BibTex RIS Cite

Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater

Year 2017, Volume: 45 Issue: 4, 639 - 645, 01.11.2017

Abstract

Cyanide is a hazardous substance and a toxic contaminant but it is found in the environment as a natural product of industrial activities. Biological methods are an alternative and promising potential approach to the conversion and destruction of other toxic byproducts that can be formed by both cyanide and chemical treatment. It is known that a lot of fungi, bacteria and some plants are used in biological treatment works. Trichoderma is a genus of fungi that has enzymes for cyanide destruction. It is known that microbial activity under aerobic conditions cyanide can be converted to ammonia and then nitrate by oxidation. Cryogels are gel matrices synthesized at temperatures below zero using monomeric or polymeric precursors. Polymeric network occurs while the solvent forms ice crystals. After the ice crystals melt, polymeric matrices with large pores are formed. Cryogels are used in a variety of areas of biotechnology, including chromatographic materials, carriers for immobilization of molecules and cells. In this study, poly 2-hydroxyethyl methacrylate PHEMA -based Triccoderma spp. embedded supermacroporous cryogels were synthesized for cyanide destruction. The polymeric materials prepared were tested for cyanide degradation at different pH, temperature and initial concentrations to examine their suitability for this purpose.

References

  • 1. A. Çabuk, N. Kolonkaya, Toxicity and biological treatment of cyanide, J. Engi. Nat. Sci., 30 (2012) 20- 38.
  • 2. C.J. Knowles, A.W. Bunch, Microbial cyanide metabolism, Adv. Microb. Physiol., 27 (1986) 73–111.
  • 3. A.W. Bunch, C.J. Knowles, Production of the secondary metabolite cyanide by extracts of Chromobacterium violaceum, Microbiol., 128 (1982) 2675-2680.
  • 4. W.B. Goldfarb, H. Margraf, Cyanide production by Pseudomonas aeruginosa, Ann. Surg., 165 (1967)104- 110
  • 5. S.K. Dubey, D.S. Holmes, Biological cyanide destruction mediated by microorganisms, World. J. Microbiol. Biotechnol., 11 (1995) 257-65.
  • 6. M.M. Botz, Overview of Cyanide Treament Methods, Mining Environmental Management, Mining Journal Ltd., London, UK., (2001) 28-30.
  • 7. R. Say, A. Ersöz, H. Türk, A. Denizli, Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads,Sep. Purif. Technol.,40 (2004) 9-14.
  • 8. M. Pirmoradi, S. Hashemian, M.R. Shayesteh, Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals Trans. Nonferrous Met. Soc. China, 27 (2017) 1394-1403
  • 9. C.J. Knowles, A.W. Bunch, Microbial Cyanide Metabolism, Adv. Microb. Physiol., 27 (1986) 73-111.
  • 10. W.E. Fry, R.L. Millar, Cyanide Degradation by An Enzyme from Stemphylium loti, Arch. Biochem. Biophys, 151 (1972) 468-474.
  • 11. M.D. Adjei, Y. Ohta, Factors Affecting the Biodegradation of Cyanide by Burkholderia cepacia Strain C-3, J. Biosci. Bioeng., 89 (2000) 274-277.
  • 12. A.U. Chaudhari, K.M. Kodam, Biodegradation of Thiocyanate Using Co-culture of Klebsiella pneumoniae and Ralstonia sp., Appl. Microbiol. and Biot., 85 (2010) 1167-1174.
  • 13. M.I. Ezzi, J.M. Lynch, Cyanide Catabolyzing Enzymes in Trichoderma spp., Enzym. Microb. Technol., 31 (2002) 1042-1047.
  • 14. M.I. Ezzi, J.A. Pascual, B.J. Gould, Characterization of the Rhodanese Enzyme in Trichoderma spp., Enzyme Microb. Tech., 32 (2003) 629-634.
  • 15. I.M. Ezzi, J.M. Lynch, Biodegradation of Cyanide by Trichoderma spp. and Fusarium spp., Enzyme Microb. Technol., 36 (2005) 849-954.
  • 16. V.I. Lozinsky, F.M. Plieva, Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments, Enzyme Microb. Technol., 23 (1998) 227-242.
  • 17. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly (hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208.
  • 18. Z. Zhang, Z. Lei, X. He, Z. Zhang, Y. Yang, N. Sugiura, Nitrate removal by Thiobacillus denitrificans immobilized on poly(vinyl alcohol) carriers, J. Hazard. Mater., 163 (2009) 109-1095.
  • 19. F.M. Plieva, E. De Seta, I.Y. Galaev, B. Mattiasson, Macroporous elastic polyacrylamide monolith columns: processing under compression and scale up, Sep. Purif. Technol., 65 (2009) 110-116.
  • 20. 20. R. Sombro, N. Memon, M.I. Bhanger, A. Denizli, Horserodish Peroxidase immobilized intoorganogelsilica composite for transformation of chlorophenols to biodegredable orcanic acids, Hacettepe J. Biol. Chem., 44 (2016) 351-364.
  • 21. 21. K. Çetin, D. Türkmen, N. Sağlam, A. Denizli, Phanerochaete chrysosporium loaded cryogel column for biosorption of mercury (II) ions from aqueous solutions, Hacettepe J. Biol. Chem., 43 (2015) 225-233.
  • 22. 22. E. Bayram, D. Türkmen, E. Yılmaz, I.Y. Galaev, A. Denizli, S. Bektaş, Poly (acrylamide-allyl glycidyl ether) cryogel as a novel stationary phase for chlorophenol adsorption, Hacettepe J. Biol. Chem., 36 (2008) 9-19.
  • 23. 23. İ. Koç, N. Bereli, G. Baydemir, I.Y. Galaev, A. Denizli, Syntgesis and characterization of macroporous poly (acrylamide-methacrylamido histidine) cryogels and their use in antibody purification, Hacettepe J. Biol. Chem., 36 (2008) 61-76.
  • 24. 24. S. Utku, E. Yılmaz, D. Türkmen, B. Garipcan, R. Say, A. Denizli, Ion imprinted thermo sensitive polymers for Fe (III) removal from human plasma, Hacettepe J. Biol. Chem., 36 (2008) 291-304.

Atıksulardan Biyolojik Siyanür Yıkımı İçin Biyoreaktör Olarak PHEMA Kriyojellerin Tasarımı

Year 2017, Volume: 45 Issue: 4, 639 - 645, 01.11.2017

Abstract

S iyanür, tehlikeli bir madde ve zehirli bir kirleticidir; ancak, endüstriyel faaliyetlerin doğal bir ürünü olarak çevrede bulunur. Biyolojik yöntemler hem siyanür hem de kimyasal süreçlerde ortaya çıkan zehirli yan ürünlerin zararsız ürünlere dönüştürülmesine ve bozunmasının alternatif bir potansiyel yaklaşımdır. Biyolojik arıtma işlemlerinde birçok mantar, bakteri ve bazı bitkilerin kullanıldığı bilinmektedir. Trichoderma spp., siyanür tahribatı için enzimler üreten bir mantar türüdür. Aerobik koşullar altında mikrobiyal aktivite sonucunda siyanürün oksidasyon ile amonyak ve daha sonra nitrata dönüşebileceği bilinmektedir. Kriyojeller, monomerik veya polimerik öncülleri kullanarak sıfırın altındaki sıcaklıklarda sentezlenen jel matrisleridir. Polimer ağı, çözücü su buz kristalleri oluşumu ile gerçekleşir. Buz kristallerinin erimesinden sonra, büyük gözenekli polimerik matrisler oluşur. Kriyojeller, kromatografik malzemeler, moleküllerin ve hücrelerin immobilizasyonu için taşıyıcılar gibi biyoteknolojinin çeşitli alanlarında kullanılır. Bu çalışmada siyanür bozunması için poli 2hidroksietil metakrilat PHEMA bazlı, Trichoderma spp. gömülü kriyojeller sentezlenmiştir. Hazırlanan polimerik malzemelerin uygun olup olmadığını belirlemek için farklı pH, sıcaklık ve başlangıç derişimlerinde siyanür bozunması test edilmiştir

References

  • 1. A. Çabuk, N. Kolonkaya, Toxicity and biological treatment of cyanide, J. Engi. Nat. Sci., 30 (2012) 20- 38.
  • 2. C.J. Knowles, A.W. Bunch, Microbial cyanide metabolism, Adv. Microb. Physiol., 27 (1986) 73–111.
  • 3. A.W. Bunch, C.J. Knowles, Production of the secondary metabolite cyanide by extracts of Chromobacterium violaceum, Microbiol., 128 (1982) 2675-2680.
  • 4. W.B. Goldfarb, H. Margraf, Cyanide production by Pseudomonas aeruginosa, Ann. Surg., 165 (1967)104- 110
  • 5. S.K. Dubey, D.S. Holmes, Biological cyanide destruction mediated by microorganisms, World. J. Microbiol. Biotechnol., 11 (1995) 257-65.
  • 6. M.M. Botz, Overview of Cyanide Treament Methods, Mining Environmental Management, Mining Journal Ltd., London, UK., (2001) 28-30.
  • 7. R. Say, A. Ersöz, H. Türk, A. Denizli, Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads,Sep. Purif. Technol.,40 (2004) 9-14.
  • 8. M. Pirmoradi, S. Hashemian, M.R. Shayesteh, Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals Trans. Nonferrous Met. Soc. China, 27 (2017) 1394-1403
  • 9. C.J. Knowles, A.W. Bunch, Microbial Cyanide Metabolism, Adv. Microb. Physiol., 27 (1986) 73-111.
  • 10. W.E. Fry, R.L. Millar, Cyanide Degradation by An Enzyme from Stemphylium loti, Arch. Biochem. Biophys, 151 (1972) 468-474.
  • 11. M.D. Adjei, Y. Ohta, Factors Affecting the Biodegradation of Cyanide by Burkholderia cepacia Strain C-3, J. Biosci. Bioeng., 89 (2000) 274-277.
  • 12. A.U. Chaudhari, K.M. Kodam, Biodegradation of Thiocyanate Using Co-culture of Klebsiella pneumoniae and Ralstonia sp., Appl. Microbiol. and Biot., 85 (2010) 1167-1174.
  • 13. M.I. Ezzi, J.M. Lynch, Cyanide Catabolyzing Enzymes in Trichoderma spp., Enzym. Microb. Technol., 31 (2002) 1042-1047.
  • 14. M.I. Ezzi, J.A. Pascual, B.J. Gould, Characterization of the Rhodanese Enzyme in Trichoderma spp., Enzyme Microb. Tech., 32 (2003) 629-634.
  • 15. I.M. Ezzi, J.M. Lynch, Biodegradation of Cyanide by Trichoderma spp. and Fusarium spp., Enzyme Microb. Technol., 36 (2005) 849-954.
  • 16. V.I. Lozinsky, F.M. Plieva, Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments, Enzyme Microb. Technol., 23 (1998) 227-242.
  • 17. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly (hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208.
  • 18. Z. Zhang, Z. Lei, X. He, Z. Zhang, Y. Yang, N. Sugiura, Nitrate removal by Thiobacillus denitrificans immobilized on poly(vinyl alcohol) carriers, J. Hazard. Mater., 163 (2009) 109-1095.
  • 19. F.M. Plieva, E. De Seta, I.Y. Galaev, B. Mattiasson, Macroporous elastic polyacrylamide monolith columns: processing under compression and scale up, Sep. Purif. Technol., 65 (2009) 110-116.
  • 20. 20. R. Sombro, N. Memon, M.I. Bhanger, A. Denizli, Horserodish Peroxidase immobilized intoorganogelsilica composite for transformation of chlorophenols to biodegredable orcanic acids, Hacettepe J. Biol. Chem., 44 (2016) 351-364.
  • 21. 21. K. Çetin, D. Türkmen, N. Sağlam, A. Denizli, Phanerochaete chrysosporium loaded cryogel column for biosorption of mercury (II) ions from aqueous solutions, Hacettepe J. Biol. Chem., 43 (2015) 225-233.
  • 22. 22. E. Bayram, D. Türkmen, E. Yılmaz, I.Y. Galaev, A. Denizli, S. Bektaş, Poly (acrylamide-allyl glycidyl ether) cryogel as a novel stationary phase for chlorophenol adsorption, Hacettepe J. Biol. Chem., 36 (2008) 9-19.
  • 23. 23. İ. Koç, N. Bereli, G. Baydemir, I.Y. Galaev, A. Denizli, Syntgesis and characterization of macroporous poly (acrylamide-methacrylamido histidine) cryogels and their use in antibody purification, Hacettepe J. Biol. Chem., 36 (2008) 61-76.
  • 24. 24. S. Utku, E. Yılmaz, D. Türkmen, B. Garipcan, R. Say, A. Denizli, Ion imprinted thermo sensitive polymers for Fe (III) removal from human plasma, Hacettepe J. Biol. Chem., 36 (2008) 291-304.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Sevgi Aslıyüce This is me

Adil Denizli This is me

Publication Date November 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 4

Cite

APA Aslıyüce, S., & Denizli, A. (2017). Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater. Hacettepe Journal of Biology and Chemistry, 45(4), 639-645.
AMA Aslıyüce S, Denizli A. Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater. HJBC. November 2017;45(4):639-645.
Chicago Aslıyüce, Sevgi, and Adil Denizli. “Design of PHEMA Cryogel As Bioreactor Matrices for Biological Cyanide Degradation from Wastewater”. Hacettepe Journal of Biology and Chemistry 45, no. 4 (November 2017): 639-45.
EndNote Aslıyüce S, Denizli A (November 1, 2017) Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater. Hacettepe Journal of Biology and Chemistry 45 4 639–645.
IEEE S. Aslıyüce and A. Denizli, “Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater”, HJBC, vol. 45, no. 4, pp. 639–645, 2017.
ISNAD Aslıyüce, Sevgi - Denizli, Adil. “Design of PHEMA Cryogel As Bioreactor Matrices for Biological Cyanide Degradation from Wastewater”. Hacettepe Journal of Biology and Chemistry 45/4 (November 2017), 639-645.
JAMA Aslıyüce S, Denizli A. Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater. HJBC. 2017;45:639–645.
MLA Aslıyüce, Sevgi and Adil Denizli. “Design of PHEMA Cryogel As Bioreactor Matrices for Biological Cyanide Degradation from Wastewater”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 4, 2017, pp. 639-45.
Vancouver Aslıyüce S, Denizli A. Design of PHEMA Cryogel as Bioreactor Matrices for Biological Cyanide Degradation from Wastewater. HJBC. 2017;45(4):639-45.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc