soc. Pak., 35 (2013) 939-947.
  • K.A. De, B. Chaudhuri, S. Bhattacharjee, A kinetic study of the oxidation of phenol, o-chlorophenol and catechol by hydrogen peroxide between 298 K and 333 K: the effect of pH, temperature and ratio of oxidant to substrate, J. Chem. Technol. Biotechnol., 74 (1999) 162-168.
  • O.J. Jung, Destruction of 2-chlorophenol from wastewater and investigation of by-products by ozonation, Bull. Korean Chem. Soc., 22 (2001) 850- 856.
  • G. Köller, M. Möder, K. Czihal, Peroxidative degradation of selected PCB: a mechanistic study, Chemosphere, 41 (2000) 1827-1834.
  • J. Yu, K.E. Taylor, H. Zou, N. Biswas, J.K. Bewtra, Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water, Environ. Sci. Technol., 28 (1994) 2154- 2160.
  • Y. Wu, K.E. Taylor, N. Biswas, J.K. Bewtra, Comparison of additives in the removal of phenolic compounds by peroxidase-catalyzed polymerization, Water Res., 31 (1997) 2699-2704.
  • S. Nakamoto, N. Machida, Phenol removal from aqueous solutions by peroxidase-catalyzed reaction using additives, Water Res., 26 (1992) 49-54.
  • Dimcheva N.; Horozova E. Bulg. Sci. Papers. 2005, 33:55.
  • Anonymus. Measurement of Enzyme Activity (http:// www.jascoinc.com/docs/product-spec-sheets/ V600AppNote.pdf?sfvrsn=0). Jasco application note. Japan: .

Klorofenollerin Biyobozunur Organik Asitlere Dönüşümü İçin Organojel-Silika Kompozit Yaban Turpu Peroksidaz İmmobilizasyonu

Year 2016, Volume: 44 Issue: 3, 361 - 374, 01.09.2016

Abstract

F enol ve türevleri tehlikeli çevresel atıklardır ve bu nedenle çevreden uzaklaştırılmaları gerekir. Klorofenollerin enzimatik oksidasyonu uygun bir seçenek olarak düşünülür ama fenolik bileşiklerin polimerizasyonu nedeniyle çökmesine yol açar ve kontamine suların güvenli bir şekilde atılması yönünde flokülasyonun ek bir adımını gerektirir. Bu çalışmada, setiltrimetilamonyum bromür ters mikroemülsiyon ile mikroemülsiyon organojel ve jelatin hazırlandı ve yaban turpu peroksidazı HRP, E.C.1.11.1.7 için immobilizasyon matriksi olarak kullanıldı. Bu malzeme sulu çözeltilerin kararlılığını artırmak için silika ile daha fazla sertleştirilmiştir. Bu kompozit malzeme enzimatik kinetiği ve klorofenollerin oksidasyonu için çalışılmış ve sulu ortamlarda 2-klorofenol 2-CP , 2,4-diklorofenol 2,4-DCP ve 2,4,6-triklorofenolü 2,4,6-TCP hidrojen peroksit varlığında okside etmek için katalizör olarak kullanılmıştır. Dikkat edilmesi gereken konu fenoller, tipik polimerize ürünler yerine organik asitlere dönüştürülmüştür. Kompozit malzemelerin koruyucu etkisi fenollerin polimerizasyon tepkimelerini açıklamak için incelenmiştir. Michaelis-Menten sabiti ve serbest ve immobilize sistemdeki enzimin aktivitesi sırasıyla üç modifiye Michaelis-Menten denklemleri ve ilerleme eğrisi deneyleri ile değerlendirilmiştir. İmmobilize HRP, düşük tepkime hız sabiti Vmax ve Michaelis sabiti Km değerlerini serbest HRP ile karşılaştırmak için izlenmiştir. Ayrıca, temas süresi, pH, hidrojen peroksit derişimi, enzim dozu ve analit derişimi parametreleri ile optimize edilmiştir. Farklı optimizasyon koşulları altında, fenollerin ve türevlerinin fosfat tamponunda oksidatif uzaklaştırılması % 95-99 arasında gerçekleştirilmiştir

References

  • M. Akhtar, M.I. Bhanger, S. Iqbal, S.M. Hasany, Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations, J. Hazard. Mater., 128 (2006) 44-52.
  • B.N. Antizar, N.I. Galil, Simulation of bioremediation of chlorophenols in a sandy aquifer, Water Res., 37 (2003) 238-244.
  • G.Bayramoğlu, M.Y. Arıca, Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads, J. Hazard. Mater., 156 (2008)148-155.
  • Z. Ezerskis, Z. Jusys, Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography Chem., 73 (2001) 1929-1940.
  • M. Kucharska, J. Naumczyk, Degradation of selected chlorophenols by advanced oxidation processes, Environ. Prot. Engin., 35 (2009) 47-55.
  • N.V. Pradeep, A. Anupama, U.S. Hampannavar, Polymerization of phenol using free and immobilized horseradish peroxidase, J. Environ. Erath Sci., 2 (2012) 31-36.
  • C. Crecchio, P. Ruggiero, M.D.R. Pizzigallo, Polyphenoloxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds, Biotechnol. Bioeng., 48 (1995) 585-591.
  • J.N. Rodakiewicz, Phenols oxidizing enzymes in water- restricted media, Top. Catal., 11-12 (200) 419-434.
  • C. Oldfield, Enzymes in Water-in-oil Microemulsions (‘Reversed Micelles’): Principles and Applications, Biotechnol. Gen. Engin. Rev., 12 (1994) 255-327.
  • S. Roy, A. Dasgupta, P.K. Das, Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions, Langmuir, 22 (2006) 4567-4573.
  • A. Shome, S. Roy, P.K. Das, Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface, Langmuir, 23 (2007) 4130-4136.
  • Madamwar D.; Thakar A. Appl. Biochem. Biotechnol. 2004, 118, 361-372.
  • W.L. Hinze, I. Uemasu, F. Dai, J.M. Braun, Analytical and related applications of organogels, Curr. Opin. Colloid Interface Sci., 1 (1996) 502-513.
  • M. Schuleit, P.L. Luisi, Enzyme immobilization in silica-hardened organogels, Biotechnol. Bioeng., 72 (2001) 249-253.
  • T. Coradin, J. Livage, Synthesis, characterization and diffusion properties of biomimetic silica-coated gelatine beads, Mater. Sci. Eng., C, 25 (2005) 201-205.
  • F. Venditti, A. Ceglie, G. Palazzo, G. Colafemmina, F.J. Lopez, Removal of chromate from water by a new CTAB–silica gelatin composite, Colloid Interface Sci., 310 (2007) 353-361.
  • Iler RK. The Chemistry of Silica; Wiley, New York, 1997.
  • R. Mukkamala, H. Cheung, Acid and base effects on the morphology of composites formed from microemulsion polymerization and sol–gel processing, J. Mater. Sci., 32 (1997) 4687-4692.
  • Dowd JE.; Riggs DS. J. Biol. Chem. 1965, 240, 863- 869.
  • G. Bayramoglu, A. Akbulut, M.Y. Arica, Immobilization of tyrosinase on modified diatom biosilica: Enzymatic removal of phenolic compounds from aqueous solution, J. Hazard. Mater., 244-245 (2013) 528-536.
  • S.A. Mohamed, A.A. Darwish, R.M. El-Shishtawy, Immobilization of horseradish peroxidase on activated wool, Process Biochem., 48 (2013) 649- 655.
  • T.I. Davidenko, O.V. Oseychuk, O.V. Sevastyanov, I.I. Romanovskaya, Peroxidase Oxidation of Phenols, Appl. Bioch. Microbiol., 40 (2004) 542-546.
  • J. Cheng, S.Y. Ming, P. Zuo, Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater, Water Res., 40 (2006) 283-290.
  • Q. Huang, H. Selig, W.J. Weber, Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents: Rates of Non-extractable Product Formation, Environ. Sci. Technol., 36 (2002) 596-602.
  • R. Soomro, N. Memon, M.I. Bhanger, M.K. Samoon, Microemulsion based organogel -silica composite as feasible matrix for immobilization of horseradish peroxidase: application to oxidative removal of phenol from aqueous system, J. Chem. Soc. Pak., 35 (2013) 939-947.
  • K.A. De, B. Chaudhuri, S. Bhattacharjee, A kinetic study of the oxidation of phenol, o-chlorophenol and catechol by hydrogen peroxide between 298 K and 333 K: the effect of pH, temperature and ratio of oxidant to substrate, J. Chem. Technol. Biotechnol., 74 (1999) 162-168.
  • O.J. Jung, Destruction of 2-chlorophenol from wastewater and investigation of by-products by ozonation, Bull. Korean Chem. Soc., 22 (2001) 850- 856.
  • G. Köller, M. Möder, K. Czihal, Peroxidative degradation of selected PCB: a mechanistic study, Chemosphere, 41 (2000) 1827-1834.
  • J. Yu, K.E. Taylor, H. Zou, N. Biswas, J.K. Bewtra, Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water, Environ. Sci. Technol., 28 (1994) 2154- 2160.
  • Y. Wu, K.E. Taylor, N. Biswas, J.K. Bewtra, Comparison of additives in the removal of phenolic compounds by peroxidase-catalyzed polymerization, Water Res., 31 (1997) 2699-2704.
  • S. Nakamoto, N. Machida, Phenol removal from aqueous solutions by peroxidase-catalyzed reaction using additives, Water Res., 26 (1992) 49-54.
  • Dimcheva N.; Horozova E. Bulg. Sci. Papers. 2005, 33:55.
  • Anonymus. Measurement of Enzyme Activity (http:// www.jascoinc.com/docs/product-spec-sheets/ V600AppNote.pdf?sfvrsn=0). Jasco application note. Japan: .
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Rabel Soomro This is me

Najma Memon This is me

M. Iqbal Bhanger This is me

Adil Denizli This is me

Publication Date September 1, 2016
Published in Issue Year 2016 Volume: 44 Issue: 3

Cite

APA Soomro, R., Memon, N., Bhanger, M. I., Denizli, A. (2016). Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids. Hacettepe Journal of Biology and Chemistry, 44(3), 361-374.
AMA Soomro R, Memon N, Bhanger MI, Denizli A. Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids. HJBC. September 2016;44(3):361-374.
Chicago Soomro, Rabel, Najma Memon, M. Iqbal Bhanger, and Adil Denizli. “Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids”. Hacettepe Journal of Biology and Chemistry 44, no. 3 (September 2016): 361-74.
EndNote Soomro R, Memon N, Bhanger MI, Denizli A (September 1, 2016) Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids. Hacettepe Journal of Biology and Chemistry 44 3 361–374.
IEEE R. Soomro, N. Memon, M. I. Bhanger, and A. Denizli, “Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids”, HJBC, vol. 44, no. 3, pp. 361–374, 2016.
ISNAD Soomro, Rabel et al. “Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids”. Hacettepe Journal of Biology and Chemistry 44/3 (September 2016), 361-374.
JAMA Soomro R, Memon N, Bhanger MI, Denizli A. Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids. HJBC. 2016;44:361–374.
MLA Soomro, Rabel et al. “Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids”. Hacettepe Journal of Biology and Chemistry, vol. 44, no. 3, 2016, pp. 361-74.
Vancouver Soomro R, Memon N, Bhanger MI, Denizli A. Horseradish Peroxidase Immobilized into Organogel-Silica Composite for Transformation of Chlorophenols to Biodegradable Organic Acids. HJBC. 2016;44(3):361-74.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc