BibTex RIS Cite

A New Ultrasonic Assisted Cloud Point Extraction and Preconcentration Procedure for the Spectrophotometric Oxalate Determination in Beverages

Year 2017, Volume: 45 Issue: 1, 81 - 94, 01.03.2017

Abstract

Anew ultrasonic-assisted cloud point extraction procedure UA-CPE was developed for preconcentration of oxalate in beverages prior to determination via spectrophotometry. At optimal conditions, the calibration curve was highly linear in a working range of 0.4–170 μg L−1. The limits of detection and quantification were 0.12 and 0.40 μg L−1. the precision as the percentage relative standard deviation, RSD% n: 5; 10, 15, 30 μg L−1 was lower than 3.5%. The method was successfully applied to the determination of soluble and total oxalate in beverage samples using two different acidic extraction approaches under ultrasonic power. Finally, the method was validated by comparing the results obtained with those of the reference method.

References

  • S.C. Noonan, G.P. Savage, Oxalate content of foodsandits effect on humans, Asia Pacific J. Clin. Nutr., 8 (1999) 64–74.
  • G.P. Savage, L. Vanhanen, S.M. Mason, A.B. Ross, Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods, J. Food Comp. Anal., 13 (2000) 201–206.
  • K. McMartin, Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning?, Clin. Toxicol., 47 (2009) 859–869.
  • Y. Ogawa, T. Miyazato, T. Hatano, Oxalate and urinary stones, World J. Surg., 24 (2000) 1154–1159.
  • D.J. Kok, S.E. Papapoulos, O.L.M. Bijvoet, Crystal agglomeration is a major element in calcium oxalate urinary stone formation, Kidney Int., 37 (1990) 51–56.
  • M. Thakur, M.Kumari, S. Pundir, Current Sci., 81 (2001) 248-251.
  • K.W. Cha, H.Z. Huang, H.C. Choi, Spectrofluorimeteric Determination of Oxalate Based on Its Ternary Complex Between Eu3+ and Thenoyltrifluoroacetone, Bull. Korean Chem. Soc., 23 (2002) 1456-1458.
  • T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, J. Fenoll, Chemiluminescent determination of oxalate based on its enhancing effect on the oxidation of methyl red by dichromate, Anal. Chim. Acta., 552 (2005) 147-151.
  • C.S. Pundir, N. Chauhan, M. Verma, A novel amperometric biosensor for oxalate determination using multi-walled carbon nanotube-gold nanoparticle composite, Sensor. Actuat. B-Chem., 155 (2011) 796-803.
  • B. Šljuki˃, R. Baron, R.G. Compton, Electrochemical determination of oxalate at pyrolytic graphite electrodes, Electroanalysis., 19 (2007) 918-922.
  • J.G. March, B.M. Simonet, F. Grases, J.A. Muñoz, M. Valiente, Determination of trace amounts of oxalate in renal calculi and related samples by gas chromatography-mass spectrometry, Chromatographia., 57 (2003) 811-817.
  • D.W. Lachenmeier, E. Richling, M.G. López, W. Frank
  • M. Stadlober, K. Kalcher, G. Raber, Anodic stripping
  • P. Schreier, Multivariate analysis of FTIR and ion of Mn(II) by periodate, Talanta., 56 (2002) 193-202.
  • chromatographic data for the quality control of
  • tequila, J. Agric. Food Chem., 53 (2005) 2151-2157.
  • F. Maya, J.M. Estela, V. Cerdà, Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples, Microchim. Acta., 173 (2011) 33-41.
  • T. Schroder, L. Vanhanen, G. Savage, Oxalate content in commercially produced cocoa and dark chocolate, J. Food Comp. Anal., 24 (2011) 916–922.
  • M. Masar, M. Zuborova, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci., 26 (2003) 647-652.
  • J. Guan, H. Wang, L. Ren, Q. Niu, Determination
  • H.I. Ulusoy, M. Akçay, R. Gürkan, Development
  • of glyoxalate and oxalate by capillary zone Medium, Acta Chem. Scan.-A., 40 (1986) 489-499.
  • electrophoresis, Chinese J. Chromatog., 30 (2012) 107-110.
  • H. Li, Y. Liu, Q. Zhang, H. Zhan, Composition Space Analysis in the Development of Copper Molybdate Hybrids Decorated by a Bifunctional Pyrazolyl/1, 2, 4-Triazole Ligand, Anal. Met., 6 (2014) 3720-3723.
  • H.V.H. Nguy˃n, G.P. Savage, Total, soluble and insoluble oxalate contents of ripe green and golden kiwifruit, Foods., 2 (2013) 76-82.
  • B.G. Keevil, S. Thornton, Quantification of urinary oxalate by liquid chromatography–tandem mass spectrometry with online weak anion exchange chromatography, Clin. Chem., 52 (2006) 2296-2299.
  • T.G. Huggins, J.D. Henion, Capillary electrophoresis/ mass spectrometry determination of inorganic ions using an ion spray˃sheath flow interface, Electrophoresis., 14 (1993) 531-539.
  • E. Yusenko, E. Polyntseva, A. Lyzhova, O. Kalyakina, P. Latvian Academy of Sci.-B., 67 (2013) 429-432.
  • R. Gürkan, N. Altunay, Quantification of 5-hydroxymethylfurfural in honey samples and acidic beverages using spectrophotometry coupled with ultrasonic-assisted cloud point extraction, J. Food Comp. and Anal., 42 (2015) 141-151.
  • N. Altunay, R. Gürkan, A new simple UV-Vis spectrophotometric method for determination of sulfite species in vegetables and dried fruits using a preconcentration process, Anal. Met., 8 (2016) 342- 352.
  • N. Altunay, R. Gürkan, A New Micellar Mediated Cloud-Point Extraction Procedure for Sensitive and Selective Determination of Trace Amounts of Total Iodine in Milk-Based Nutritional Products by Means of Indirect Spectrophotometry, Food Anal. Met., 9 (2016) 505-518.
  • N. Altunay, R. Gürkan, A Simple, Low-Cost, and Useful Preconcentration Method for Quantification of Soluble, Insoluble, and Total Oxalate in Selected Vegetables Through Spectrophotometry, Food Anal. Met., 9 (2016) 950-965.
  • M.E.M. Hassouna, S.A.A. Elsuccary, Determination of voltammetric determination of vanadium (V) using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide, Electroanalysis., 9 (1997) 225–230.
  • A.B. Schneider, P.C. Nascimento, D. Bohrer, L.M. Carvalho, A. Guarda, C. Krause, B.A. Wiethan, A. Koschinsky, Determination of Zirconium and Vanadium in Natural Waters by Adsorptive Stripping Voltammetry in the Presence of Cupferron, Oxalic Acid and 1,3-Diphenylguanidine, Electroanalysis., 27 (2015) 1864–1870. of an inexpensive and sensitive method for the determination of low quantity of arsenic species in water samples by CPE–FAAS, Talanta., 85 (2011) 1585- 91.
  • M. Arık, Y. Onganer, Chem. Molecular excitons of Pyronin B and Pyronin Y in colloidal silica suspension, Phy. Lett., 375 (2003) 126–133.
  • F. Aureli, S. Ciardullo, M. Pagano, A. Raggi, F. Cubadda, Speciation of vanadium(IV) and (V) in mineral water by anion exchange liquid chromatography- inductively coupled plasma mass spectrometry after EDTA complexation, J. Anal. At. Spectrom., 23 (2008) 1009–1016.
  • H. Suzuki, M. Nagata, S. Ohzono, C. Fujimoto, Determination of oxalate in human serum in the nM range by on-column sample preconcentration- capillary zone electrophoresis with direct absorbance detection, Chromatographia., 61 (2005) 333-337.
  • F.T. Esmadi, A.S. Indirect Determination of Carbonate, Dichromate and Oxalate by Atomic Absorption Spectrometry in a Flow System Using On-Line Preconcentration Technique., Attiyat, Anal. Sci., 10 (1994) 687-690.
  • R.P. Holmes, M. Kennedy, Estimation of the oxalate content of foods and daily oxalate intake, Kidney Int., 57 (2000) 1662-1667.
  • M.A. Chamjangalı, V. Keley, G. Bagherian, Kinetic spectrophotometric method for the determination of trace amounts of oxalate by an activation effect, Anal. Sci., 22 (2006) 333-336.
  • A. Safavi , R Banazadeh, Catalytic determination of traces of oxalic acid in vegetables and water samples using a novel optode, Food Chem., 105 (2007) 1106– 1111.
  • J.A. Rodrigues, A.A. Barros, Development of a method for oxalate determination by differential- pulse polarography after derivatization with o-phenylenediamine, Anal. Chim. Acta., 273 (1993) 531-537.

İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi

Year 2017, Volume: 45 Issue: 1, 81 - 94, 01.03.2017

Abstract

S pektroforomere aracılığıyla okzalatın belirlenmesi öncesi onun önderiştirilmesi için yeni ultrasonik destekli bulutlanma noktası özütleme yöntemi geliştirildi. Optimum koşullarda, kalibrasyon eğrisinin 0.4–170 µg L− 1 çalışma aralığında yüksek doğrusalığa sahip olduğu görüldü. Seçme ve tayin sınırları sırasıyla 0.12 ve 0.40 µg L− 1 olarak bulundu. Yüzde bağıl standart sapma olarak kesinlik, %BSS n: 5; 10, 15, 30 µg L− 1 , %3.5 den daha düşük gözlendi. Ultrasonik koşullar altında, yöntem iki farklı asidik özütleme yaklaşımı kullanarak içecek örneklerindeki çözünür ve toplam okzalatın belirlenmesi için başarılı bir şekilde uygulandı. Son olarak, yöntemin geçerliliği elde edilen sonuçların referans yöntem ile karşılaştırılması ile doğrulandı

References

  • S.C. Noonan, G.P. Savage, Oxalate content of foodsandits effect on humans, Asia Pacific J. Clin. Nutr., 8 (1999) 64–74.
  • G.P. Savage, L. Vanhanen, S.M. Mason, A.B. Ross, Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods, J. Food Comp. Anal., 13 (2000) 201–206.
  • K. McMartin, Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning?, Clin. Toxicol., 47 (2009) 859–869.
  • Y. Ogawa, T. Miyazato, T. Hatano, Oxalate and urinary stones, World J. Surg., 24 (2000) 1154–1159.
  • D.J. Kok, S.E. Papapoulos, O.L.M. Bijvoet, Crystal agglomeration is a major element in calcium oxalate urinary stone formation, Kidney Int., 37 (1990) 51–56.
  • M. Thakur, M.Kumari, S. Pundir, Current Sci., 81 (2001) 248-251.
  • K.W. Cha, H.Z. Huang, H.C. Choi, Spectrofluorimeteric Determination of Oxalate Based on Its Ternary Complex Between Eu3+ and Thenoyltrifluoroacetone, Bull. Korean Chem. Soc., 23 (2002) 1456-1458.
  • T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, J. Fenoll, Chemiluminescent determination of oxalate based on its enhancing effect on the oxidation of methyl red by dichromate, Anal. Chim. Acta., 552 (2005) 147-151.
  • C.S. Pundir, N. Chauhan, M. Verma, A novel amperometric biosensor for oxalate determination using multi-walled carbon nanotube-gold nanoparticle composite, Sensor. Actuat. B-Chem., 155 (2011) 796-803.
  • B. Šljuki˃, R. Baron, R.G. Compton, Electrochemical determination of oxalate at pyrolytic graphite electrodes, Electroanalysis., 19 (2007) 918-922.
  • J.G. March, B.M. Simonet, F. Grases, J.A. Muñoz, M. Valiente, Determination of trace amounts of oxalate in renal calculi and related samples by gas chromatography-mass spectrometry, Chromatographia., 57 (2003) 811-817.
  • D.W. Lachenmeier, E. Richling, M.G. López, W. Frank
  • M. Stadlober, K. Kalcher, G. Raber, Anodic stripping
  • P. Schreier, Multivariate analysis of FTIR and ion of Mn(II) by periodate, Talanta., 56 (2002) 193-202.
  • chromatographic data for the quality control of
  • tequila, J. Agric. Food Chem., 53 (2005) 2151-2157.
  • F. Maya, J.M. Estela, V. Cerdà, Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples, Microchim. Acta., 173 (2011) 33-41.
  • T. Schroder, L. Vanhanen, G. Savage, Oxalate content in commercially produced cocoa and dark chocolate, J. Food Comp. Anal., 24 (2011) 916–922.
  • M. Masar, M. Zuborova, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci., 26 (2003) 647-652.
  • J. Guan, H. Wang, L. Ren, Q. Niu, Determination
  • H.I. Ulusoy, M. Akçay, R. Gürkan, Development
  • of glyoxalate and oxalate by capillary zone Medium, Acta Chem. Scan.-A., 40 (1986) 489-499.
  • electrophoresis, Chinese J. Chromatog., 30 (2012) 107-110.
  • H. Li, Y. Liu, Q. Zhang, H. Zhan, Composition Space Analysis in the Development of Copper Molybdate Hybrids Decorated by a Bifunctional Pyrazolyl/1, 2, 4-Triazole Ligand, Anal. Met., 6 (2014) 3720-3723.
  • H.V.H. Nguy˃n, G.P. Savage, Total, soluble and insoluble oxalate contents of ripe green and golden kiwifruit, Foods., 2 (2013) 76-82.
  • B.G. Keevil, S. Thornton, Quantification of urinary oxalate by liquid chromatography–tandem mass spectrometry with online weak anion exchange chromatography, Clin. Chem., 52 (2006) 2296-2299.
  • T.G. Huggins, J.D. Henion, Capillary electrophoresis/ mass spectrometry determination of inorganic ions using an ion spray˃sheath flow interface, Electrophoresis., 14 (1993) 531-539.
  • E. Yusenko, E. Polyntseva, A. Lyzhova, O. Kalyakina, P. Latvian Academy of Sci.-B., 67 (2013) 429-432.
  • R. Gürkan, N. Altunay, Quantification of 5-hydroxymethylfurfural in honey samples and acidic beverages using spectrophotometry coupled with ultrasonic-assisted cloud point extraction, J. Food Comp. and Anal., 42 (2015) 141-151.
  • N. Altunay, R. Gürkan, A new simple UV-Vis spectrophotometric method for determination of sulfite species in vegetables and dried fruits using a preconcentration process, Anal. Met., 8 (2016) 342- 352.
  • N. Altunay, R. Gürkan, A New Micellar Mediated Cloud-Point Extraction Procedure for Sensitive and Selective Determination of Trace Amounts of Total Iodine in Milk-Based Nutritional Products by Means of Indirect Spectrophotometry, Food Anal. Met., 9 (2016) 505-518.
  • N. Altunay, R. Gürkan, A Simple, Low-Cost, and Useful Preconcentration Method for Quantification of Soluble, Insoluble, and Total Oxalate in Selected Vegetables Through Spectrophotometry, Food Anal. Met., 9 (2016) 950-965.
  • M.E.M. Hassouna, S.A.A. Elsuccary, Determination of voltammetric determination of vanadium (V) using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide, Electroanalysis., 9 (1997) 225–230.
  • A.B. Schneider, P.C. Nascimento, D. Bohrer, L.M. Carvalho, A. Guarda, C. Krause, B.A. Wiethan, A. Koschinsky, Determination of Zirconium and Vanadium in Natural Waters by Adsorptive Stripping Voltammetry in the Presence of Cupferron, Oxalic Acid and 1,3-Diphenylguanidine, Electroanalysis., 27 (2015) 1864–1870. of an inexpensive and sensitive method for the determination of low quantity of arsenic species in water samples by CPE–FAAS, Talanta., 85 (2011) 1585- 91.
  • M. Arık, Y. Onganer, Chem. Molecular excitons of Pyronin B and Pyronin Y in colloidal silica suspension, Phy. Lett., 375 (2003) 126–133.
  • F. Aureli, S. Ciardullo, M. Pagano, A. Raggi, F. Cubadda, Speciation of vanadium(IV) and (V) in mineral water by anion exchange liquid chromatography- inductively coupled plasma mass spectrometry after EDTA complexation, J. Anal. At. Spectrom., 23 (2008) 1009–1016.
  • H. Suzuki, M. Nagata, S. Ohzono, C. Fujimoto, Determination of oxalate in human serum in the nM range by on-column sample preconcentration- capillary zone electrophoresis with direct absorbance detection, Chromatographia., 61 (2005) 333-337.
  • F.T. Esmadi, A.S. Indirect Determination of Carbonate, Dichromate and Oxalate by Atomic Absorption Spectrometry in a Flow System Using On-Line Preconcentration Technique., Attiyat, Anal. Sci., 10 (1994) 687-690.
  • R.P. Holmes, M. Kennedy, Estimation of the oxalate content of foods and daily oxalate intake, Kidney Int., 57 (2000) 1662-1667.
  • M.A. Chamjangalı, V. Keley, G. Bagherian, Kinetic spectrophotometric method for the determination of trace amounts of oxalate by an activation effect, Anal. Sci., 22 (2006) 333-336.
  • A. Safavi , R Banazadeh, Catalytic determination of traces of oxalic acid in vegetables and water samples using a novel optode, Food Chem., 105 (2007) 1106– 1111.
  • J.A. Rodrigues, A.A. Barros, Development of a method for oxalate determination by differential- pulse polarography after derivatization with o-phenylenediamine, Anal. Chim. Acta., 273 (1993) 531-537.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ramazan Gürkan This is me

Nail Altunay This is me

Publication Date March 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 1

Cite

APA Gürkan, R., & Altunay, N. (2017). İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi. Hacettepe Journal of Biology and Chemistry, 45(1), 81-94.
AMA Gürkan R, Altunay N. İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi. HJBC. March 2017;45(1):81-94.
Chicago Gürkan, Ramazan, and Nail Altunay. “İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik Destekli Bulutlanma Noktası Ekstraskisyonu Ve Zenginlerştirme Yöntemi”. Hacettepe Journal of Biology and Chemistry 45, no. 1 (March 2017): 81-94.
EndNote Gürkan R, Altunay N (March 1, 2017) İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi. Hacettepe Journal of Biology and Chemistry 45 1 81–94.
IEEE R. Gürkan and N. Altunay, “İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi”, HJBC, vol. 45, no. 1, pp. 81–94, 2017.
ISNAD Gürkan, Ramazan - Altunay, Nail. “İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik Destekli Bulutlanma Noktası Ekstraskisyonu Ve Zenginlerştirme Yöntemi”. Hacettepe Journal of Biology and Chemistry 45/1 (March 2017), 81-94.
JAMA Gürkan R, Altunay N. İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi. HJBC. 2017;45:81–94.
MLA Gürkan, Ramazan and Nail Altunay. “İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik Destekli Bulutlanma Noktası Ekstraskisyonu Ve Zenginlerştirme Yöntemi”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 1, 2017, pp. 81-94.
Vancouver Gürkan R, Altunay N. İçeceklerde Spektrofotometrik Okzalat Belirlenmesi için Yeni Ultrasonik destekli Bulutlanma Noktası Ekstraskisyonu ve Zenginlerştirme Yöntemi. HJBC. 2017;45(1):81-94.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc