BibTex RIS Cite

Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains

Year 2017, Volume: 45 Issue: 3, 435 - 442, 01.09.2017

Abstract

Nowadays, a remaining scientific interest is exhibited to the antimicrobial effect of essential oils, due to their unique and complex biological potential. In this study, owing to the significance of the essential oils, investigating the antimicrobial properties of thyme and rosemary oils against 8 different Pseudomonas aeruginosa strains which have different antibiotic resistance patterns was aimed. For this purpose, antibiotic resistance analysis was carried out with 11 different antibiotics by Kirby Bauer Disc Diffusion method and it was found that the strains were resistant to trimethoprim/sulfamethoxazole, tetracycline 100%; aztreonem, meropenem, imipenem 50%; on the other hand, the strains were sensitive to piperacillin, ceftazidime and amicasin. As a result of determination of antimicrobial potential of the essential oils, the thyme oil was found to be very effective as an antimicrobial agent but the rosemary oil was effective only two P. aeruginosa strains. While thyme oil was found to be more effective at high concentration 1/2 , antimicrobial effect was detected even at the lowest concentration 1/20 . Although there are some studies concerning about essential oils’ antimicrobial effectiveness on multidrug P. aeruginosa in literature, this study differs from others because of the thyme oil has been found to be very effective to multidrug resistant P. aeruginosa strain P5 which was resistant to 8 different antibiotic groups. Consequently, this study signalizes that with the antimicrobial effect of thyme oil, it could be used for the treatment of MDR P. aeruginosa infections in the near future.

References

  • 1. C.M. Shaver, A.R. Hauser, Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung, Infec. Immun., 72 (2004) 6969- 77.
  • 2. M.D. Obritsch, D. Marilee, D.N. Fish, R. MacLaren, R. Jung, Nosocomial infections due to multidrugresistant Pseudomonas aeruginosa: Epidemiology and treatment options, Pharmacother., 25 (2005) 1353-64.
  • 3. D. Fang, X. Xi-wei, S. Wen-qi, L. Ping, Y. Sang-jie, Y. Yong-hong, S. Xu-zhuang, Characterization of multidrug-resistant and metallo-betalactamaseproducing Pseudomonas aeruginosa isolates from a paediatric clinic in China, Chin. Med. Sci. J., 121 (2008) 1611-16.
  • 4. T.S. Naimi, K.H. LeDell, D.J. Boxrud, A.V. Groom, C.D. Steward, S.K. Johnson. Epidemiology and clonality of community-acquired methicillin resistant Staphylococcus aureus in Minnesota, 1996-1998, Clin. Infect. Dis., 33 (2001) 990-96.
  • 5. T.A. Ibrahim, B.O. Opawale, J.M.A. Oyinloye, Antibacterial activity of herbal extracts against multi drug resistant strains of bacteria from clinical origin, Life Sci. Leaflets., 15 (2011) 490-98.
  • 6. L. Jirovetz, G. Buchbauer, M.B. Ngassoum, J.J. Essia-Ngang, L.N. Tatsadjieu, O. Adjoudji, Chemical composition and antibacterial activities of the oils of Plectranthus glandulosus and Cinnamomum zeylanicum from Cameroon, Sci. Pharm., 70 (2002) 93-99.
  • 7. L.C. Braga, A.A.M. Leite, K.G.S. Xavier, J.A. Takahashi, M.P. Bemquerer, E. Chartone-Souza, A.M.A. Nascimento, Synergic interaction between pomegranate extracts and antibiotics against Staphylococcus aureus, Can. J. Microbiol., 51 (2005) 541-47.
  • 8. S. Rahman, A.K. Parvez, R. Islam, M.H. Khan, Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh, Ann. Clin. Microbiol. Antimicrob., 10 (2011) 1-4.
  • 9. K.W. Lee, H. Everts, A.C. Beynen, Essential oils in broiler nutrition, Int. J. Poult. Sci., 3 (2004) 738-52.
  • 10. K. Miura, H. Kikuzaki, N. Nakatani, Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method, J. Agric. Food Chem., 50 (2002) 1845-51.
  • 11. C.R. Mahon, J.M. Manuselis, Textbook of diagnostic microbiology, 2nd edition, Saunders, W.B., Philadelphia, (2000) 540-54 pp.
  • 12. S.M. Finegold, E.J. Baron, Methods for testing antimicrobial effectiveness, Diagnostic Microbiology. 7th Edition, CV Mosby Co. St. Louıs-Toronto, Princeton, (1986) 173pp.
  • 13. D. Kalemba, A. Kunicka, Antibacterial and antifungal properties of essential oils. Curr. Med. Chem., 10 (2003) 813-29.
  • 14. P. Kumar, R.P. Bhatt, L. Singh, O.P. Sati, A. Khan, A. Ahmad, Antimicrobial activities of essential oil and methanol extract of Coriaria nepalensis, Nat. Prod. Res., 25 (2011) 1074-81.
  • 15. V. Lorenzi, A. Muselli, A.F. Bernardini, L. Berti, J.M. Page`s, L. Amaral, J.M. Bolla, Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species, Antimicrob. Agents Chemother., 53 (2009) 2209-11.
  • 16. K.P. Devi, S.A. Nisha, R. Sakthivel, S.K. Pandian, Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane, J. Ethnopharmacol., 130 (2010) 107-15.
  • 17. F.S. Solorzano-Santos, M.G. Mirande-Novales, Essential oils from aromatic herbs as antimicrobial agents, Curr. Opin. Biotechnol., 23 (2011) 1-6.
  • 18. M. Oussalah, S. Caillet, L. Saucier, M. Lacroix, Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat, Meat Sci., 73 (2006) 236-44.
  • 19. D.E. Conner, Naturally occurring compounds. Antimicrobials in foods. Davidson PM, Branen AL (eds.) Marcel Dekker, New York, 1993, 441-68 pp.
  • 20. L. Türkmen, İdrar örneklerinden izole edilen Gram negatif bakterilerin değişik antibiyotiklere duyarlılığı, İnönü Üniv. Tıp Fak. Derg., 9 (2002) 185-89.
  • 21. T. Köhler, M. Kok, M. Michea-Hamzehpour, P. Plesiat, N. Gotoh, T. Nishino, J.C. Pechere, Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 40 (1996) 2288-90.
  • 22. M. Castanheira, M.A. Toleman, R.N. Jones, F.J. Schmidt, T.R. Walsh, Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase, Antimicrob. Agents Chemother., 48 (2004) 46-54.
  • 23. H.S. Sader, O.A. Reis, S. Silbert, A.C. Gales, IMPs, VIMs and SPMs: The diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital, Clin. Microbiol. Infect., 11 (2005) 73-76.
  • 24. L.B. Gasink, N.O. Fishman, I. Nachamkin, W.B. Bilker, E. Lautenbach, Risk factors for and impact of infection or colonization with aztreonam-resistant Pseudomonas aeruginosa, Infect. Control Hosp. Epidemiol., 28 (2007) 1175-80.
  • 25. O. Gutiérrez, C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, J.L. Pérez, A. Oliver, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals, Antimicrob. Agents Chemother., 51 (2007) 4329.
  • 26. D.O. Santoro, C.M. Romão, M.M. Clementino, Decreased aztreonam susceptibility among Pseudomonas aeruginosa isolates from hospital effluent treatment system and clinical samples, Int. J. Environ. Heal. Res., 22 (2012) 560-70.
  • 27. J-M. Rodríguez-Martínez, L. Poirel, P. Nordmann, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 53 (2009) 4783-88.
  • 28. N.E. Amin, C.G. Giske, S. Jalal, B. Keijser, G. Kronvall, B. Wretlind, Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates, APMIS, 113 (2005) 187-96.
  • 29. D.M. Livermore, Of Pseudomonas, porins, pumps and carbapenems, J. Antimicrob. Chemother., 47 (2001) 247-50.
  • 30. H. Pai, J-M. Kim, J. Kim, J.H. Lee, K.W. Choe, N. Gotoh, Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 45 (2001) 480-84.
  • 31. J.C. Christenson, E.K. Korgenski, J.A. Daly, In vitro activity of meropenem, imipenem, cefepime and cefthazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients, J. Antimicrob. Chemother., 45 (2000) 899-901.
  • 32. T. Gündüz, A. Arısoy, Ü. Algün, B. Özbakkaloğlu, Pseudomonas aeruginosa suşlarının aminoglikozidlere in-vitro duyarlılıkları, Ankem Derg., 18 (2004) 224-27.
  • 33. M. Eyigör, M. Telli, Y. Tiryaki, Y. Okulu, N. Aydın, Yatan hastalardan izole edilen Pseudomonas aeruginosa suşlarının antibiyotik duyarlılıkları, ANKEM Derg., 23 (2009) 101-105.
  • 34. L.S. Wei, W. Wee, Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals, Iran. J. Microbiol., 5 (2013) 147-52.
  • 35. M. Niculae, M. Spinu, C.D. Şandru, F. Brudaşca, D. Cadar, B. Szakacs, I. Scurtu, P. Bolfa, C.I. Mateş, Antimicrobial potential of some Lamiaceae essential oils against animal multiresistant bacteria, Lucrari Stiintificie, 43 (2009) 170-75 .
  • 36. H.N. Qaralleh, M.M. Abboud, K.M. Khleifat, K.A. Tarawneh, A.Y. Althunibat, Antibacterial activity in vitro of Thymus capitatus from Jordan, Pak. J. Pharm. Sci., 22 (2009) 247-51.
  • 37. W.A. El-Shouny, S. Magaam, Sensitivity of multi-drug resistant Pseudomonas aeruginosa isolated from surgical wound-infections to essential oils and plant extracts, W. J. Med. Sci., 4 (2009) 104-11.
  • 38. H. Ghasemalizadeh, M. Javanmard, S. Bokharaei, Effect of thyme extract on reduction of aflatoxigenic fungi in Ahmad Aghaie Pistachio, Ann. Biol. Res., 4 (2013) 270-74.
  • 39. G.M.S. Gonçalvest, M. Bottaro, A.C. Nilson, Effect of Thymus vulgaris essential oil on the growth of Streptococcus mutans, Rev. Ciênc. Farm. Básica Apl., 32 (2011) 375-80.
  • 40. P. Hili, C.S. Evans, R.G. Veness, Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil, Lett. Appl. Microbiol., 24 (1997) 269-75.
  • 41. S. Luqman, G.R. Dwivedi, M.P. Darokar, A. Kalra, S.P.S.Khanuja Potential of rosemary oil to be used in drug resistant infections, Altern. Ther. Health Med., 13 (2007) 54-59.
  • 42. E.B. Hirsch, V.H. Tam, Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes, Expert Rev. Pharmocoecon. Outcomes Res., 10 (2010) 441-51.
  • 43. I.C. Zampini, M.E. Arias, N. Cudmani, R.M. Ordonez, M.I. Isla, S. Moreno, Antibacterial potential of nonvolatile constituents of Rosmarinus officinalis against 37 clinical isolates of multidrug-resistant bacteria, Bol. Latinoam. Caribe Plant. Med. Aromát., 12 (2013) 201-208.

Kekik ve Biberiye Yağlarının Pseudomonas aeruginosa Suşları Üzerine Antimikrobiyal Etkileri

Year 2017, Volume: 45 Issue: 3, 435 - 442, 01.09.2017

Abstract

G ünümüzde, esansiyel yağların antimikrobiyal etkilerine, özgün ve kompleks biyolojik potansiyelleri nedeniyle artan bir ilgi söz konusudur. Bu çalışmada esansiyel yağların önemi nedeniyle farklı antibiyotik direnç paternleri olan 8 farklı Pseudomonas aeruginosa suşuna karşı kekik ve biberiye yağlarının antimikrobiyal özelliklerinin araştırılması amaçlandı. Bu amaçla Kirby Bauer disk difüzyon yöntemi ile 11 antibiyotik için antibiyotik direnç analizi gerçekleştirildi. Suşlar %100 trimetoprim/sülfometaksazol ve tetrasiklin, %50 aztreonam, meropenem, imipenem dirençli olarak bulundu; diğer yandan suşlar piperasilin, seftazidim ve amikasine duyarlıdır. Esansiyel yağların antimikrobiyal potansiyellerinin belirlenmesi sonucunda, kekik yağı antimikrobiyal ajan olarak çok etkili bulundu. Fakat biberiye yağının yalnız iki P. aeruginosa suşuna etkili olduğu görüldü. Kekik yağı yüksek derişimlerde 1/2 daha etkili olarak bulunurken düşük derişimlerde 1/20 bile antimikrobiyal etki belirlendi. Literatürde esansiyel yağların çoklu ilaç dirençli P. aeruginosa üzerindeki antimikrobiyal etkinlikleri ile ilgili bazı çalışmalar olmasına rağmen bu çalışma kekik yağının 8 farklı antibiyotik grubuna dirençli olan çoklu ilaç dirençli P. aeruginosa suşuna karşı çok etkili bulunması nedeniyle diğerlerinden farklıdır. Sonuç olarak bu çalışma kekik yağının antimikrobiyal etkisi ile yakın gelecekte çoklu ilaç dirençli P. aeruginosa infeksiyonlarının tedavisi için kullanılabileceğini gösteriyor

References

  • 1. C.M. Shaver, A.R. Hauser, Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung, Infec. Immun., 72 (2004) 6969- 77.
  • 2. M.D. Obritsch, D. Marilee, D.N. Fish, R. MacLaren, R. Jung, Nosocomial infections due to multidrugresistant Pseudomonas aeruginosa: Epidemiology and treatment options, Pharmacother., 25 (2005) 1353-64.
  • 3. D. Fang, X. Xi-wei, S. Wen-qi, L. Ping, Y. Sang-jie, Y. Yong-hong, S. Xu-zhuang, Characterization of multidrug-resistant and metallo-betalactamaseproducing Pseudomonas aeruginosa isolates from a paediatric clinic in China, Chin. Med. Sci. J., 121 (2008) 1611-16.
  • 4. T.S. Naimi, K.H. LeDell, D.J. Boxrud, A.V. Groom, C.D. Steward, S.K. Johnson. Epidemiology and clonality of community-acquired methicillin resistant Staphylococcus aureus in Minnesota, 1996-1998, Clin. Infect. Dis., 33 (2001) 990-96.
  • 5. T.A. Ibrahim, B.O. Opawale, J.M.A. Oyinloye, Antibacterial activity of herbal extracts against multi drug resistant strains of bacteria from clinical origin, Life Sci. Leaflets., 15 (2011) 490-98.
  • 6. L. Jirovetz, G. Buchbauer, M.B. Ngassoum, J.J. Essia-Ngang, L.N. Tatsadjieu, O. Adjoudji, Chemical composition and antibacterial activities of the oils of Plectranthus glandulosus and Cinnamomum zeylanicum from Cameroon, Sci. Pharm., 70 (2002) 93-99.
  • 7. L.C. Braga, A.A.M. Leite, K.G.S. Xavier, J.A. Takahashi, M.P. Bemquerer, E. Chartone-Souza, A.M.A. Nascimento, Synergic interaction between pomegranate extracts and antibiotics against Staphylococcus aureus, Can. J. Microbiol., 51 (2005) 541-47.
  • 8. S. Rahman, A.K. Parvez, R. Islam, M.H. Khan, Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh, Ann. Clin. Microbiol. Antimicrob., 10 (2011) 1-4.
  • 9. K.W. Lee, H. Everts, A.C. Beynen, Essential oils in broiler nutrition, Int. J. Poult. Sci., 3 (2004) 738-52.
  • 10. K. Miura, H. Kikuzaki, N. Nakatani, Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method, J. Agric. Food Chem., 50 (2002) 1845-51.
  • 11. C.R. Mahon, J.M. Manuselis, Textbook of diagnostic microbiology, 2nd edition, Saunders, W.B., Philadelphia, (2000) 540-54 pp.
  • 12. S.M. Finegold, E.J. Baron, Methods for testing antimicrobial effectiveness, Diagnostic Microbiology. 7th Edition, CV Mosby Co. St. Louıs-Toronto, Princeton, (1986) 173pp.
  • 13. D. Kalemba, A. Kunicka, Antibacterial and antifungal properties of essential oils. Curr. Med. Chem., 10 (2003) 813-29.
  • 14. P. Kumar, R.P. Bhatt, L. Singh, O.P. Sati, A. Khan, A. Ahmad, Antimicrobial activities of essential oil and methanol extract of Coriaria nepalensis, Nat. Prod. Res., 25 (2011) 1074-81.
  • 15. V. Lorenzi, A. Muselli, A.F. Bernardini, L. Berti, J.M. Page`s, L. Amaral, J.M. Bolla, Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species, Antimicrob. Agents Chemother., 53 (2009) 2209-11.
  • 16. K.P. Devi, S.A. Nisha, R. Sakthivel, S.K. Pandian, Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane, J. Ethnopharmacol., 130 (2010) 107-15.
  • 17. F.S. Solorzano-Santos, M.G. Mirande-Novales, Essential oils from aromatic herbs as antimicrobial agents, Curr. Opin. Biotechnol., 23 (2011) 1-6.
  • 18. M. Oussalah, S. Caillet, L. Saucier, M. Lacroix, Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat, Meat Sci., 73 (2006) 236-44.
  • 19. D.E. Conner, Naturally occurring compounds. Antimicrobials in foods. Davidson PM, Branen AL (eds.) Marcel Dekker, New York, 1993, 441-68 pp.
  • 20. L. Türkmen, İdrar örneklerinden izole edilen Gram negatif bakterilerin değişik antibiyotiklere duyarlılığı, İnönü Üniv. Tıp Fak. Derg., 9 (2002) 185-89.
  • 21. T. Köhler, M. Kok, M. Michea-Hamzehpour, P. Plesiat, N. Gotoh, T. Nishino, J.C. Pechere, Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 40 (1996) 2288-90.
  • 22. M. Castanheira, M.A. Toleman, R.N. Jones, F.J. Schmidt, T.R. Walsh, Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase, Antimicrob. Agents Chemother., 48 (2004) 46-54.
  • 23. H.S. Sader, O.A. Reis, S. Silbert, A.C. Gales, IMPs, VIMs and SPMs: The diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital, Clin. Microbiol. Infect., 11 (2005) 73-76.
  • 24. L.B. Gasink, N.O. Fishman, I. Nachamkin, W.B. Bilker, E. Lautenbach, Risk factors for and impact of infection or colonization with aztreonam-resistant Pseudomonas aeruginosa, Infect. Control Hosp. Epidemiol., 28 (2007) 1175-80.
  • 25. O. Gutiérrez, C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, J.L. Pérez, A. Oliver, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals, Antimicrob. Agents Chemother., 51 (2007) 4329.
  • 26. D.O. Santoro, C.M. Romão, M.M. Clementino, Decreased aztreonam susceptibility among Pseudomonas aeruginosa isolates from hospital effluent treatment system and clinical samples, Int. J. Environ. Heal. Res., 22 (2012) 560-70.
  • 27. J-M. Rodríguez-Martínez, L. Poirel, P. Nordmann, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 53 (2009) 4783-88.
  • 28. N.E. Amin, C.G. Giske, S. Jalal, B. Keijser, G. Kronvall, B. Wretlind, Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates, APMIS, 113 (2005) 187-96.
  • 29. D.M. Livermore, Of Pseudomonas, porins, pumps and carbapenems, J. Antimicrob. Chemother., 47 (2001) 247-50.
  • 30. H. Pai, J-M. Kim, J. Kim, J.H. Lee, K.W. Choe, N. Gotoh, Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates, Antimicrob. Agents Chemother., 45 (2001) 480-84.
  • 31. J.C. Christenson, E.K. Korgenski, J.A. Daly, In vitro activity of meropenem, imipenem, cefepime and cefthazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients, J. Antimicrob. Chemother., 45 (2000) 899-901.
  • 32. T. Gündüz, A. Arısoy, Ü. Algün, B. Özbakkaloğlu, Pseudomonas aeruginosa suşlarının aminoglikozidlere in-vitro duyarlılıkları, Ankem Derg., 18 (2004) 224-27.
  • 33. M. Eyigör, M. Telli, Y. Tiryaki, Y. Okulu, N. Aydın, Yatan hastalardan izole edilen Pseudomonas aeruginosa suşlarının antibiyotik duyarlılıkları, ANKEM Derg., 23 (2009) 101-105.
  • 34. L.S. Wei, W. Wee, Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals, Iran. J. Microbiol., 5 (2013) 147-52.
  • 35. M. Niculae, M. Spinu, C.D. Şandru, F. Brudaşca, D. Cadar, B. Szakacs, I. Scurtu, P. Bolfa, C.I. Mateş, Antimicrobial potential of some Lamiaceae essential oils against animal multiresistant bacteria, Lucrari Stiintificie, 43 (2009) 170-75 .
  • 36. H.N. Qaralleh, M.M. Abboud, K.M. Khleifat, K.A. Tarawneh, A.Y. Althunibat, Antibacterial activity in vitro of Thymus capitatus from Jordan, Pak. J. Pharm. Sci., 22 (2009) 247-51.
  • 37. W.A. El-Shouny, S. Magaam, Sensitivity of multi-drug resistant Pseudomonas aeruginosa isolated from surgical wound-infections to essential oils and plant extracts, W. J. Med. Sci., 4 (2009) 104-11.
  • 38. H. Ghasemalizadeh, M. Javanmard, S. Bokharaei, Effect of thyme extract on reduction of aflatoxigenic fungi in Ahmad Aghaie Pistachio, Ann. Biol. Res., 4 (2013) 270-74.
  • 39. G.M.S. Gonçalvest, M. Bottaro, A.C. Nilson, Effect of Thymus vulgaris essential oil on the growth of Streptococcus mutans, Rev. Ciênc. Farm. Básica Apl., 32 (2011) 375-80.
  • 40. P. Hili, C.S. Evans, R.G. Veness, Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil, Lett. Appl. Microbiol., 24 (1997) 269-75.
  • 41. S. Luqman, G.R. Dwivedi, M.P. Darokar, A. Kalra, S.P.S.Khanuja Potential of rosemary oil to be used in drug resistant infections, Altern. Ther. Health Med., 13 (2007) 54-59.
  • 42. E.B. Hirsch, V.H. Tam, Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes, Expert Rev. Pharmocoecon. Outcomes Res., 10 (2010) 441-51.
  • 43. I.C. Zampini, M.E. Arias, N. Cudmani, R.M. Ordonez, M.I. Isla, S. Moreno, Antibacterial potential of nonvolatile constituents of Rosmarinus officinalis against 37 clinical isolates of multidrug-resistant bacteria, Bol. Latinoam. Caribe Plant. Med. Aromát., 12 (2013) 201-208.
There are 43 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Sinem Diken Gür This is me

Sezen Bilen Özyürek This is me

Işıl Seyis Bilkay This is me

Publication Date September 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 3

Cite

APA Diken Gür, S., Özyürek, S. B., & Bilkay, I. S. (2017). Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains. Hacettepe Journal of Biology and Chemistry, 45(3), 435-442.
AMA Diken Gür S, Özyürek SB, Bilkay IS. Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains. HJBC. September 2017;45(3):435-442.
Chicago Diken Gür, Sinem, Sezen Bilen Özyürek, and Işıl Seyis Bilkay. “Antimicrobial Activity of Thyme and Rosemary Oils Against Pseudomonas Aeruginosa Strains”. Hacettepe Journal of Biology and Chemistry 45, no. 3 (September 2017): 435-42.
EndNote Diken Gür S, Özyürek SB, Bilkay IS (September 1, 2017) Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains. Hacettepe Journal of Biology and Chemistry 45 3 435–442.
IEEE S. Diken Gür, S. B. Özyürek, and I. S. Bilkay, “Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains”, HJBC, vol. 45, no. 3, pp. 435–442, 2017.
ISNAD Diken Gür, Sinem et al. “Antimicrobial Activity of Thyme and Rosemary Oils Against Pseudomonas Aeruginosa Strains”. Hacettepe Journal of Biology and Chemistry 45/3 (September 2017), 435-442.
JAMA Diken Gür S, Özyürek SB, Bilkay IS. Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains. HJBC. 2017;45:435–442.
MLA Diken Gür, Sinem et al. “Antimicrobial Activity of Thyme and Rosemary Oils Against Pseudomonas Aeruginosa Strains”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 3, 2017, pp. 435-42.
Vancouver Diken Gür S, Özyürek SB, Bilkay IS. Antimicrobial Activity of Thyme and Rosemary Oils against Pseudomonas aeruginosa Strains. HJBC. 2017;45(3):435-42.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc