Review
BibTex RIS Cite
Year 2021, , 253 - 303, 17.05.2021
https://doi.org/10.15671/hjbc.815414

Abstract

References

  • 1. G. Gübitz, M.G. Schmid, Chiral separation by capillary electromigration techniques, J. Chromatogr. A 1204 (2008) 140–156.
  • 1. G. Gübitz, M.G. Schmid, Chiral separation by capillary electromigration techniques, J. Chromatogr. A 1204 (2008) 140–156.
  • 2. E. Sánchez-López, M. Castro-Puyana, M.L. Marina, A.L. Crego, Chiral Separations by Capillary Electrophoresis, Anal. Sep. Sci. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2 (2015) 731–775.
  • 2. E. Sánchez-López, M. Castro-Puyana, M.L. Marina, A.L. Crego, Chiral Separations by Capillary Electrophoresis, Anal. Sep. Sci. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2 (2015) 731–775.
  • 3. B. Preinerstorfer, M. Lämmerhofer, W. Lindner, Advances in enantioselective separations using electromigration capillary techniques, Electrophoresis, 30 (2009) 100–132.
  • 3. B. Preinerstorfer, M. Lämmerhofer, W. Lindner, Advances in enantioselective separations using electromigration capillary techniques, Electrophoresis, 30 (2009) 100–132.
  • 4. C. Tano, S.-H. Son, J. Furukawa, T. Furuike, N. Sakairi, Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids, Electrophoresis, 30 (2009) 2743–2746.
  • 4. C. Tano, S.-H. Son, J. Furukawa, T. Furuike, N. Sakairi, Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids, Electrophoresis, 30 (2009) 2743–2746.
  • 5. A.P. Kumar, J.H. Park, Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography, J. Chromatogr. A 1218 (2011) 6548–6553.
  • 5. A.P. Kumar, J.H. Park, Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography, J. Chromatogr. A 1218 (2011) 6548–6553.
  • 6. J. Yang, D.S. Hage, Characterization of the binding and chiral separation of d- and l-tryptophan on a high-performance immobilized human serum albumin column, J. Chromatogr. A 645 (1993) 241–250.
  • 6. J. Yang, D.S. Hage, Characterization of the binding and chiral separation of d- and l-tryptophan on a high-performance immobilized human serum albumin column, J. Chromatogr. A 645 (1993) 241–250.
  • 7. G. Sagratini, M. Buccioni, G. Marucci, E. Poggesi, M. Skorski, S. Costanzi, D. Giardinà, Chiral analogues of (+)-cyclazosin as potent α1B-adrenoceptor selective antagonist, Bioorganic Med. Chem. 26 (2018) 3502–3513.
  • 7. G. Sagratini, M. Buccioni, G. Marucci, E. Poggesi, M. Skorski, S. Costanzi, D. Giardinà, Chiral analogues of (+)-cyclazosin as potent α1B-adrenoceptor selective antagonist, Bioorganic Med. Chem. 26 (2018) 3502–3513.
  • 8. K.D. Altria, I.H. Grant, Methods in Molecular Biology, Capillary Electrophoresis Guidebook, Principles, Operation and Applications, Capillary Electrophoresis Guidebook. Humana Press, 52 (2003) 197–210.
  • 8. K.D. Altria, I.H. Grant, Methods in Molecular Biology, Capillary Electrophoresis Guidebook, Principles, Operation and Applications, Capillary Electrophoresis Guidebook. Humana Press, 52 (2003) 197–210.
  • 9. V. Houbart, M. Fillet, Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences. InTech, Edited by Xiao-Ying Yu, (2016) 1-30.
  • 9. V. Houbart, M. Fillet, Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences. InTech, Edited by Xiao-Ying Yu, (2016) 1-30.
  • 10. Tagliaro, F., Deyl, Z., Miks̆ík, I., Ulfelder, K. J., J Concepts and principles of high performance capillary electrophoresis John Wiley & Sons, Ltd, (2006) 41–63.
  • 10. Tagliaro, F., Deyl, Z., Miks̆ík, I., Ulfelder, K. J., J Concepts and principles of high performance capillary electrophoresis John Wiley & Sons, Ltd, (2006) 41–63.
  • 11. F.U. Aşıcıoğlu, S.T. Koluaçık, B.Ü. Çetinkaya, F. Akyüz, Tıp Kurumu Başkanlığı Biyoloji İhtisas Dairesi, A., Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel Jel Elektroforez Yöntemi Ile Karşılaştırma. n.d. Adli Tıp Derg., 16 (2002) 88-93.
  • 11. F.U. Aşıcıoğlu, S.T. Koluaçık, B.Ü. Çetinkaya, F. Akyüz, Tıp Kurumu Başkanlığı Biyoloji İhtisas Dairesi, A., Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel Jel Elektroforez Yöntemi Ile Karşılaştırma. n.d. Adli Tıp Derg., 16 (2002) 88-93.
  • 12. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis 38 (2017) 3003–3012.
  • 12. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis 38 (2017) 3003–3012.
  • 13. C.A. Lucy, R.S. Underhill, Characterization of the cationic surfactant induced reversal of electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 300–305.
  • 13. C.A. Lucy, R.S. Underhill, Characterization of the cationic surfactant induced reversal of electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 300–305.
  • 14. S. Aşır, A. Derazshamshir, F. Yılmaz, A. Denizli, Triazine herbicide imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 2888–2895.
  • 14. S. Aşır, A. Derazshamshir, F. Yılmaz, A. Denizli, Triazine herbicide imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 2888–2895.
  • 15. C. Aydoğan, A. Gökaltun, A. Denizli, Z. El Rassi, Biochromatographic applications of polymethacrylate monolithic columns used in electro- and liquid phase-separationsΨ, J. Liq. Chromatogr. Relat. Technol., 41 (2018) 572–582.
  • 15. C. Aydoğan, A. Gökaltun, A. Denizli, Z. El Rassi, Biochromatographic applications of polymethacrylate monolithic columns used in electro- and liquid phase-separationsΨ, J. Liq. Chromatogr. Relat. Technol., 41 (2018) 572–582.
  • 16. G. Gübitz, M.G. Schmid, Chiral separation principles in chromatographic and electromigration techniques, Mol. Biotechnol., 32 (2006) 159–179.
  • 16. G. Gübitz, M.G. Schmid, Chiral separation principles in chromatographic and electromigration techniques, Mol. Biotechnol., 32 (2006) 159–179.
  • 17. H. Poppe, A. Cifuentes, W.T. Kok, Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 888–893.
  • 17. H. Poppe, A. Cifuentes, W.T. Kok, Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 888–893.
  • 18. M.G. Cikalo, K.D. Bartle, P. Myers, Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography, J. Chromatogr. A, 836 (1999) 35–51.
  • 18. M.G. Cikalo, K.D. Bartle, P. Myers, Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography, J. Chromatogr. A, 836 (1999) 35–51.
  • 19. J.H. Knox, Terminology and nomenclature in capillary electroseparation systems, J. Chromatogr. A, 680 (1994) 3–13.
  • 19. J.H. Knox, Terminology and nomenclature in capillary electroseparation systems, J. Chromatogr. A, 680 (1994) 3–13.
  • 20. A Denizli, Ö.İ. Küfrevioğlu, Pozitif Matbaacılık, Ankara, Protein kromatografisi ve yeni nesil polimerik sistemler (2010).
  • 20. A Denizli, Ö.İ. Küfrevioğlu, Pozitif Matbaacılık, Ankara, Protein kromatografisi ve yeni nesil polimerik sistemler (2010).
  • 21. T. Gündüz, Gazi Kitabevi, Kromatografi ve elektroforez (2015).
  • 21. T. Gündüz, Gazi Kitabevi, Kromatografi ve elektroforez (2015).
  • 22. J.H. Knox, I.H., Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia, 24 (1987) 135–143.
  • 22. J.H. Knox, I.H., Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia, 24 (1987) 135–143.
  • 23. A.M. Enlund, G. Hagman, R. Isaksson, D. Westerlund, Capillary electrochromatography of basic compounds in pharmaceutical analysis, TrAC-Trends Anal. Chem., 21 (2002) 412–427.
  • 23. A.M. Enlund, G. Hagman, R. Isaksson, D. Westerlund, Capillary electrochromatography of basic compounds in pharmaceutical analysis, TrAC-Trends Anal. Chem., 21 (2002) 412–427.
  • 24. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis, 38 (2017) 3003–3012.
  • 24. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis, 38 (2017) 3003–3012.
  • 25. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 25. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 26. S. Tanwar, R. Bhushan, Enantioresolution of Amino Acids: A Decade’s Perspective, Prospects and Challenges, Chromatographia, 78 (2015) 1113–1134.
  • 26. S. Tanwar, R. Bhushan, Enantioresolution of Amino Acids: A Decade’s Perspective, Prospects and Challenges, Chromatographia, 78 (2015) 1113–1134.
  • 27. Z.-X. Zheng, J.-M. Lin, F. Qu, T. Hobo, Chiral separation with ligand-exchange micellar electrokinetic chromatography using aD-penicillamine-copper(II) ternary complex as chiral selector, Electrophoresis, 24 (2003) 4221–4226.
  • 27. Z.-X. Zheng, J.-M. Lin, F. Qu, T. Hobo, Chiral separation with ligand-exchange micellar electrokinetic chromatography using aD-penicillamine-copper(II) ternary complex as chiral selector, Electrophoresis, 24 (2003) 4221–4226.
  • 28. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries, Anal. Chem., 56 (1984) 111–113.
  • 28. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries, Anal. Chem., 56 (1984) 111–113.
  • 29. K. Otsuka, S. Terabe, T. Ando, Electrokinetic chromatography with micellar solutions. Separation of phenylthiohydantoin-amino acids, J. Chromatogr. A, 332 (1985) 219–226.
  • 29. K. Otsuka, S. Terabe, T. Ando, Electrokinetic chromatography with micellar solutions. Separation of phenylthiohydantoin-amino acids, J. Chromatogr. A, 332 (1985) 219–226.
  • 30. S. Terabe, K. Otsuka, T. Ando, Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary, Anal. Chem., (1985) 834–841.
  • 30. S. Terabe, K. Otsuka, T. Ando, Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary, Anal. Chem., (1985) 834–841.
  • 31. J. Palmer, D.S. Burgi, N.J. Munro, J.P. Landers, Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis, Anal. Chem., 73 (2001) 725–731.
  • 31. J. Palmer, D.S. Burgi, N.J. Munro, J.P. Landers, Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis, Anal. Chem., 73 (2001) 725–731.
  • 32. S. Kodama, A. Yamamoto, Y. Saitoh, A. Matsunaga, K. Okamura, R. Kizu, K. Hayakawa, Enantioseparation of vinclozolin by γ-cyclodextrin-modified micellar electrokinetic chromatography, J. Agric. Food Chem., 50 (2002) 1312–1317.
  • 32. S. Kodama, A. Yamamoto, Y. Saitoh, A. Matsunaga, K. Okamura, R. Kizu, K. Hayakawa, Enantioseparation of vinclozolin by γ-cyclodextrin-modified micellar electrokinetic chromatography, J. Agric. Food Chem., 50 (2002) 1312–1317.
  • 33. A. Aumatell, R.J. Wells, Enantiomeric differentiation of a wide range of pharmacologically active substances by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt, J. Chromatogr. A, 688 (1994) 329–337.
  • 33. A. Aumatell, R.J. Wells, Enantiomeric differentiation of a wide range of pharmacologically active substances by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt, J. Chromatogr. A, 688 (1994) 329–337.
  • 34. T. Ueda, F. Kitamura, R. Mitchell, T. Metcalf, T. Kuwana, A. Nakamoto, Chiral Separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal. Chem., 63 (1991) 2979–2981.
  • 34. T. Ueda, F. Kitamura, R. Mitchell, T. Metcalf, T. Kuwana, A. Nakamoto, Chiral Separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal. Chem., 63 (1991) 2979–2981.
  • 35. A. Dobashi, T. Ono, S. Hara, J. Yamaguchi, Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography, Anal. Chem., 61 (1989) 1984–1986.
  • 35. A. Dobashi, T. Ono, S. Hara, J. Yamaguchi, Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography, Anal. Chem., 61 (1989) 1984–1986.
  • 36. D. Sarı, A. Derazshamshir, S. Aşır, I. Göktürk, F. Yılmaz, A. Denizli, Separation of D, L-ampicillin by ligand exchange-micellar electrokinetic chromatography., Biointerface Res. Appl. Chem., (2019) 4522-4533.
  • 36. D. Sarı, A. Derazshamshir, S. Aşır, I. Göktürk, F. Yılmaz, A. Denizli, Separation of D, L-ampicillin by ligand exchange-micellar electrokinetic chromatography., Biointerface Res. Appl. Chem., (2019) 4522-4533.
  • 37. C.P. Palmer, S. Terabe, Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity, Anal. Chem., 69 (1997) 1852–1860.
  • 37. C.P. Palmer, S. Terabe, Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity, Anal. Chem., 69 (1997) 1852–1860.
  • 38. V.A. Davankov, S.V. Rogozhin, Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes, J. Chromatogr. A, 60 (1971) 284–312.
  • 38. V.A. Davankov, S.V. Rogozhin, Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes, J. Chromatogr. A, 60 (1971) 284–312.
  • 39. M.G. Schmid, R. Rinaldi, D. Dreveny, G. Gübitz, Enantioseparation of α-amino acids and dipeptides by ligand-exchange capillary electrophoresis of various L-4-hydroxyproline derivatives, J. Chromatogr. A, 846 (1999) 157–163.
  • 39. M.G. Schmid, R. Rinaldi, D. Dreveny, G. Gübitz, Enantioseparation of α-amino acids and dipeptides by ligand-exchange capillary electrophoresis of various L-4-hydroxyproline derivatives, J. Chromatogr. A, 846 (1999) 157–163.
  • 40. M.G. Schmid, N. Grobuschek, O. Lecnik, G. Gubitz, Chiral Ligand-Exchange Capillary Electrophoresis. 48, 2, (2001) 143-154.
  • 40. M.G. Schmid, N. Grobuschek, O. Lecnik, G. Gubitz, Chiral Ligand-Exchange Capillary Electrophoresis. 48, 2, (2001) 143-154.
  • 41. Z. Chen, T. Hobo, Chemically L-phenylalaninamide-modified monolithic silica column prepared by a Sol-Gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348–3357.
  • 41. Z. Chen, T. Hobo, Chemically L-phenylalaninamide-modified monolithic silica column prepared by a Sol-Gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348–3357.
  • 42. X. Mu, L. Qi, J. Qiao, X. Yang, H. Ma, Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-l-hydroxyproline complexes coordinating with γ-cyclodextrins, Anal. Chim. Acta, 846 (2014) 68–74.
  • 42. X. Mu, L. Qi, J. Qiao, X. Yang, H. Ma, Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-l-hydroxyproline complexes coordinating with γ-cyclodextrins, Anal. Chim. Acta, 846 (2014) 68–74.
  • 43. M.G. Schmid, M. Laffranchini, D. Dreveny, G. Gübitz, Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis, Electrophoresis, 20 (1999) 2458–2461.
  • 43. M.G. Schmid, M. Laffranchini, D. Dreveny, G. Gübitz, Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis, Electrophoresis, 20 (1999) 2458–2461.
  • 44. P. Gozel, H. Michelsen, R.N. Zare, E. Gassmann, Electrokinetic Resolution of Amino Acid Enantiomers with Copper(II)–Aspartame Support Electrolyte, Anal. Chem.,50 (1987) 44–49.
  • 44. P. Gozel, H. Michelsen, R.N. Zare, E. Gassmann, Electrokinetic Resolution of Amino Acid Enantiomers with Copper(II)–Aspartame Support Electrolyte, Anal. Chem.,50 (1987) 44–49.
  • 45. T.C. Bøg-Hansen, Crossed immuno-affinoelectrophoresis, An analytical method to predict the result of affinity chromatography, Anal. Biochem., 56 (1973) 480–488.
  • 45. T.C. Bøg-Hansen, Crossed immuno-affinoelectrophoresis, An analytical method to predict the result of affinity chromatography, Anal. Biochem., 56 (1973) 480–488.
  • 46. K.M. Łącki, F.J. Riske, Affinity Chromatography: An Enabling Technology for Large‐Scale Bioprocessing, Biotechnol. J., 15 (2020) 1800397.
  • 46. K.M. Łącki, F.J. Riske, Affinity Chromatography: An Enabling Technology for Large‐Scale Bioprocessing, Biotechnol. J., 15 (2020) 1800397.
  • 47. Y.H. Chu, L.Z. Avila, J. Gao, G.M. Whitesides, Affinity Capillary Electrophoresis, Acc. Chem. Res., 28 (1995) 461–468.
  • 47. Y.H. Chu, L.Z. Avila, J. Gao, G.M. Whitesides, Affinity Capillary Electrophoresis, Acc. Chem. Res., 28 (1995) 461–468.
  • 48. Y.H. Chu, L. Z. Avila, H.A. Biebuyck, G.M. Whitesides, Using Affinity Capillary Electrophoresis to Identify the Peptide in a Peptide Library that Binds Most Tightly to Vancomycin. J. Org. Chem. 58 (1993) 648-652.
  • 48. Y.H. Chu, L. Z. Avila, H.A. Biebuyck, G.M. Whitesides, Using Affinity Capillary Electrophoresis to Identify the Peptide in a Peptide Library that Binds Most Tightly to Vancomycin. J. Org. Chem. 58 (1993) 648-652.
  • 49. M. Azad, L. Hernandez, A. Plazas, M. Rudolph, F.A. Gomez, Determination of binding constants between the antibiotic ristocetin A and D-Ala-D-Ala terminus peptides by affinity capillary electrophoresis, Chromatographia, 57 (2003) 339–343.
  • 49. M. Azad, L. Hernandez, A. Plazas, M. Rudolph, F.A. Gomez, Determination of binding constants between the antibiotic ristocetin A and D-Ala-D-Ala terminus peptides by affinity capillary electrophoresis, Chromatographia, 57 (2003) 339–343.
  • 50. C. Zhang, D.S. Hage, Capillary Electromigration Separation Methods. Chapter 18-Clinical Chemistry Applications of Capillary Electromigration Methods, Elsevier (2018) 423–452.
  • 50. C. Zhang, D.S. Hage, Capillary Electromigration Separation Methods. Chapter 18-Clinical Chemistry Applications of Capillary Electromigration Methods, Elsevier (2018) 423–452.
  • 51. C. Zhang, A.G. Woolfork, K. Suh, S. Ovbude, C. Bi, M. Elzoeiry, D.S. Hage, Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review, J. Pharm. Biomed. Anal., 177 (2020) 112882.
  • 51. C. Zhang, A.G. Woolfork, K. Suh, S. Ovbude, C. Bi, M. Elzoeiry, D.S. Hage, Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review, J. Pharm. Biomed. Anal., 177 (2020) 112882.
  • 52. B. Ekberg, K. Mosbach, Molecular imprinting: A technique for producing specific separation materials, Trends Biotechnol., 7 (1989) 92–96.
  • 52. B. Ekberg, K. Mosbach, Molecular imprinting: A technique for producing specific separation materials, Trends Biotechnol., 7 (1989) 92–96.
  • 53. T. Sajini, M.G. Gigimol, B. Mathew, A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices, Mater. Today Chem., 11 (2019) 283–295.
  • 53. T. Sajini, M.G. Gigimol, B. Mathew, A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices, Mater. Today Chem., 11 (2019) 283–295.
  • 54. E. Turiel, A. Martín-Esteban, Molecularly imprinted polymers for sample preparation: A review, Anal. Chim. Acta, 668 (2010) 87–99.
  • 54. E. Turiel, A. Martín-Esteban, Molecularly imprinted polymers for sample preparation: A review, Anal. Chim. Acta, 668 (2010) 87–99.
  • 55. G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly Imprinted Polymers: Present and Future Prospective, Int. J. Mol. Sci., 12 (2011) 5908–5945.
  • 55. G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly Imprinted Polymers: Present and Future Prospective, Int. J. Mol. Sci., 12 (2011) 5908–5945.
  • 56. J. Wackerlig, P.A. Lieberzeit, Polymers, Molecularly Imprinted, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2016) 1–20.
  • 56. J. Wackerlig, P.A. Lieberzeit, Polymers, Molecularly Imprinted, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2016) 1–20.
  • 57. Z.-S. Liu, C. Zheng, C. Yan, R.-Y. Gao, Molecularly imprinted polymers as a tool for separation in CEC, Electrophoresis, 28 (2007) 127–136.
  • 57. Z.-S. Liu, C. Zheng, C. Yan, R.-Y. Gao, Molecularly imprinted polymers as a tool for separation in CEC, Electrophoresis, 28 (2007) 127–136.
  • 58. A. Malik, Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns, Electrophoresis, 23 (2002) 3973–3992.
  • 58. A. Malik, Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns, Electrophoresis, 23 (2002) 3973–3992.
  • 59. A.P. McKeown, M.R. Euerby, C.M. Johnson, M. Koeberle, H. Lomax, H. Ritchie, P. Ross, An evaluation of unbonded silica stationary phases for the separation of basic analytes using capillary electrochromatography, Chromatographia, 52 (2000) 777–786.
  • 59. A.P. McKeown, M.R. Euerby, C.M. Johnson, M. Koeberle, H. Lomax, H. Ritchie, P. Ross, An evaluation of unbonded silica stationary phases for the separation of basic analytes using capillary electrochromatography, Chromatographia, 52 (2000) 777–786.
  • 60. H. Engelhardt, F.T. Hafner, Porous and non-porous stationary phases for capillary electrochromatography under conditions of reversed phase chromatography, Chromatographia, 52 (2000) 769–776.
  • 60. H. Engelhardt, F.T. Hafner, Porous and non-porous stationary phases for capillary electrochromatography under conditions of reversed phase chromatography, Chromatographia, 52 (2000) 769–776.
  • 61. C. Chaiyasut, Y. Takatsu, S. Kitagawa, T. Tsuda, Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and pH, Electrophoresis, 22 (2001) 1267–1272.
  • 61. C. Chaiyasut, Y. Takatsu, S. Kitagawa, T. Tsuda, Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and pH, Electrophoresis, 22 (2001) 1267–1272.
  • 62. W.J. Cheong, S.H. Yang, Open tubular molecular imprinted phases in chiral capillary electrochromatography, Methods Mol. Biol., 970 (2013) 469–487.
  • 62. W.J. Cheong, S.H. Yang, Open tubular molecular imprinted phases in chiral capillary electrochromatography, Methods Mol. Biol., 970 (2013) 469–487.
  • 63. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 63. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 64. N.W. Smith, Z. Jiang, Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A, 1184 (2008) 416–440.
  • 64. N.W. Smith, Z. Jiang, Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A, 1184 (2008) 416–440.
  • 65. K. Şarkaya, A. Denizli, Moleküler Baskılama Yöntemi ile Kapiler Elektrokromatografi (CEC) Sisteminde Hidrofobik Amino Asitlerin Enantiyomerlerinin Ayrılması. 2018.
  • 65. K. Şarkaya, A. Denizli, Moleküler Baskılama Yöntemi ile Kapiler Elektrokromatografi (CEC) Sisteminde Hidrofobik Amino Asitlerin Enantiyomerlerinin Ayrılması. 2018.
  • 66. J. Ou, Z. Liu, H. Wang, H. Lin, J. Dong, H. Zou, Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC, Electrophoresis, 36 (2015) 62–75.
  • 66. J. Ou, Z. Liu, H. Wang, H. Lin, J. Dong, H. Zou, Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC, Electrophoresis, 36 (2015) 62–75.
  • 67. P. Kuś, J. Kusz, M. Książek, E. Pieprzyca, M. Rojkiewicz, Spectroscopic characterization and crystal structures of two cathinone derivatives: N-ethyl-2-amino-1-phenylpropan-1-one (ethcathinone) hydrochloride and N-ethyl-2-amino-1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride, Forensic Toxicol., 35 (2017) 114–124.
  • 67. P. Kuś, J. Kusz, M. Książek, E. Pieprzyca, M. Rojkiewicz, Spectroscopic characterization and crystal structures of two cathinone derivatives: N-ethyl-2-amino-1-phenylpropan-1-one (ethcathinone) hydrochloride and N-ethyl-2-amino-1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride, Forensic Toxicol., 35 (2017) 114–124.
  • 68. B.B. Mamba, R.W. Krause, T.J. Malefetse, E.N. Nxumalo, Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water, Environ. Chem. Lett., 5 (2007) 79–84.
  • 68. B.B. Mamba, R.W. Krause, T.J. Malefetse, E.N. Nxumalo, Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water, Environ. Chem. Lett., 5 (2007) 79–84.
  • 69. A.E. Holmes, Cyclodextrins and their complexes: Chemistry, analytical methods, applications, Chirality, 19 (2007) 162–162.
  • 69. A.E. Holmes, Cyclodextrins and their complexes: Chemistry, analytical methods, applications, Chirality, 19 (2007) 162–162.
  • 70. M. Arslan, S. Sayin, M. Yilmaz, Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-grafted iron oxide magnetic nanoparticles, Tetrahedron Asymmetry, 24 (2013) 982–989.
  • 70. M. Arslan, S. Sayin, M. Yilmaz, Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-grafted iron oxide magnetic nanoparticles, Tetrahedron Asymmetry, 24 (2013) 982–989.
  • 71. N. Li, J. Chen, Y.P. Shi, Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography, J. Chromatogr. A, 1441 (2016) 24–33.
  • 71. N. Li, J. Chen, Y.P. Shi, Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography, J. Chromatogr. A, 1441 (2016) 24–33.
  • 72. L.A. Kartsova, N.V. Komarova, Influence of α- and β-Cyclodextrins on the Separation of Positional Isomers of Benzoic Acid Nitro, Amino, Chloro, and Hydroxy Derivatives by Capillary Electrophoresis, J. Anal. Chem., 58 (2003) 972–978.
  • 72. L.A. Kartsova, N.V. Komarova, Influence of α- and β-Cyclodextrins on the Separation of Positional Isomers of Benzoic Acid Nitro, Amino, Chloro, and Hydroxy Derivatives by Capillary Electrophoresis, J. Anal. Chem., 58 (2003) 972–978.
  • 73. S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89–122.
  • 73. S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89–122.
  • 74. C. Perrin, Y.V. Heyden, M. Maftouh, D.L. Massart, Rapid screening for chiral separations by short‐end injection capillary electrophoresis using highly sulfated cyclodextrins as chiral selectors, Electrophoresis, 22 (2001) 3203–3215.
  • 74. C. Perrin, Y.V. Heyden, M. Maftouh, D.L. Massart, Rapid screening for chiral separations by short‐end injection capillary electrophoresis using highly sulfated cyclodextrins as chiral selectors, Electrophoresis, 22 (2001) 3203–3215.
  • 75. J. Zhou, J. Tang, W. Tang, Recent development of cationic cyclodextrins for chiral separation, TrAC-Trends Anal. Chem., 65 (2015) 22–29.
  • 75. J. Zhou, J. Tang, W. Tang, Recent development of cationic cyclodextrins for chiral separation, TrAC-Trends Anal. Chem., 65 (2015) 22–29.
  • 76. Z.-X. Fei, M. Zhang, J.-H. Zhang, L.-M. Yuan, Chiral metal–organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 76. Z.-X. Fei, M. Zhang, J.-H. Zhang, L.-M. Yuan, Chiral metal–organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 77. A. Kuila, N.A. Surib, N.S. Mishra, A. Nawaz, K.M. Leong, L.C. Sim, P. Saravanan, S. Ibrahim, Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis, ChemistrySelect, 2 (2017) 6163–6177.
  • 77. A. Kuila, N.A. Surib, N.S. Mishra, A. Nawaz, K.M. Leong, L.C. Sim, P. Saravanan, S. Ibrahim, Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis, ChemistrySelect, 2 (2017) 6163–6177.
  • 78. B. Li, Y. Zhang, D. Ma, L. Li, G. Li, G. Li, Z. Shi, S. Feng, A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites, Chem. Commun., 48 (2012) 6151–6153.
  • 78. B. Li, Y. Zhang, D. Ma, L. Li, G. Li, G. Li, Z. Shi, S. Feng, A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites, Chem. Commun., 48 (2012) 6151–6153.
  • 79. M. Ma, D. Zacher, X. Zhang, R.A. Fischer, N. Metzler-Nolte, A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des., 11 (2011) 185–189.
  • 79. M. Ma, D. Zacher, X. Zhang, R.A. Fischer, N. Metzler-Nolte, A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des., 11 (2011) 185–189.
  • 80. T. Grancha, J. Ferrando-Soria, D. Armentano, E. Pardo, Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear Wheel, J. Coord. Chem., 72 (2019) 1204–1221.
  • 80. T. Grancha, J. Ferrando-Soria, D. Armentano, E. Pardo, Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear Wheel, J. Coord. Chem., 72 (2019) 1204–1221.
  • 81. J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112 (2012) 869–932.
  • 81. J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112 (2012) 869–932.
  • 82. O.K. Farha, A.Ö. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem., 2 (2010) 944–948.
  • 82. O.K. Farha, A.Ö. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem., 2 (2010) 944–948.
  • 83. T. Zhang, F. Song, W. Lin, Blocking bimolecular activation pathways leads to different regioselectivity in metal-organic framework catalysis, Chem. Commun., 48 (2012) 8766–8768.
  • 83. T. Zhang, F. Song, W. Lin, Blocking bimolecular activation pathways leads to different regioselectivity in metal-organic framework catalysis, Chem. Commun., 48 (2012) 8766–8768.
  • 84. G. Wang, Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, S. Litster, G. Wu, Highly active atomically dispersed CoN 4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy, Energy Environ. Sci., 12 (2019) 250–260.
  • 84. G. Wang, Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, S. Litster, G. Wu, Highly active atomically dispersed CoN 4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy, Energy Environ. Sci., 12 (2019) 250–260.
  • 85. J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin, B. Van der Bruggen, Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration, ACS Appl. Mater. Interfaces, 9 (2017) 1975–1986.
  • 85. J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin, B. Van der Bruggen, Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration, ACS Appl. Mater. Interfaces, 9 (2017) 1975–1986.
  • 86. J. Zhuang, C.H. Kuo, L.Y. Chou, D.Y. Liu, E. Weerapana, E., C.K. Tsung, Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation, ACS Nano 8 (2014) 2812–2819.
  • 86. J. Zhuang, C.H. Kuo, L.Y. Chou, D.Y. Liu, E. Weerapana, E., C.K. Tsung, Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation, ACS Nano 8 (2014) 2812–2819.
  • 87. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112 (2012) 933–969.
  • 87. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112 (2012) 933–969.
  • 88. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev., 44 (2015) 7128–7154.
  • 88. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev., 44 (2015) 7128–7154.
  • 89. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, American Association for the Advancement of science (AAAS) 341, (2013) 374-385.
  • 89. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, American Association for the Advancement of science (AAAS) 341, (2013) 374-385.
  • 90. A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178 (2005) 2491–2510.
  • 90. A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178 (2005) 2491–2510.
  • 91. S. Han, Y. Wei, C. Valente, I. Lagzi, J.J. Gassensmith, A. Coskun, J.F. Stoddart, B.A. Grzybowski, Chromatography in a single metal-organic framework (MOF) crystal, J. Am. Chem. Soc., 132 (2010) 16358–16361.
  • 91. S. Han, Y. Wei, C. Valente, I. Lagzi, J.J. Gassensmith, A. Coskun, J.F. Stoddart, B.A. Grzybowski, Chromatography in a single metal-organic framework (MOF) crystal, J. Am. Chem. Soc., 132 (2010) 16358–16361.
  • 92. C.X. Yang, X.P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics, Anal. Chem., 83 (2011) 7144–7150.
  • 92. C.X. Yang, X.P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics, Anal. Chem., 83 (2011) 7144–7150.
  • 93. C.-X. Yang, Y.-J. Chen, H.-F. Wang, X.-P. Yan, High-performance separation of fullerenes on metal-organic framework MIL-101(Cr). Chem. - A Eur. J., 17 (2011) 11734–11737.
  • 93. C.-X. Yang, Y.-J. Chen, H.-F. Wang, X.-P. Yan, High-performance separation of fullerenes on metal-organic framework MIL-101(Cr). Chem. - A Eur. J., 17 (2011) 11734–11737.
  • 94. Z-Y. Gu, D-Q. Jiang, H-F. Wang, X-Y. Cui, X-P. Yan, Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks, J. Phys. Chem., 114 (2010) 311–316.
  • 94. Z-Y. Gu, D-Q. Jiang, H-F. Wang, X-Y. Cui, X-P. Yan, Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks, J. Phys. Chem., 114 (2010) 311–316.
  • 95. Z-X. Fei, M. Zhang, J-H. Zhang, L-M. Yuan, Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 95. Z-X. Fei, M. Zhang, J-H. Zhang, L-M. Yuan, Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 96. S.M. Xie, M. Zhang, Z.X. Fei, L.M. Yuan, Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography, J. Chromatogr. A, 1363 (2014) 137–143.
  • 96. S.M. Xie, M. Zhang, Z.X. Fei, L.M. Yuan, Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography, J. Chromatogr. A, 1363 (2014) 137–143.
  • 97. Z.-X. Fei, M. Zhang, S.-M. Xie, L.-M. Yuan, Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework, Electrophoresis, 35 (2014) 3541–3548.
  • 97. Z.-X. Fei, M. Zhang, S.-M. Xie, L.-M. Yuan, Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework, Electrophoresis, 35 (2014) 3541–3548.
  • 98. M.T. Matyska, J.J. Pesek, A. Katrekar, Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals, Anal. Chem., 71 (1999) 5508–5514.
  • 98. M.T. Matyska, J.J. Pesek, A. Katrekar, Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals, Anal. Chem., 71 (1999) 5508–5514.
  • 99. X. Wang, C. Cheng, S. Wang, M. Zhao, P.K. Dasgupta, S. Liu, Nanocapillaries for open tubular chromatographic separations of proteins in femtoliter to picoliter samples, Anal. Chem., 81 (2009) 7428–7435.
  • 99. X. Wang, C. Cheng, S. Wang, M. Zhao, P.K. Dasgupta, S. Liu, Nanocapillaries for open tubular chromatographic separations of proteins in femtoliter to picoliter samples, Anal. Chem., 81 (2009) 7428–7435.
  • 100. Z-G. Gu, C. Zhan, J. Zhang, X. Bu, Chiral chemistry of metal-camphorate frameworks, Chem. Soc. Rev., 45 (2016) 3122–3144.
  • 100. Z-G. Gu, C. Zhan, J. Zhang, X. Bu, Chiral chemistry of metal-camphorate frameworks, Chem. Soc. Rev., 45 (2016) 3122–3144.
  • 101. S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chem. Commun., 48 (2012) 7447–7449.
  • 101. S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chem. Commun., 48 (2012) 7447–7449.
  • 102. R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides, Nanoscale, 4 (2012) 591–599.
  • 102. R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides, Nanoscale, 4 (2012) 591–599.
  • 103. M.M. Wanderley, C. Wang, C. De Wu, W. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols, J. Am. Chem. Soc., 134 (2012) 9050–9053.
  • 103. M.M. Wanderley, C. Wang, C. De Wu, W. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols, J. Am. Chem. Soc., 134 (2012) 9050–9053.
  • 104. L.L. Wu, R.P. Liang, J. Chen, J.D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 104. L.L. Wu, R.P. Liang, J. Chen, J.D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 105. K. Şarkaya, S. Aşir, I. Göktürk, S. Ektirici, F. Yilmaz, H. Yavuz, A. Denizli, Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. Sep. Sci. Plus (2020) 3:235–245.
  • 105. K. Şarkaya, S. Aşir, I. Göktürk, S. Ektirici, F. Yilmaz, H. Yavuz, A. Denizli, Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. Sep. Sci. Plus (2020) 3:235–245.
  • 106. K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, A. Denizli, Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns, Process Biochem., 92 (2020) 69–77.
  • 106. K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, A. Denizli, Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns, Process Biochem., 92 (2020) 69–77.
  • 107. K. Hroboň Ová, A. Lomenova, Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Monatshefte für Chemie- Chemical Monthly 149 (2018) 939–946.
  • 107. K. Hroboň Ová, A. Lomenova, Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Monatshefte für Chemie- Chemical Monthly 149 (2018) 939–946.
  • 108. C-Y. Yue, G-S. Ding, F-J. Liu, A-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013) 176–182.
  • 108. C-Y. Yue, G-S. Ding, F-J. Liu, A-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013) 176–182.
  • 109. H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal. Chim. Acta., 542 (2005) 83–89.
  • 109. H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal. Chim. Acta., 542 (2005) 83–89.
  • 110. S.H. Ou, L.S. Pan, J.J. Jow, H.R. Chen, T.R. Ling, Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine, Biosens. Bioelectron., 105 (2018) 143–150.
  • 110. S.H. Ou, L.S. Pan, J.J. Jow, H.R. Chen, T.R. Ling, Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine, Biosens. Bioelectron., 105 (2018) 143–150.
  • 111. J. Zhou, Q. Chen, Y. Wang, Q. Han, Y. Fu, Stereoselectivity of tyrosine enantiomers in electrochemical redox reactions on gold matrices, Electrochim. Acta, 59 (2012) 45–48.
  • 111. J. Zhou, Q. Chen, Y. Wang, Q. Han, Y. Fu, Stereoselectivity of tyrosine enantiomers in electrochemical redox reactions on gold matrices, Electrochim. Acta, 59 (2012) 45–48.
  • 112. X. Chen, S. Zhang, X. Shan, Z. Chen, Derivative chiral copper(II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid, Anal. Chim. Acta, 1072 (2019) 54–60.
  • 112. X. Chen, S. Zhang, X. Shan, Z. Chen, Derivative chiral copper(II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid, Anal. Chim. Acta, 1072 (2019) 54–60.
  • 113. Z. Iskierko, A. Checinska, P.S. Sharma, K. Golebiewska, K. Noworyta, P. Borowicz, K. Fronc, V. Bandi, F. D’Souza, W. Kutner, Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing, J. Mater. Chem. C, 5 (2017) 969–977.
  • 113. Z. Iskierko, A. Checinska, P.S. Sharma, K. Golebiewska, K. Noworyta, P. Borowicz, K. Fronc, V. Bandi, F. D’Souza, W. Kutner, Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing, J. Mater. Chem. C, 5 (2017) 969–977.
  • 114. Y. Kong, J. Wei, W. Wang, Z. Chen, Separation of tryptophan enantiomers with polypyrrole electrode column by potential-induced technique, Electrochim. Acta, 56 (2011) 4770–4774.
  • 114. Y. Kong, J. Wei, W. Wang, Z. Chen, Separation of tryptophan enantiomers with polypyrrole electrode column by potential-induced technique, Electrochim. Acta, 56 (2011) 4770–4774.
  • 115. H.S. Lee, J. Hong, Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents, J. Chromatogr. A, 868 (2000) 189–196.
  • 115. H.S. Lee, J. Hong, Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents, J. Chromatogr. A, 868 (2000) 189–196.
  • 116. V. Syritski, J. Reut, A. Menaker, R.E. Gyurcsányi, A. Öpik, Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid, Electrochim. Acta, 53 (2008) 2729–2736.
  • 116. V. Syritski, J. Reut, A. Menaker, R.E. Gyurcsányi, A. Öpik, Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid, Electrochim. Acta, 53 (2008) 2729–2736.
  • 117. J. Gu, H. Dai, Y. Kong, Y. Tao, H. Chu, Z. Tong, Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles, Synth. Met., 222 (2016) 137–143.
  • 117. J. Gu, H. Dai, Y. Kong, Y. Tao, H. Chu, Z. Tong, Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles, Synth. Met., 222 (2016) 137–143.
  • 118. S. Lee, Y. Choi, S. Lee, K. Jeong, S. Jung, Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated fromRhizobium meliloti, Chirality, 16 (2004) 204–210.
  • 118. S. Lee, Y. Choi, S. Lee, K. Jeong, S. Jung, Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated fromRhizobium meliloti, Chirality, 16 (2004) 204–210.
  • 119. W. Liu, C. Holdsworth, L. Ye, Synthesis of molecularly imprinted polymers using a functionalized initiator for chiral‐selective recognition of propranolol, Chirality, 32 (2020) 370–377.
  • 119. W. Liu, C. Holdsworth, L. Ye, Synthesis of molecularly imprinted polymers using a functionalized initiator for chiral‐selective recognition of propranolol, Chirality, 32 (2020) 370–377.
  • 120. G.-N. Chen, N. Li, T. Luo, Y.-M. Dong, Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl) Propyl Methacrylate as a Cross-Linking Monomer, J. Chromatogr. Sci., 55 (2017) 471–476.
  • 120. G.-N. Chen, N. Li, T. Luo, Y.-M. Dong, Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl) Propyl Methacrylate as a Cross-Linking Monomer, J. Chromatogr. Sci., 55 (2017) 471–476.
  • 121. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M.A. Goicolea, R.J. Barrio, Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A, 1508 (2017) 53–64.
  • 121. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M.A. Goicolea, R.J. Barrio, Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A, 1508 (2017) 53–64.
  • 122. R. Gutiérrez-Climente, A. Gómez-Caballero, M. Halhalli, B. Sellergren, M.A. Goicolea, R.J. Barrio, Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs, J. Mol. Recognit., 29 (2016) 106–114.
  • 122. R. Gutiérrez-Climente, A. Gómez-Caballero, M. Halhalli, B. Sellergren, M.A. Goicolea, R.J. Barrio, Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs, J. Mol. Recognit., 29 (2016) 106–114.
  • 123. J.M. Brunel, BINOL: A versatile chiral reagent. Chem. Rev. 2005, 105, 857–897.
  • 123. J.M. Brunel, BINOL: A versatile chiral reagent. Chem. Rev. 2005, 105, 857–897.
  • 124. H. Dong, D. Zhang, H. Lin, Y. Wang, L. Liu, M. Zheng, X. Li, C. Zhang, J. Li, P. Zhang, J. So, A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1′- binaphthalene-2-naphthol racemates, Chirality, 29 (2017) 340–347.
  • 124. H. Dong, D. Zhang, H. Lin, Y. Wang, L. Liu, M. Zheng, X. Li, C. Zhang, J. Li, P. Zhang, J. So, A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1′- binaphthalene-2-naphthol racemates, Chirality, 29 (2017) 340–347.
  • 125. C. Kulsing, R. Knob, M. Macka, P. Junor, R.I. Boysen, M.T.W. Hearn, Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations, J. Chromatogr. A, 1354 (2014) 85–91.
  • 125. C. Kulsing, R. Knob, M. Macka, P. Junor, R.I. Boysen, M.T.W. Hearn, Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations, J. Chromatogr. A, 1354 (2014) 85–91.
  • 126. C. Kulsing, Y. Yang, J.M. Chowdhury, R.I. Boysen, M.T.W. Hearn, Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open-tubular capillaries, Electrophoresis, 38 (2017) 1179–1187.
  • 126. C. Kulsing, Y. Yang, J.M. Chowdhury, R.I. Boysen, M.T.W. Hearn, Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open-tubular capillaries, Electrophoresis, 38 (2017) 1179–1187.
  • 127. J. Ou, X. Li, S. Feng, J. Dong, X. Dong, L. Kong, M. Ye, H. Zou, Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography, Anal. Chem., 79 (2007) 639–646.
  • 127. J. Ou, X. Li, S. Feng, J. Dong, X. Dong, L. Kong, M. Ye, H. Zou, Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography, Anal. Chem., 79 (2007) 639–646.
  • 128. Q-L. Zhao, J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta, 152 (2016) 277–282.
  • 128. Q-L. Zhao, J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta, 152 (2016) 277–282.
  • 129. H.Y. Zong, X. Liu, Z.S. Liu, Y.P. Huang, Molecular crowding-based imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 818–824.
  • 129. H.Y. Zong, X. Liu, Z.S. Liu, Y.P. Huang, Molecular crowding-based imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 818–824.
  • 130. L.N. Mu, X.H. Wang, L. Zhao, Y.P. Huang, Z.S. Liu, Low cross-linked molecularly imprinted monolithic column prepared in molecular crowding conditions, J. Chromatogr. A, 1218 (2011) 9236–9243.
  • 130. L.N. Mu, X.H. Wang, L. Zhao, Y.P. Huang, Z.S. Liu, Low cross-linked molecularly imprinted monolithic column prepared in molecular crowding conditions, J. Chromatogr. A, 1218 (2011) 9236–9243.
  • 131. X.X. Li, X. Liu, L.H. Bai, H.Q. Duan, Y.P. Huang, Z.S. Liu, Preparation of imprinted monolithic column under molecular crowding conditions, Chinese Chem. Lett., 22 (2011) 989-992.
  • 131. X.X. Li, X. Liu, L.H. Bai, H.Q. Duan, Y.P. Huang, Z.S. Liu, Preparation of imprinted monolithic column under molecular crowding conditions, Chinese Chem. Lett., 22 (2011) 989-992.
  • 132. X-H. Wang, Q. Dong, L-L. Ying, S-S. Chi, Y-H. Lan, Y-P. Huang, Z-S. Liu, Enhancement of selective separation on molecularly imprinted monolith by molecular crowding agent, Anal. Bioanal. Chem., 409 (2017) 201–211.
  • 132. X-H. Wang, Q. Dong, L-L. Ying, S-S. Chi, Y-H. Lan, Y-P. Huang, Z-S. Liu, Enhancement of selective separation on molecularly imprinted monolith by molecular crowding agent, Anal. Bioanal. Chem., 409 (2017) 201–211.
  • 133. X.-X. Shi, L. Xu, H.-Q. Duan, Y.-P. Huang, Z.-S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, Electrophoresis, 32 (2011)N1348–1356.
  • 133. X.-X. Shi, L. Xu, H.-Q. Duan, Y.-P. Huang, Z.-S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, Electrophoresis, 32 (2011)N1348–1356.
  • 134. H. Wang, Q. Xu, J. Wang, W. Du, F. Liu, X. Hu, Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing, Biosens. Bioelectron., 100 (2018) 105–114.
  • 134. H. Wang, Q. Xu, J. Wang, W. Du, F. Liu, X. Hu, Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing, Biosens. Bioelectron., 100 (2018) 105–114.
  • 135. W-F. Song, Q-L. Zhao, X-J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography, Microchim. Acta, 186 (2019) 1–7.
  • 135. W-F. Song, Q-L. Zhao, X-J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography, Microchim. Acta, 186 (2019) 1–7.
  • 136. X. Li, Z. Zhou, Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases, Anal. Chim. Acta, 819 (2014) 122–129.
  • 136. X. Li, Z. Zhou, Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases, Anal. Chim. Acta, 819 (2014) 122–129.
  • 137. J. Zhao, X. Lu, Y. Wang, J. Lv, “Click” preparation of a novel “native-phenylcarbamoylated” bilayer cyclodextrin stationary phase for enhanced chiral differentiation, J. Chromatogr. A, 1381 (2015) 253–259.
  • 137. J. Zhao, X. Lu, Y. Wang, J. Lv, “Click” preparation of a novel “native-phenylcarbamoylated” bilayer cyclodextrin stationary phase for enhanced chiral differentiation, J. Chromatogr. A, 1381 (2015) 253–259.
  • 138. P. Řezanka, D. Sýkora, M. Novotný, M. Havlík, V. Král, Nonaqueous Capillary Electrophoretic Enantioseparation of Water Insoluble Tröger’s Base Derivatives Using β-Cyclodextrin as Chiral Selector, Chirality, 25 (2013) 810–813.
  • 138. P. Řezanka, D. Sýkora, M. Novotný, M. Havlík, V. Král, Nonaqueous Capillary Electrophoretic Enantioseparation of Water Insoluble Tröger’s Base Derivatives Using β-Cyclodextrin as Chiral Selector, Chirality, 25 (2013) 810–813.
  • 139. Z.-I. Szabó, L. Szőcs, D.-L. Muntean, B. NoszáL, G. Tóth, Chiral Separation of Uncharged Pomalidomide Enantiomers Using Carboxymethyl-β-Cyclodextrin: A Validated Capillary Electrophoretic Method, Chirality, 28 (2016) 199–203.
  • 139. Z.-I. Szabó, L. Szőcs, D.-L. Muntean, B. NoszáL, G. Tóth, Chiral Separation of Uncharged Pomalidomide Enantiomers Using Carboxymethyl-β-Cyclodextrin: A Validated Capillary Electrophoretic Method, Chirality, 28 (2016) 199–203.
  • 140. E. Sánchez-López, A. Salgado, A.L. Crego, M.L. Marina, Investigation on the enantioseparation of duloxetine by capillary electrophoresis, NMR, and mass spectrometry, Electrophoresis, 35 (2014) 2842–2847.
  • 140. E. Sánchez-López, A. Salgado, A.L. Crego, M.L. Marina, Investigation on the enantioseparation of duloxetine by capillary electrophoresis, NMR, and mass spectrometry, Electrophoresis, 35 (2014) 2842–2847.
  • 141. K. Németh, G. Tárkányi, E. Varga, T. Imre, R. Mizsei, R. Iványi, J. Visy, J. Szemán, L. Jicsinszky, L. Szente, M. Simonyi, Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins, J. Pharm. Biomed. Anal., 54 (2011) 475– 481.
  • 141. K. Németh, G. Tárkányi, E. Varga, T. Imre, R. Mizsei, R. Iványi, J. Visy, J. Szemán, L. Jicsinszky, L. Szente, M. Simonyi, Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins, J. Pharm. Biomed. Anal., 54 (2011) 475– 481.
  • 142. P. Lehnert, A. Přibylka, V. Maier, J. Znaleziona, J. Ševčík, M. Douša, Enantiomeric separation of R,S-tolterodine and R,S -methoxytolterodine with negatively charged cyclodextrins by capillary electrophoresis, J. Sep. Sci., 36 (2013) 1561–1567.
  • 142. P. Lehnert, A. Přibylka, V. Maier, J. Znaleziona, J. Ševčík, M. Douša, Enantiomeric separation of R,S-tolterodine and R,S -methoxytolterodine with negatively charged cyclodextrins by capillary electrophoresis, J. Sep. Sci., 36 (2013) 1561–1567.
  • 143. A. Gogolashvili, L. Chankvetadze, N. Takaishvili, A. Salgado, B. Chankvetadze, Separation of terbutaline enantiomers in capillary electrophoresis with neutral cyclodextrin‐type chiral selectors and investigation of the structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 41 (2020) 1023–1030.
  • 143. A. Gogolashvili, L. Chankvetadze, N. Takaishvili, A. Salgado, B. Chankvetadze, Separation of terbutaline enantiomers in capillary electrophoresis with neutral cyclodextrin‐type chiral selectors and investigation of the structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 41 (2020) 1023–1030.
  • 144. Y. Dai, S. Wang, J. Zhou, J. Tang, W. Tang, A family of single-isomer, dicationic cyclodextrin chiral selectors for capillary electrophoresis: Mono-6 A -ammonium-6 C -butylimidazolium-β-cyclodextrin chlorides, Electrophoresis, 34 (2013) 833–840.
  • 144. Y. Dai, S. Wang, J. Zhou, J. Tang, W. Tang, A family of single-isomer, dicationic cyclodextrin chiral selectors for capillary electrophoresis: Mono-6 A -ammonium-6 C -butylimidazolium-β-cyclodextrin chlorides, Electrophoresis, 34 (2013) 833–840.
  • 145. Y. Dai, S. Wang, J. Zhou, Y. Liu, D. Sun, J. Tang, W. Tang, Cationic cyclodextrin as versatile chiral selector for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1246 (2012) 98–102.
  • 145. Y. Dai, S. Wang, J. Zhou, Y. Liu, D. Sun, J. Tang, W. Tang, Cationic cyclodextrin as versatile chiral selector for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1246 (2012) 98–102.
  • 146. A.S. Rizvi, G. Murtaza, M. Irfan, Y. Xiao, F. Qu, Determination of Kynurenine Enantiomers by Alpha-Cyclodextrin, Cationic-βeta-Cyclodextrin and Their Synergy Complemented with Stacking Enrichment in Capillary Electrophoresis, J. Chromatogr. A, 1622 (2020) 461128.
  • 146. A.S. Rizvi, G. Murtaza, M. Irfan, Y. Xiao, F. Qu, Determination of Kynurenine Enantiomers by Alpha-Cyclodextrin, Cationic-βeta-Cyclodextrin and Their Synergy Complemented with Stacking Enrichment in Capillary Electrophoresis, J. Chromatogr. A, 1622 (2020) 461128.
  • 147. Y. Feng, T. Wang, Z. Jiang, B. Chankvetadze, J. Crommen, Comparative enantiomer affinity pattern of β-blockers in aqueous and nonaqueous CE using single-component anionic cyclodextrins, Electrophoresis, 36 (2015) 1358–1364.
  • 147. Y. Feng, T. Wang, Z. Jiang, B. Chankvetadze, J. Crommen, Comparative enantiomer affinity pattern of β-blockers in aqueous and nonaqueous CE using single-component anionic cyclodextrins, Electrophoresis, 36 (2015) 1358–1364.
  • 148. J. Boonleang, J.F. Stobaugh, New single isomer negatively charged β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Electrophoresis, 34 (2013) 1232–1240.
  • 148. J. Boonleang, J.F. Stobaugh, New single isomer negatively charged β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Electrophoresis, 34 (2013) 1232–1240.
  • 149. K. Lomsadze, E.D. Vega, A. Salgado, A.L. Crego, G.K.E. Scriba, M.L. Marina, B. Chankvetadze, Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: Comparative CE and NMR studies, Electrophoresis, 33 (2012) 1637–1647.
  • 149. K. Lomsadze, E.D. Vega, A. Salgado, A.L. Crego, G.K.E. Scriba, M.L. Marina, B. Chankvetadze, Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: Comparative CE and NMR studies, Electrophoresis, 33 (2012) 1637–1647.
  • 150. K. Lomsadze, A. Salgado, E. Calvo, J. Antonio López, B. Chankvetadze, Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with heptakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes, Electrophoresis, 32 (2011) 1156–1163.
  • 150. K. Lomsadze, A. Salgado, E. Calvo, J. Antonio López, B. Chankvetadze, Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with heptakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes, Electrophoresis, 32 (2011) 1156–1163.
  • 151. Y. Liu, M. Deng, J. Yu, Z. Jiang, X. Guo, Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism, J. Sep. Sci., 39 (2016) 1766–1775.
  • 151. Y. Liu, M. Deng, J. Yu, Z. Jiang, X. Guo, Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism, J. Sep. Sci., 39 (2016) 1766–1775.
  • 152. S. Samakashvili, A. Salgado, G.K.E. Scriba, B. Chankvetadze, Comparative Enantioseparation of Ketoprofen with Trimethylated α-, β-, and γ-Cyclodextrins in Capillary Electrophoresis and Study of Related Selector-Selectand Interactions Using Nuclear Magnetic Resonance Spectroscopy, Chirality, 25 (2013) 79–88.
  • 152. S. Samakashvili, A. Salgado, G.K.E. Scriba, B. Chankvetadze, Comparative Enantioseparation of Ketoprofen with Trimethylated α-, β-, and γ-Cyclodextrins in Capillary Electrophoresis and Study of Related Selector-Selectand Interactions Using Nuclear Magnetic Resonance Spectroscopy, Chirality, 25 (2013) 79–88.
  • 153. L. Li, X. Li, Q. Luo, T. You, A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches, Talanta, 142 (2015) 28–34.
  • 153. L. Li, X. Li, Q. Luo, T. You, A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches, Talanta, 142 (2015) 28–34.
  • 154. W. Li, L. Zhao, H. Zhang, X. Chen, S. Chen, Z. Zhu, Z. Hong, Y. Chai, Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms, Electrophoresis, 35 (2014) 2855–2862.
  • 154. W. Li, L. Zhao, H. Zhang, X. Chen, S. Chen, Z. Zhu, Z. Hong, Y. Chai, Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms, Electrophoresis, 35 (2014) 2855–2862.
  • 155. S. Béni, T. Sohajda, G. Neumajer, R. Iványi, L. Szente, B. Noszál, Separation and characterization of modified pregabalins in terms of cyclodextrin complexation, using capillary electrophoresis and nuclear magnetic resonance, J. Pharm. Biomed. Anal., 51 (2010) 842–852.
  • 155. S. Béni, T. Sohajda, G. Neumajer, R. Iványi, L. Szente, B. Noszál, Separation and characterization of modified pregabalins in terms of cyclodextrin complexation, using capillary electrophoresis and nuclear magnetic resonance, J. Pharm. Biomed. Anal., 51 (2010) 842–852.
  • 156. W. Li, G. Tan, L. Zhao, X. Chen, X. Zhang, Z. Zhu, Y. Chai, Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: Chiral recognition mechanism and mathematical model for predicting chiral separation, Anal. Chim. Acta, 718 (2012) 138–147.
  • 156. W. Li, G. Tan, L. Zhao, X. Chen, X. Zhang, Z. Zhu, Y. Chai, Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: Chiral recognition mechanism and mathematical model for predicting chiral separation, Anal. Chim. Acta, 718 (2012) 138–147.
  • 157. X. Guo, Z. Wang, L. Zuo, Z. Zhou, X. Guo, T. Sun, Quantitative prediction of enantioseparation using 2-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Analyst, 139 (2014) 6511–6519.
  • 157. X. Guo, Z. Wang, L. Zuo, Z. Zhou, X. Guo, T. Sun, Quantitative prediction of enantioseparation using 2-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Analyst, 139 (2014) 6511–6519.
  • 158. A. Gogolashvili, E. Tatunashvili, L. Chankvetadze, T. Sohajda, M. Gumustas, S.A. Ozkan, A. Salgado, B. Chankvetadze, Separation of brombuterol enantiomers in capillary electrophoresis with cyclodextrin‐type chiral selectors and investigation of structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 40 (2019) 1904–1912.
  • 158. A. Gogolashvili, E. Tatunashvili, L. Chankvetadze, T. Sohajda, M. Gumustas, S.A. Ozkan, A. Salgado, B. Chankvetadze, Separation of brombuterol enantiomers in capillary electrophoresis with cyclodextrin‐type chiral selectors and investigation of structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 40 (2019) 1904–1912.
  • 159. I. Fradi, A.C. Servais, C. Lamalle, M. Kallel, M. Abidi, J. Crommen, M. Fillet, Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization, J. Chromatogr. A, 1267 (2012) 121–126.
  • 159. I. Fradi, A.C. Servais, C. Lamalle, M. Kallel, M. Abidi, J. Crommen, M. Fillet, Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization, J. Chromatogr. A, 1267 (2012) 121–126.
  • 160. J. Tang, L. Pang, J. Zhou, S. Zhang, W. Tang, Per(3-chloro-4-methyl) phenylcarbamate cyclodextrin clicked stationary phase for chiral separation in multiple modes high-performance liquid chromatography, Anal. Chim. Acta, 946 (2016) 96–103.
  • 160. J. Tang, L. Pang, J. Zhou, S. Zhang, W. Tang, Per(3-chloro-4-methyl) phenylcarbamate cyclodextrin clicked stationary phase for chiral separation in multiple modes high-performance liquid chromatography, Anal. Chim. Acta, 946 (2016) 96–103.
  • 161. X. Li, X. Yao, Y. Xiao, Y. Wang, Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study, Anal. Chim. Acta, 990 (2017) 174–184.
  • 161. X. Li, X. Yao, Y. Xiao, Y. Wang, Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study, Anal. Chim. Acta, 990 (2017) 174–184.
  • 162. M. Castro-Puyana, I. Lammers, J. Buijs, C. Gooijer, F. Ariese, Sensitized phosphorescence as detection method for the enantioseparation of bupropion by capillary electrophoresis, Electrophoresis, 31 (2010) 3928–3936.
  • 162. M. Castro-Puyana, I. Lammers, J. Buijs, C. Gooijer, F. Ariese, Sensitized phosphorescence as detection method for the enantioseparation of bupropion by capillary electrophoresis, Electrophoresis, 31 (2010) 3928–3936.
  • 163. A. Aranyi, A. Péter, I. Ilisz, F. Fülöp, G.K.E. Scriba, Cyclodextrin-mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis-Role of complexation constants and complex mobilities, Electrophoresis, 35 (2014) 2848–2854.
  • 163. A. Aranyi, A. Péter, I. Ilisz, F. Fülöp, G.K.E. Scriba, Cyclodextrin-mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis-Role of complexation constants and complex mobilities, Electrophoresis, 35 (2014) 2848–2854.
  • 164. Z.I. Szabó, G. Tóth, G. Völgyi, B. Komjáti, G. Hancu, L. Szente, T. Sohajda, S. Béni, D.L. Muntean, B. Noszál, Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling, J. Pharm. Biomed. Anal., 117 (2016) 398–404.
  • 164. Z.I. Szabó, G. Tóth, G. Völgyi, B. Komjáti, G. Hancu, L. Szente, T. Sohajda, S. Béni, D.L. Muntean, B. Noszál, Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling, J. Pharm. Biomed. Anal., 117 (2016) 398–404.
  • 165. K. Phatthiyaphaibun, W. Som-Aum, M. Srisa-Ard, J. Threeprom, Chiral separation of pheniramine by capillary electrophoresis partial-filling technique using hydroxypropyl-β-cyclodextrin as chiral selector, J. Anal. Chem., 65 (2010) 803–808.
  • 165. K. Phatthiyaphaibun, W. Som-Aum, M. Srisa-Ard, J. Threeprom, Chiral separation of pheniramine by capillary electrophoresis partial-filling technique using hydroxypropyl-β-cyclodextrin as chiral selector, J. Anal. Chem., 65 (2010) 803–808.
  • 166. J. Znaleziona, I. Fejos, J. Ševčík, M. Douša, S. Béni, V. Maier, Enantiomeric separation of tapentadol by capillary electrophoresis-Study of chiral selectivity manipulation by various types of cyclodextrins, J. Pharm. Biomed. Anal., 105 (2015) 10–16.
  • 166. J. Znaleziona, I. Fejos, J. Ševčík, M. Douša, S. Béni, V. Maier, Enantiomeric separation of tapentadol by capillary electrophoresis-Study of chiral selectivity manipulation by various types of cyclodextrins, J. Pharm. Biomed. Anal., 105 (2015) 10–16.
  • 167. T. Sohajda, Z. Szakács, L. Szente, B. Noszál, S. Béni, Chiral recognition of imperanene enantiomers by various cyclodextrins: A capillary electrophoresis and NMR spectroscopy study, Electrophoresis, 33 (2012) 1458–1464.
  • 167. T. Sohajda, Z. Szakács, L. Szente, B. Noszál, S. Béni, Chiral recognition of imperanene enantiomers by various cyclodextrins: A capillary electrophoresis and NMR spectroscopy study, Electrophoresis, 33 (2012) 1458–1464.
  • 168. T. Sohajda, W.H. Hu, L.L. Zeng, H. Li, L. Szente, B. Noszál, S. Béni, Evaluation of the interaction between sitagliptin and cyclodextrin derivatives by capillary electrophoresis and nuclear magnetic resonance spectroscopy, Electrophoresis, 32 (2011) 2648–2654.
  • 168. T. Sohajda, W.H. Hu, L.L. Zeng, H. Li, L. Szente, B. Noszál, S. Béni, Evaluation of the interaction between sitagliptin and cyclodextrin derivatives by capillary electrophoresis and nuclear magnetic resonance spectroscopy, Electrophoresis, 32 (2011) 2648–2654.
  • 169. W.A. Wan Ibrahim, S.R. Arsad, H. Maarof, M.M. Sanagi, H.Y. Aboul-Enein, Chiral Separation of Four Stereoisomers of Ketoconazole Drugs Using Capillary Electrophoresis, Chirality, 27 (2015) 223–227.
  • 169. W.A. Wan Ibrahim, S.R. Arsad, H. Maarof, M.M. Sanagi, H.Y. Aboul-Enein, Chiral Separation of Four Stereoisomers of Ketoconazole Drugs Using Capillary Electrophoresis, Chirality, 27 (2015) 223–227.
  • 170. M. Steinhoff, N. Vergnolle, S.H. Young, M. Tognetto, S. Amadesi, H.S. Ennes, M. Trevisani, M.D. Hollenberg, J.L. Wallace, G.H. Caughey, S.E. Mitchell, L.M. Williams, P. Geppetti, E.A. Mayer, N.W. Bunnett, Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism, Nat. Med., 6 (2000) 151–158.
  • 170. M. Steinhoff, N. Vergnolle, S.H. Young, M. Tognetto, S. Amadesi, H.S. Ennes, M. Trevisani, M.D. Hollenberg, J.L. Wallace, G.H. Caughey, S.E. Mitchell, L.M. Williams, P. Geppetti, E.A. Mayer, N.W. Bunnett, Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism, Nat. Med., 6 (2000) 151–158.
  • 171. J. Zhou, H. Yao, H. Shao, Y. Li, Z. Zhang, Enantioseparation of β-agonists with carboxymethyl-β-cyclodextrin by CE, J. Liq. Chromatogr. Relat. Technol., 35 (2012) 50–58.
  • 171. J. Zhou, H. Yao, H. Shao, Y. Li, Z. Zhang, Enantioseparation of β-agonists with carboxymethyl-β-cyclodextrin by CE, J. Liq. Chromatogr. Relat. Technol., 35 (2012) 50–58.
  • 172. C. Soares Nascimento, J. Fedoce Lopes, L. Guimarães, K. Bastos Borges, Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector, Analyst, 139 (2014) 3901–3910.
  • 172. C. Soares Nascimento, J. Fedoce Lopes, L. Guimarães, K. Bastos Borges, Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector, Analyst, 139 (2014) 3901–3910.
  • 173. Y. Qi, X. Zhang, Determination of enantiomeric impurity of levamlodipine besylate bulk drug by capillary electrophoresis using carboxymethyl-β-Cyclodextrin, Cell Biochem. Biophys., 70 (2014) 1633–1637.
  • 173. Y. Qi, X. Zhang, Determination of enantiomeric impurity of levamlodipine besylate bulk drug by capillary electrophoresis using carboxymethyl-β-Cyclodextrin, Cell Biochem. Biophys., 70 (2014) 1633–1637.
  • 174. J. Zhou, Y. Wang, Y. Liu, J. Tang, W. Tang, Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis, Anal. Chim. Acta, 868 (2015) 73–79.
  • 174. J. Zhou, Y. Wang, Y. Liu, J. Tang, W. Tang, Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis, Anal. Chim. Acta, 868 (2015) 73–79.
  • 175. I.W. Muderawan, T.T. Ong, W.H. Tang, D.J. Young, C.B. Ching, S.C. Ng, Synthesis of ammonium substituted β-cyclodextrins for enantioseparation of anionic analytes, Tetrahedron Lett., 46 (2005) 1747–1749.
  • 175. I.W. Muderawan, T.T. Ong, W.H. Tang, D.J. Young, C.B. Ching, S.C. Ng, Synthesis of ammonium substituted β-cyclodextrins for enantioseparation of anionic analytes, Tetrahedron Lett., 46 (2005) 1747–1749.
  • 176. Y. Xiao, Y. Wang, T.-T. Ong, L. Ge, S.N. Tan, D.J. Young, T.T.Y. Tan, S.-C. Ng, Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors, J. Sep. Sci., 33 (2010) 1797–1805.
  • 176. Y. Xiao, Y. Wang, T.-T. Ong, L. Ge, S.N. Tan, D.J. Young, T.T.Y. Tan, S.-C. Ng, Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors, J. Sep. Sci., 33 (2010) 1797–1805.
  • 177. S. Wang, Y. Dai, J. Wu, J. Zhou, J. Tang, W. Tang, Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1277 (2013) 84–92.
  • 177. S. Wang, Y. Dai, J. Wu, J. Zhou, J. Tang, W. Tang, Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1277 (2013) 84–92.
  • 178. S. Kodama, A. Taga, S. Aizawa, T. Kemmei, Y. Honda, K. Suzuki, A. Yamamoto, Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector, Electrophoresis, 33 (2012) 2441–2445.
  • 178. S. Kodama, A. Taga, S. Aizawa, T. Kemmei, Y. Honda, K. Suzuki, A. Yamamoto, Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector, Electrophoresis, 33 (2012) 2441–2445.
  • 179. A.C. Servais, A. Rousseau, M. Fillet, K. Lomsadze, A. Salgado, J. Crommen, B. Chankvetadze, Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes: Comparative CE and NMR study, Electrophoresis, 31 (2010) 1467–1474.
  • 179. A.C. Servais, A. Rousseau, M. Fillet, K. Lomsadze, A. Salgado, J. Crommen, B. Chankvetadze, Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes: Comparative CE and NMR study, Electrophoresis, 31 (2010) 1467–1474.
  • 180. A.C. Servais, A. Rousseau, G. Dive, M. Frederich, J. Crommen, M. Fillet, Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte, J. Chromatogr. A, 1232 (2012) 59–64.
  • 180. A.C. Servais, A. Rousseau, G. Dive, M. Frederich, J. Crommen, M. Fillet, Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte, J. Chromatogr. A, 1232 (2012) 59–64.
  • 181. E. Tutu, G. Vigh, Synthesis, analytical characterization and initial capillary electrophoretic use in an acidic background electrolyte of a new, single-isomer chiral resolving agent: Heptakis(2-O-sulfo-3-O-methyl-6-O-acetyl)-β-cyclodextrin, Electrophoresis, 32 (2011) 2655–2662.
  • 181. E. Tutu, G. Vigh, Synthesis, analytical characterization and initial capillary electrophoretic use in an acidic background electrolyte of a new, single-isomer chiral resolving agent: Heptakis(2-O-sulfo-3-O-methyl-6-O-acetyl)-β-cyclodextrin, Electrophoresis, 32 (2011) 2655–2662.
  • 182. P. Nowak, M. Garnysz, M. Woźniakiewicz, P. Kościelniak, Fast separation of warfarin and 7-hydroxywarfarin enantiomers by cyclodextrin-assisted capillary electrophoresis, J. Sep. Sci., 37 (2014) 2625–2631.
  • 182. P. Nowak, M. Garnysz, M. Woźniakiewicz, P. Kościelniak, Fast separation of warfarin and 7-hydroxywarfarin enantiomers by cyclodextrin-assisted capillary electrophoresis, J. Sep. Sci., 37 (2014) 2625–2631.
  • 183. S. Mohr, S. Pilaj, M.G. Schmid, Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis, Electrophoresis, 33 (2012) 1624–1630.
  • 183. S. Mohr, S. Pilaj, M.G. Schmid, Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis, Electrophoresis, 33 (2012) 1624–1630.
  • 184. L. Chankvetadze, A.C. Servais, M. Fillet, A. Salgado, J. Crommen, B. Chankvetadze, Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1267 (2012) 206–216.
  • 184. L. Chankvetadze, A.C. Servais, M. Fillet, A. Salgado, J. Crommen, B. Chankvetadze, Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1267 (2012) 206–216.
  • 185. Z.I. Szabó, M. Foroughbakhshfasaei, R. Gál, P. Horváth, B. Komjáti, B. Noszál, G. Tóth, Chiral separation of lenalidomide by liquid chromatography on polysaccharide-type stationary phases and by capillary electrophoresis using cyclodextrin selectors, J. Sep. Sci., 41 (2018) 1414–1423.
  • 185. Z.I. Szabó, M. Foroughbakhshfasaei, R. Gál, P. Horváth, B. Komjáti, B. Noszál, G. Tóth, Chiral separation of lenalidomide by liquid chromatography on polysaccharide-type stationary phases and by capillary electrophoresis using cyclodextrin selectors, J. Sep. Sci., 41 (2018) 1414–1423.
  • 186. Q. Zhang, Y. Du, J. Chen, G. Xu, T. Yu, X. Hua, J. Zhang, Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis, Analytical and Bioanalytical Chemistry. Springer (2014) 1557–1566.
  • 186. Q. Zhang, Y. Du, J. Chen, G. Xu, T. Yu, X. Hua, J. Zhang, Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis, Analytical and Bioanalytical Chemistry. Springer (2014) 1557–1566.
  • 187. Y. Yao, P. Song, X. Wen, M. Deng, J. Wang, X. Guo, Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-β-cyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods, J. Sep. Sci., 40 (2017) 2999–3007.
  • 187. Y. Yao, P. Song, X. Wen, M. Deng, J. Wang, X. Guo, Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-β-cyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods, J. Sep. Sci., 40 (2017) 2999–3007.
  • 188. S. Nojavan, A.R. Fakhari, Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: Effect of zwitterionic property of cetirizine on enantioseparation, Electrophoresis, 32 (2011) 764–771.
  • 188. S. Nojavan, A.R. Fakhari, Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: Effect of zwitterionic property of cetirizine on enantioseparation, Electrophoresis, 32 (2011) 764–771.
  • 189. H. Tabani, M. Mahyari, A. Sahragard, A.R. Fakhari, A. Shaabani, Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis, Electrophoresis, 36 (2015) 305–311.
  • 189. H. Tabani, M. Mahyari, A. Sahragard, A.R. Fakhari, A. Shaabani, Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis, Electrophoresis, 36 (2015) 305–311.
  • 190. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv.,5 (2015) 28762–28768.
  • 190. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv.,5 (2015) 28762–28768.
  • 191. J.A. McKee, T.K. Green, Synthesis of 2,3-O-dibenzyl-6-O-sulfobutyl-α and β cyclodextrins: new chiral surfactants for capillary electrophoresis, Tetrahedron Lett., 56 (2015) 4451–4454.
  • 191. J.A. McKee, T.K. Green, Synthesis of 2,3-O-dibenzyl-6-O-sulfobutyl-α and β cyclodextrins: new chiral surfactants for capillary electrophoresis, Tetrahedron Lett., 56 (2015) 4451–4454.
  • 192. Terabe, S., Procedia Chemistry. Twenty-five years of micellar electrokinetic chromatography 2 (2010), 2–8.
  • 192. Terabe, S., Procedia Chemistry. Twenty-five years of micellar electrokinetic chromatography 2 (2010), 2–8.
  • 193. Y. Liu, S.A. Shamsi, Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: Evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis, J. Chromatogr. A, 1360 (2014) 296–304.
  • 193. Y. Liu, S.A. Shamsi, Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: Evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis, J. Chromatogr. A, 1360 (2014) 296–304.
  • 194. A. Přibylka, M. Švidrnoch, E. Tesařová, D.W. Armstrong, V. Maier, The empirical comparison of cyclofructans and cyclodextrins as chiral selectors in capillary electrophoretic separation of atropisomers of R,S -1,1’-binaphthalene-2,2’-diyl hydrogen phosphate, J. Sep. Sci., 39 (2016) 973–979.
  • 194. A. Přibylka, M. Švidrnoch, E. Tesařová, D.W. Armstrong, V. Maier, The empirical comparison of cyclofructans and cyclodextrins as chiral selectors in capillary electrophoretic separation of atropisomers of R,S -1,1’-binaphthalene-2,2’-diyl hydrogen phosphate, J. Sep. Sci., 39 (2016) 973–979.
  • 195. W. Ding, T. Yu, Y. Du, X. Sun, Z. Feng, S. Zhao, X. Ma, M. Ma, C. Chen, A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography, Microchim. Acta, 187 (2020) 1–10.
  • 195. W. Ding, T. Yu, Y. Du, X. Sun, Z. Feng, S. Zhao, X. Ma, M. Ma, C. Chen, A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography, Microchim. Acta, 187 (2020) 1–10.
  • 196. N. Ye, J. Ma, J. An, J. Li, Z. Cai, H. Zong, Separation of amino acid enantiomers by a capillary modified with a metal-organic framework, RSC Adv., 6 (2016) 41587–41593.
  • 196. N. Ye, J. Ma, J. An, J. Li, Z. Cai, H. Zong, Separation of amino acid enantiomers by a capillary modified with a metal-organic framework, RSC Adv., 6 (2016) 41587–41593.
  • 197. Z. Geng, Q. Song, B. Yu, H. Cong, Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins, Talanta, 188 (2018) 493–498.
  • 197. Z. Geng, Q. Song, B. Yu, H. Cong, Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins, Talanta, 188 (2018) 493–498.
  • 198. X. Wang, A. Lamprou, F. Svec, Y. Bai, H. Liu, Polymer-based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography, J. Sep. Sci., 39 (2016) 4544–4548.
  • 198. X. Wang, A. Lamprou, F. Svec, Y. Bai, H. Liu, Polymer-based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography, J. Sep. Sci., 39 (2016) 4544–4548.
  • 199. C. Pan, W. Wang, H. Zhang, L. Xu, X. Chen, In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A, 1388 (2015) 207–216.
  • 199. C. Pan, W. Wang, H. Zhang, L. Xu, X. Chen, In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A, 1388 (2015) 207–216.
  • 200. J. Ma, N. Ye, J. Li, Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography, Electrophoresis, 37 (2016) 601–608.
  • 200. J. Ma, N. Ye, J. Li, Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography, Electrophoresis, 37 (2016) 601–608.
  • 201. L. He, C. Tian, J. Zhang, W. Xu, B. Peng, S. Xie, M. Zi, L. Yuan, Chiral metal‐organic cages used as stationary phase for enantioseparations in capillary electrochromatography, Electrophoresis, 41 (2020) 104–111.
  • 201. L. He, C. Tian, J. Zhang, W. Xu, B. Peng, S. Xie, M. Zi, L. Yuan, Chiral metal‐organic cages used as stationary phase for enantioseparations in capillary electrochromatography, Electrophoresis, 41 (2020) 104–111.
  • 202. D. Pérez-Quintanilla, S. Morante-Zarcero, I. Sierra, Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography, J. Colloid Interface Sci., 414 (2014) 14–23.
  • 202. D. Pérez-Quintanilla, S. Morante-Zarcero, I. Sierra, Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography, J. Colloid Interface Sci., 414 (2014) 14–23.
  • 203. M. Greño, M. Castro-Puyana, M.Á. García, M.L. Marina, Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update, Electrophoresis, 39 (2018) 235–259.
  • 203. M. Greño, M. Castro-Puyana, M.Á. García, M.L. Marina, Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update, Electrophoresis, 39 (2018) 235–259.
  • 204. T. Yu, Y. Du, B. Chen, Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis, Electrophoresis, 32 (2011) 1898–1905.
  • 204. T. Yu, Y. Du, B. Chen, Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis, Electrophoresis, 32 (2011) 1898–1905.
  • 205. B. Chen, Y. Du, Evaluation of the enantioseparation capability of the novel chiral selector clindamycin phosphate towards basic drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 1217 (2010) 1806–1812.
  • 205. B. Chen, Y. Du, Evaluation of the enantioseparation capability of the novel chiral selector clindamycin phosphate towards basic drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 1217 (2010) 1806–1812.
  • 206. S. Dixit, J.H. Park, Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis, J. Chromatogr. A, 1453 (2016) 138–142.
  • 206. S. Dixit, J.H. Park, Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis, J. Chromatogr. A, 1453 (2016) 138–142.
  • 207. A.P. Kumar, J.H. Park, Azithromycin as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1218 (2011) 1314–1317.
  • 207. A.P. Kumar, J.H. Park, Azithromycin as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1218 (2011) 1314–1317.
  • 208. B. Chankvetadze, G. Blaschke, Enantioseparations using capillary electromigration techniques in nonaqueous buffers, Electrophoresis, 21 (2000) 4159–4178.
  • 208. B. Chankvetadze, G. Blaschke, Enantioseparations using capillary electromigration techniques in nonaqueous buffers, Electrophoresis, 21 (2000) 4159–4178.
  • 209. M.V. Lebedeva, A.F. Prokhorova, E.N. Shapovalova, O.A. Shpigun, Clarithromycin as a chiral selector for enantioseparation of basic compounds in nonaqueous capillary electrophoresis, Electrophoresis, 35 (2014) 2759–2764.
  • 209. M.V. Lebedeva, A.F. Prokhorova, E.N. Shapovalova, O.A. Shpigun, Clarithromycin as a chiral selector for enantioseparation of basic compounds in nonaqueous capillary electrophoresis, Electrophoresis, 35 (2014) 2759–2764.
  • 210. D.A. Jayawardhana, J.A. Crank, Q. Zhao, D.W. Armstrong, X. Guan, Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte, Anal. Chem., 81 (2009) 460–464.
  • 210. D.A. Jayawardhana, J.A. Crank, Q. Zhao, D.W. Armstrong, X. Guan, Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte, Anal. Chem., 81 (2009) 460–464.
  • 211. V. Maier, V. Ranc, M. Švidrnoch, J. Petr, J. Ševčík, E. Tesařová, D.W. Armstrong, Study on the use of boromycin as a chiral selector in capillary electrophoresis, J. Chromatogr. A, 1237 (2012) 128–132.
  • 211. V. Maier, V. Ranc, M. Švidrnoch, J. Petr, J. Ševčík, E. Tesařová, D.W. Armstrong, Study on the use of boromycin as a chiral selector in capillary electrophoresis, J. Chromatogr. A, 1237 (2012) 128–132.
  • 212. S. Ren, Q. Zhang, S. Xue, S. Liu, M. Rui, Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis, J. Chromatogr. A, https://doi.org/10.1016/j.chroma.2020.461099.
  • 212. S. Ren, Q. Zhang, S. Xue, S. Liu, M. Rui, Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis, J. Chromatogr. A, https://doi.org/10.1016/j.chroma.2020.461099.
  • 213. A.C. Kogawa, H. Regina, N. Salgado, Hoxycyclıne Hyclate: A review of Propertıes, Applıcatıons and Analytıcal methods. International Journal of Life Science and Pharma Research, 2, 4 (2012) 11-25.
  • 213. A.C. Kogawa, H. Regina, N. Salgado, Hoxycyclıne Hyclate: A review of Propertıes, Applıcatıons and Analytıcal methods. International Journal of Life Science and Pharma Research, 2, 4 (2012) 11-25.
  • 214. M.G. Jang, M.D. Jang, J.H. Park, Doxycycline as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1508 (2017) 176–181.
  • 214. M.G. Jang, M.D. Jang, J.H. Park, Doxycycline as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1508 (2017) 176–181.
  • 215. Q. Zhang, S. Ren, S. Xue, Investigation of fusidic acid as a chiral selector in capillary electrophoresis, Sep. Purif. Technol., 242 (2020) 116768.
  • 215. Q. Zhang, S. Ren, S. Xue, Investigation of fusidic acid as a chiral selector in capillary electrophoresis, Sep. Purif. Technol., 242 (2020) 116768.
  • 216. H. Nishi, K. Nakamura, H. Nakai, T. Sato, Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics, Chromatographia, 43 (1996) 426-430.
  • 216. H. Nishi, K. Nakamura, H. Nakai, T. Sato, Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics, Chromatographia, 43 (1996) 426-430.
  • 217. X. Zhang, S. Qi, C. Liu, X. Zhao, Enantiomeric separation of five acidic drugs via capillary electrophoresis using streptomycin as chiral selector, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1063 (2017) 31–35.
  • 217. X. Zhang, S. Qi, C. Liu, X. Zhao, Enantiomeric separation of five acidic drugs via capillary electrophoresis using streptomycin as chiral selector, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1063 (2017) 31–35.
  • 218. C. Liu, J. Zhang, X. Zhang, L. Zhao, S. Li, Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles, Microchim. Acta, 185 (2018) 1–7.
  • 218. C. Liu, J. Zhang, X. Zhang, L. Zhao, S. Li, Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles, Microchim. Acta, 185 (2018) 1–7.
  • 219. S. Dixit, J.H. Park, Penicillin G as a novel chiral selector in capillary electrophoresis, J. Chromatogr. A, 1326 (2014) 134–138.
  • 219. S. Dixit, J.H. Park, Penicillin G as a novel chiral selector in capillary electrophoresis, J. Chromatogr. A, 1326 (2014) 134–138.
  • 220. A.F. Prokhorova, M.A. Kuznetsov, E.N. Shapovalova, S.M. Staroverov, O.A. Shpigun, Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary Procedia Chemistry, 2 (2010), 9–13.
  • 220. A.F. Prokhorova, M.A. Kuznetsov, E.N. Shapovalova, S.M. Staroverov, O.A. Shpigun, Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary Procedia Chemistry, 2 (2010), 9–13.
  • 221. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: Database and evaluation, J. Phys. Chem. Ref. Data, 35 (2006) 1475–1517.
  • 221. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: Database and evaluation, J. Phys. Chem. Ref. Data, 35 (2006) 1475–1517.
  • 222. H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen., 373 (2010) 1–56.
  • 222. H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen., 373 (2010) 1–56.
  • 223. W. Weber, J.T. Andersson, Ionic liquids as stationary phases in gas chromatography-An LSER investigation of six commercial phases and some applications, Anal. Bioanal. Chem., 406 (2014) 5347–5358.
  • 223. W. Weber, J.T. Andersson, Ionic liquids as stationary phases in gas chromatography-An LSER investigation of six commercial phases and some applications, Anal. Bioanal. Chem., 406 (2014) 5347–5358.
  • 224. Q. Wang, X. Chen, B. Qiu, L. Zhou, H. Zhang, J. Xie, Y. Luo, B. Wang, Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials, J. Sep. Sci., 39 (2016) 1242–1248.
  • 224. Q. Wang, X. Chen, B. Qiu, L. Zhou, H. Zhang, J. Xie, Y. Luo, B. Wang, Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials, J. Sep. Sci., 39 (2016) 1242–1248.
  • 225. F. Zhao, Y. Meng, J.L. Anderson, Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction, J. Chromatogr. A, 1208 (2008) 1–9.
  • 225. F. Zhao, Y. Meng, J.L. Anderson, Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction, J. Chromatogr. A, 1208 (2008) 1–9.
  • 226. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv., 5 (2015) 28762–28768.
  • 226. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv., 5 (2015) 28762–28768.
  • 227. Z. Ma, L. Zhang, L. Lin, P. Ji, X. Guo, Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector, Biomed. Chromatogr., 24 (2010) 1332–1337.
  • 227. Z. Ma, L. Zhang, L. Lin, P. Ji, X. Guo, Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector, Biomed. Chromatogr., 24 (2010) 1332–1337.
  • 228. J. Chen, Y. Du, X. Sun, Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis, Chirality, 29 (2017) 824–835.
  • 228. J. Chen, Y. Du, X. Sun, Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis, Chirality, 29 (2017) 824–835.
  • 229. J. Yu, L. Zuo, H. Liu, L. Zhang, X. Guo, Synthesis and application of a chiral ionic liquid functionalized β -cyclodextrin as a chiral selector in capillary electrophoresis, Biomed. Chromatogr. 27 (2013) 1027–1033.
  • 229. J. Yu, L. Zuo, H. Liu, L. Zhang, X. Guo, Synthesis and application of a chiral ionic liquid functionalized β -cyclodextrin as a chiral selector in capillary electrophoresis, Biomed. Chromatogr. 27 (2013) 1027–1033.
  • 230. M. Greño, M.L. Marina, M. Castro-Puyana, Effect of the combined use of γ-cyclodextrin and a chiral ionic liquid on the enantiomeric separation of homocysteine by capillary electrophoresis, J. Chromatogr. A, 1568 (2018) 222–228.
  • 230. M. Greño, M.L. Marina, M. Castro-Puyana, Effect of the combined use of γ-cyclodextrin and a chiral ionic liquid on the enantiomeric separation of homocysteine by capillary electrophoresis, J. Chromatogr. A, 1568 (2018) 222–228.
  • 231. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 231. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 232. Y. Cui, X. Ma, M. Zhao, Z. Jiang, S. Xu, X. Guo, Combined Use of Ionic Liquid and Hydroxypropyl- β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis, Chirality, 25 (2013) 409–414.
  • 232. Y. Cui, X. Ma, M. Zhao, Z. Jiang, S. Xu, X. Guo, Combined Use of Ionic Liquid and Hydroxypropyl- β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis, Chirality, 25 (2013) 409–414.
  • 233. J. Li, T. Yu, G. Xu, Y. Du, Z. Liu, Z. Feng, X. Yang, Y. Xi, J. Liu, Synthesis and application of ionic liquid functionalized β-cyclodextrin, mono-6-deoxy-6-(4-amino-1,2,4-triazolium)-β-cyclodextrin chloride, as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 178–185.
  • 233. J. Li, T. Yu, G. Xu, Y. Du, Z. Liu, Z. Feng, X. Yang, Y. Xi, J. Liu, Synthesis and application of ionic liquid functionalized β-cyclodextrin, mono-6-deoxy-6-(4-amino-1,2,4-triazolium)-β-cyclodextrin chloride, as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 178–185.
  • 234. X. Ma, Y. Du, X. Sun, J. Liu, Z. Huang, Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1601 (2019) 340–349.
  • 234. X. Ma, Y. Du, X. Sun, J. Liu, Z. Huang, Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1601 (2019) 340–349.
  • 235. H. Qing, X. Jiang, J. Yu, Separation of Tryptophan Enantiomers by Ligand-Exchange Chromatography With Novel Chiral Ionic Liquids Ligand, Chirality, 26 (2014) 160–165.
  • 235. H. Qing, X. Jiang, J. Yu, Separation of Tryptophan Enantiomers by Ligand-Exchange Chromatography With Novel Chiral Ionic Liquids Ligand, Chirality, 26 (2014) 160–165.
  • 236. X. Sun, K. Liu, Y. Du, J. Liu, X. Ma, Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis, Electrophoresis, 40 (2019) 1921–1930.
  • 236. X. Sun, K. Liu, Y. Du, J. Liu, X. Ma, Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis, Electrophoresis, 40 (2019) 1921–1930.
  • 237. M.C. Mavroudi, C.P. Kapnissi-Christodoulou, Evaluation of amino acid ester-based ionic liquids as buffer additives in CE for the separation of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs, Electrophoresis, 35 (2014) 2573–2578.
  • 237. M.C. Mavroudi, C.P. Kapnissi-Christodoulou, Evaluation of amino acid ester-based ionic liquids as buffer additives in CE for the separation of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs, Electrophoresis, 35 (2014) 2573–2578.
  • 238. R. Liu, Y. Du, J. Chen, Q. Zhang, S. Du, Z. Feng, Investigation of the Enantioselectivity of Tetramethylammonium L-hydroxyproline Ionic Liquid as a Novel Chiral Ligand in Ligand-Exchange CE and Ligand-Exchange MEKC, Chirality, 27 (2015) 58–63.
  • 238. R. Liu, Y. Du, J. Chen, Q. Zhang, S. Du, Z. Feng, Investigation of the Enantioselectivity of Tetramethylammonium L-hydroxyproline Ionic Liquid as a Novel Chiral Ligand in Ligand-Exchange CE and Ligand-Exchange MEKC, Chirality, 27 (2015) 58–63.
  • 239. S. Salido-Fortuna, M. Greño, M. Castro-Puyana, M.L. Marina, Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis, J. Chromatogr. A, 1607 (2019) 460375.
  • 239. S. Salido-Fortuna, M. Greño, M. Castro-Puyana, M.L. Marina, Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis, J. Chromatogr. A, 1607 (2019) 460375.
  • 240. X. Yang, Y. Du, Z. Feng, Z. Liu, J. Li, Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 170–177.
  • 240. X. Yang, Y. Du, Z. Feng, Z. Liu, J. Li, Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 170–177.
  • 241. W. Yujiao, W. Guoyan, Z. Wenyan, Z. Hongfen, J. Huanwang, C. Anjia, Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β‐CD and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors, Biomed. Chromatogr., 28 (2014) 610–614.
  • 241. W. Yujiao, W. Guoyan, Z. Wenyan, Z. Hongfen, J. Huanwang, C. Anjia, Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β‐CD and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors, Biomed. Chromatogr., 28 (2014) 610–614.
  • 242. Q. Zhang, J. Zhang, S. Xue, M. Rui, B. Gao, A. Li, J. Bai, Z. yin, E.M. Anochie, Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis, J. Sep. Sci., 41 (2018) 4525–4532.
  • 242. Q. Zhang, J. Zhang, S. Xue, M. Rui, B. Gao, A. Li, J. Bai, Z. yin, E.M. Anochie, Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis, J. Sep. Sci., 41 (2018) 4525–4532.
  • 243. Y. Zhang, Y. Du, T. Yu, Z. Feng, J. Chen, Investigation of dextrin-based synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Pharm. Biomed. Anal., 164 (2019) 413–420.
  • 243. Y. Zhang, Y. Du, T. Yu, Z. Feng, J. Chen, Investigation of dextrin-based synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Pharm. Biomed. Anal., 164 (2019) 413–420.
  • 244. Y. Zhang, S. Du, Z. Feng, Y. Du, Z. Yan, Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis, Anal. Bioanal. Chem., 408 (2016) 2543–2555.
  • 244. Y. Zhang, S. Du, Z. Feng, Y. Du, Z. Yan, Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis, Anal. Bioanal. Chem., 408 (2016) 2543–2555.
  • 245. J. Zhang, Y. Du, Q. Zhang, Y. Lei, Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti- inflamatory drugs by capillary electrophoresis, Talanta, 119 (2014) 193–201.
  • 245. J. Zhang, Y. Du, Q. Zhang, Y. Lei, Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti- inflamatory drugs by capillary electrophoresis, Talanta, 119 (2014) 193–201.
  • 246. L. Zuo, H. Meng, J. Wu, Z. Jiang, S. Xu, X. Guo, Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE, J. Sep. Sci., 36 (2013) 517–523.
  • 246. L. Zuo, H. Meng, J. Wu, Z. Jiang, S. Xu, X. Guo, Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE, J. Sep. Sci., 36 (2013) 517–523.
  • 247. Q. Zhang, Y. Du, S. Du, J. Zhang, Z. Feng, Y. Zhang, X. Li, Tetramethylammonium-lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis, Electrophoresis, 36 (2015) 1216–1223.
  • 247. Q. Zhang, Y. Du, S. Du, J. Zhang, Z. Feng, Y. Zhang, X. Li, Tetramethylammonium-lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis, Electrophoresis, 36 (2015) 1216–1223.
  • 248. J. Zhang, Y. Du, Q. Zhang, J. Chen, G. Xu, T. Yu, X. Hua, Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1316 (2013) 119–126.
  • 248. J. Zhang, Y. Du, Q. Zhang, J. Chen, G. Xu, T. Yu, X. Hua, Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1316 (2013) 119–126.
  • 249. Q. Zhang, Y. Du, Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1306 (2013) 97–103.
  • 249. Q. Zhang, Y. Du, Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1306 (2013) 97–103.
  • 250. Y. Jin, C. Chen, L. Meng, J. Chen, M. Li, Z. Zhu, Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives, Talanta, 89 (2012) 149–154.
  • 250. Y. Jin, C. Chen, L. Meng, J. Chen, M. Li, Z. Zhu, Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives, Talanta, 89 (2012) 149–154.
  • 251. Y. Su, X. Mu, L. Qi, A new chiral ligand exchange capillary electrophoresis system based on Zn(II)-l-leucine complexes coordinating with β-cyclodextrin and its application in screening tyrosinase inhibitors, RSC Adv., 4 (2014) 55280–55285.
  • 251. Y. Su, X. Mu, L. Qi, A new chiral ligand exchange capillary electrophoresis system based on Zn(II)-l-leucine complexes coordinating with β-cyclodextrin and its application in screening tyrosinase inhibitors, RSC Adv., 4 (2014) 55280–55285.
  • 252. J. Jiang, X. Mu, J. Qiao, Y. Su, L. Qi, New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands, Talanta, 175 (2017) 451–456.
  • 252. J. Jiang, X. Mu, J. Qiao, Y. Su, L. Qi, New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands, Talanta, 175 (2017) 451–456.
  • 253. H. Zhang, L. Qi, Y. Shen, J. Qiao, L. Mao, L-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE, Electrophoresis, 34 (2013) 846–853.
  • 253. H. Zhang, L. Qi, Y. Shen, J. Qiao, L. Mao, L-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE, Electrophoresis, 34 (2013) 846–853.
  • 254. S. Xue, S. Ren, L. Wang, Q. Zhang, Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis, J. Chromatogr. A, 1611 (2020) 460579.
  • 254. S. Xue, S. Ren, L. Wang, Q. Zhang, Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis, J. Chromatogr. A, 1611 (2020) 460579.
  • 255. B. Sun, X. Mu, L. Qi, Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase, Anal. Chim. Acta, 821 (2014) 97–102.
  • 255. B. Sun, X. Mu, L. Qi, Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase, Anal. Chim. Acta, 821 (2014) 97–102.
  • 256. H. Zhang, L. Qi, X. Mu, X. Zhou, D. Li, L. Mao, Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE, J. Sep. Sci., 36 (2013) 886–891.
  • 256. H. Zhang, L. Qi, X. Mu, X. Zhou, D. Li, L. Mao, Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE, J. Sep. Sci., 36 (2013) 886–891.
  • 257. I.J. Stavrou, Z.S. Breitbach, C.P. Kapnissi-Christodoulou, Combined use of cyclofructans and an amino acid ester-based ionic liquid for the enantioseparation of huperzine A and coumarin derivatives in CE, Electrophoresis, 36 (2015) 3061–3068.
  • 257. I.J. Stavrou, Z.S. Breitbach, C.P. Kapnissi-Christodoulou, Combined use of cyclofructans and an amino acid ester-based ionic liquid for the enantioseparation of huperzine A and coumarin derivatives in CE, Electrophoresis, 36 (2015) 3061–3068.
  • 258. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 258. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 259. X. Zhu, C. Chen, J. Chen, G. Xu, Y. Du, X. Ma, X. Sun, Z. Feng, Z. Huang, Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation, J. Pharm. Biomed. Anal., 180 (2020) 113030.
  • 259. X. Zhu, C. Chen, J. Chen, G. Xu, Y. Du, X. Ma, X. Sun, Z. Feng, Z. Huang, Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation, J. Pharm. Biomed. Anal., 180 (2020) 113030.
  • 260. G. Xu, Y. Du, F. Du, J. Chen, T. Yu, Q. Zhang, J. Zhang, S. Du, Z. Feng, Establishment and Evaluation of the Novel Tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis, Chirality, 27 (2015) 598–604.
  • 260. G. Xu, Y. Du, F. Du, J. Chen, T. Yu, Q. Zhang, J. Zhang, S. Du, Z. Feng, Establishment and Evaluation of the Novel Tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis, Chirality, 27 (2015) 598–604.
  • 261. D.L. Fedlheim, C.A. Foss, Foss, C. A., Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, ISBN 9780824706043, October 26, (2001).
  • 261. D.L. Fedlheim, C.A. Foss, Foss, C. A., Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, ISBN 9780824706043, October 26, (2001).
  • 262. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 6 (2010) 257–262.
  • 262. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 6 (2010) 257–262.
  • 263. L. Yang, C. Chen, X. Liu, J. Shi, G. Wang, L. Zhu, L. Guo, J.D. Glennon, N.M. Scully, B.E. Doherty, Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography, Electrophoresis, 31 (2010) 1697–1705.
  • 263. L. Yang, C. Chen, X. Liu, J. Shi, G. Wang, L. Zhu, L. Guo, J.D. Glennon, N.M. Scully, B.E. Doherty, Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography, Electrophoresis, 31 (2010) 1697–1705.
  • 264. W. Hu, T. Hong, X. Gao, Y. Ji, Applications of nanoparticle-modified stationary phases in capillary electrochromatography, TrAC-Trends Anal. Chem., 61 (2014) 29–39.
  • 264. W. Hu, T. Hong, X. Gao, Y. Ji, Applications of nanoparticle-modified stationary phases in capillary electrochromatography, TrAC-Trends Anal. Chem., 61 (2014) 29–39.
  • 265. T. Wang, Y. Cheng, Y. Zhang, J. Zha, J. Ye, Q. Chu, G. Cheng, β-cyclodextrin modified quantum dots as pseudo-stationary phase for direct enantioseparation based on capillary electrophoresis with laser-induced fluorescence detection, Talanta, 210 (2020) 120629.
  • 265. T. Wang, Y. Cheng, Y. Zhang, J. Zha, J. Ye, Q. Chu, G. Cheng, β-cyclodextrin modified quantum dots as pseudo-stationary phase for direct enantioseparation based on capillary electrophoresis with laser-induced fluorescence detection, Talanta, 210 (2020) 120629.
  • 266. L-l. Fang, P. Wang, X-l. Wen, X. Guo, L. da Luo, J. Yu, X-j. Guo, Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography, Talanta, 167 (2017) 158–165.
  • 266. L-l. Fang, P. Wang, X-l. Wen, X. Guo, L. da Luo, J. Yu, X-j. Guo, Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography, Talanta, 167 (2017) 158–165.
  • 267. M. Li, X. Liu, F. Jiang, L. Guo, L. Yang, Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A, 1218 (2011) 3725–3729.
  • 267. M. Li, X. Liu, F. Jiang, L. Guo, L. Yang, Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A, 1218 (2011) 3725–3729.
  • 268. L. Fang, Y. Zhao, C. Wang, C. Wang, X. Han, P. Chen, L. Zhao, J. Wang, S. Li, Z. Jiang, Preparation of a thiols β ‐cyclodextring/gold nanoparticles‐coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci., 43 (2020) 2209–2216.
  • 268. L. Fang, Y. Zhao, C. Wang, C. Wang, X. Han, P. Chen, L. Zhao, J. Wang, S. Li, Z. Jiang, Preparation of a thiols β ‐cyclodextring/gold nanoparticles‐coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci., 43 (2020) 2209–2216.
  • 269. M. Li, M. Tarawally, X. Liu, X. Liu, L. Guo, L. Yang, G. Wang, Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography, Talanta, 109 (2013) 1–6.
  • 269. M. Li, M. Tarawally, X. Liu, X. Liu, L. Guo, L. Yang, G. Wang, Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography, Talanta, 109 (2013) 1–6.
  • 270. Y. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase, Anal. Methods, 9 (2017) 3561–3568.
  • 270. Y. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase, Anal. Methods, 9 (2017) 3561–3568.
  • 271. C. Zhang, J. Qu, X. Lv, J. Zhang, L. Fang, A novel open‐tubular capillary electrochromatography using carboxymethyl‐β‐cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Sep. Sci., 43 (2020) 946–953.
  • 271. C. Zhang, J. Qu, X. Lv, J. Zhang, L. Fang, A novel open‐tubular capillary electrochromatography using carboxymethyl‐β‐cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Sep. Sci., 43 (2020) 946–953.
  • 272. X. Yang, X. Sun, Z. Feng, Y. Du, J. Chen, X. Ma, X. Li, Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta, 186 (2019) 1–8.
  • 272. X. Yang, X. Sun, Z. Feng, Y. Du, J. Chen, X. Ma, X. Li, Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta, 186 (2019) 1–8.
  • 273. P. Qu, J. Lei, L. Zhang, R. Ouyang, H. Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A, 1217 (2010) 6115–6121.
  • 273. P. Qu, J. Lei, L. Zhang, R. Ouyang, H. Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A, 1217 (2010) 6115–6121.
  • 274. L.-L. Wu, R.-P. Liang, J. Chen, J.-D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 274. L.-L. Wu, R.-P. Liang, J. Chen, J.-D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 275. X. Hua, Y. Du, J. Chen, G. Xu, T. Yu, Q. Zhang, Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography, Electrophoresis, 34 (2013) 1901–1907.
  • 275. X. Hua, Y. Du, J. Chen, G. Xu, T. Yu, Q. Zhang, Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography, Electrophoresis, 34 (2013) 1901–1907.
  • 276. X.N. Wang, R.P. Liang, X.Y. Meng, J.D. Qiu, One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A, 1362 (2014) 301–308.
  • 276. X.N. Wang, R.P. Liang, X.Y. Meng, J.D. Qiu, One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A, 1362 (2014) 301–308.
  • 277. Q. Zhang, Y. Du, S. Du, Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1339 (2014) 185–191.
  • 277. Q. Zhang, Y. Du, S. Du, Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1339 (2014) 185–191.
  • 278. X. Sun, J. Guo, T. Yu, Y. Du, Z. Feng, S. Zhao, Z. Huang, J. Liu, A novel coating method for CE capillary using carboxymethyl-Β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem., 411 (2019) 1193–1202.
  • 278. X. Sun, J. Guo, T. Yu, Y. Du, Z. Feng, S. Zhao, Z. Huang, J. Liu, A novel coating method for CE capillary using carboxymethyl-Β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem., 411 (2019) 1193–1202.
  • 279. L. Huang, Y.-T. Chen, Y.-X. Li, L.-S. Yu, Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers, Appl. Spectrosc., 70 (2016) 1649–1654.
  • 279. L. Huang, Y.-T. Chen, Y.-X. Li, L.-S. Yu, Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers, Appl. Spectrosc., 70 (2016) 1649–1654.
  • 280. X. Dong, R. Wu, J. Dong, M. Wu, Y. Zhu, H. Zou, A mesoporous silica nanoparticles immobilized open‐tubular capillary column with a coating of cellulose tris(3,5‐dimethylphenyl‐carbamate) for enantioseparation in CEC, Electrophoresis, 29 (2008) 3933–3940.
  • 280. X. Dong, R. Wu, J. Dong, M. Wu, Y. Zhu, H. Zou, A mesoporous silica nanoparticles immobilized open‐tubular capillary column with a coating of cellulose tris(3,5‐dimethylphenyl‐carbamate) for enantioseparation in CEC, Electrophoresis, 29 (2008) 3933–3940.
  • 281. Z.S. Gong, L.P. Duan, A.N. Tang, Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector, Microchim. Acta, 182 (2015) 1297–1304.
  • 281. Z.S. Gong, L.P. Duan, A.N. Tang, Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector, Microchim. Acta, 182 (2015) 1297–1304.
  • 282. C.-Y. Yue, G.-S. Ding, F.-J. Liu, A.-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013), 176-182.
  • 282. C.-Y. Yue, G.-S. Ding, F.-J. Liu, A.-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013), 176-182.
  • 283. X. Sun, Y. Du, S. Zhao, Z. Huang, Z. Feng, Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles, Microchim. Acta, 186 (2019) 1–7.
  • 283. X. Sun, Y. Du, S. Zhao, Z. Huang, Z. Feng, Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles, Microchim. Acta, 186 (2019) 1–7.
  • 284. C. Aydoğan, V. Karakoç, F. Yılmaz, A. Denizli, Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand, Hacettepe J. Biol. & Chem., 41 (1) (2013) 29-36.
  • 284. C. Aydoğan, V. Karakoç, F. Yılmaz, A. Denizli, Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand, Hacettepe J. Biol. & Chem., 41 (1) (2013) 29-36.
  • 285. F. Svec, E.C. Peters, D. Sýkora, J.M.J. Fréchet, Design of the monolithic polymers used in capillary electrochromatography columns, J. Chromatogr. A, 887 (2000) 3–29.
  • 285. F. Svec, E.C. Peters, D. Sýkora, J.M.J. Fréchet, Design of the monolithic polymers used in capillary electrochromatography columns, J. Chromatogr. A, 887 (2000) 3–29.
  • 286. E.F. Hilder, F. Svec, J.M.J. Fréchet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3–22.
  • 286. E.F. Hilder, F. Svec, J.M.J. Fréchet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3–22.
  • 287. J.J. Meyers, A.I. Liapis, Network modeling of the convective flow and diffusion ofmolecules adsorbing in monoliths and in porous particles packed in a chromatographic column, J. Chromatogr. A, (1999) 3–23.
  • 287. J.J. Meyers, A.I. Liapis, Network modeling of the convective flow and diffusion ofmolecules adsorbing in monoliths and in porous particles packed in a chromatographic column, J. Chromatogr. A, (1999) 3–23.
  • 288. M. Wu, R. Wu, Z. Zhang, H. Zou, Preparation and application of organic-silica hybrid monolithic capillary columns, Electrophoresis, 32 (2011) 105–115.
  • 288. M. Wu, R. Wu, Z. Zhang, H. Zou, Preparation and application of organic-silica hybrid monolithic capillary columns, Electrophoresis, 32 (2011) 105–115.
  • 289. F. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845–8850.
  • 289. F. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845–8850.
  • 290. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 290. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 291. N. Tanaka, H. Kobayashi, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Hosoya, T. Ikegami, Monolithic silica columns for high-efficiency chromatographic separations, J. Chromatogr. A, 965 (2002) 35–49.
  • 291. N. Tanaka, H. Kobayashi, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Hosoya, T. Ikegami, Monolithic silica columns for high-efficiency chromatographic separations, J. Chromatogr. A, 965 (2002) 35–49.
  • 292. M-L. Hsieh, L-K. Chau, Y-S. Hon, Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase, J. Chromatogr. A, 1358 (2014) 208–216.
  • 292. M-L. Hsieh, L-K. Chau, Y-S. Hon, Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase, J. Chromatogr. A, 1358 (2014) 208–216.
  • 293. L.L. Hench, J.K. West, The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72.
  • 293. L.L. Hench, J.K. West, The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72.
  • 294. J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229–282.
  • 294. J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229–282.
  • 295. A.P. Kumar, J.H. Park, Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography, J. Chromatogr. A, 1217 (2010) 4494–4500.
  • 295. A.P. Kumar, J.H. Park, Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography, J. Chromatogr. A, 1217 (2010) 4494–4500.
  • 296. S. Dixit, J.H. Park, Enantioseparation of basic chiral drugs on a carbamoylated erythromycin-zirconia hybrid monolith using capillary electrochromatography, J. Chromatogr. A, 1416 (2015) 129–136.
  • 296. S. Dixit, J.H. Park, Enantioseparation of basic chiral drugs on a carbamoylated erythromycin-zirconia hybrid monolith using capillary electrochromatography, J. Chromatogr. A, 1416 (2015) 129–136.
  • 297. S. Dixit, I.S. Lee, J.H. Park, Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography, J. Chromatogr. A, 1507 (2017) 132–140.
  • 297. S. Dixit, I.S. Lee, J.H. Park, Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography, J. Chromatogr. A, 1507 (2017) 132–140.
  • 298. L.N. Tran, S. Dixit, J.H. Park, Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1356 (2014) 289–293.
  • 298. L.N. Tran, S. Dixit, J.H. Park, Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1356 (2014) 289–293.
  • 299. L.N. Tran, J.H. Park, Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1396 (2015) 140–147.
  • 299. L.N. Tran, J.H. Park, Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1396 (2015) 140–147.
  • 300. M. Kim, J.H. Park, Enantioseparation of chiral acids and bases on a clindamycin phosphate-modified zirconia monolith by capillary electrochromatography, J. Chromatogr. A, 1251 (2012) 244–248.
  • 300. M. Kim, J.H. Park, Enantioseparation of chiral acids and bases on a clindamycin phosphate-modified zirconia monolith by capillary electrochromatography, J. Chromatogr. A, 1251 (2012) 244–248.
  • 301. A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography, J. Chromatogr. A, 1218 (2011) 5369–5373.
  • 301. A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography, J. Chromatogr. A, 1218 (2011) 5369–5373.
  • 302. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography. Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 302. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography. Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 303. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography, Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 303. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography, Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 304. A. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A, 1358 (2014) 199–207.
  • 304. A. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A, 1358 (2014) 199–207.
  • 305. L. Fang, J. Yu, Z. Jiang, X. Guo, Preparation of a β-cyclodextrin-based open-tubular capillary electrochromatography column and application for enantioseparations of ten basic drugs, PLoS ONE 11 (2016): e0146292.
  • 305. L. Fang, J. Yu, Z. Jiang, X. Guo, Preparation of a β-cyclodextrin-based open-tubular capillary electrochromatography column and application for enantioseparations of ten basic drugs, PLoS ONE 11 (2016): e0146292.
  • 306. E. Hongjun, P. Su, M.U. Farooq, Y. Yang, Microwave-Assisted Preparation of a β-Cyclodextrin-Based Stationary Phase for Open Tubular Capillary Electrochromatography, Anal. Lett., 43 (2010) 2372–2380.
  • 306. E. Hongjun, P. Su, M.U. Farooq, Y. Yang, Microwave-Assisted Preparation of a β-Cyclodextrin-Based Stationary Phase for Open Tubular Capillary Electrochromatography, Anal. Lett., 43 (2010) 2372–2380.
  • 307. R. Yuan, G. Ding, Enantioseparations in capillary electrochromatography using sulfated poly b -cyclodextrin-modi fi ed silica-based monolith as stationary phase, Methods Mol. Biol., 970 (2013) 489–503.
  • 307. R. Yuan, G. Ding, Enantioseparations in capillary electrochromatography using sulfated poly b -cyclodextrin-modi fi ed silica-based monolith as stationary phase, Methods Mol. Biol., 970 (2013) 489–503.
  • 308. L. Zhou, J. Lun, Y. Liu, Z. Jiang, X. Di, X. Guo, In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta, 200 (2019) 1–8.
  • 308. L. Zhou, J. Lun, Y. Liu, Z. Jiang, X. Di, X. Guo, In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta, 200 (2019) 1–8.
  • 309. K. Szwed, J. Ou, G. Huang, H. Lin, Z. Liu, H. Wang, H. Zou, Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography, J. Sep. Sci., 39 (2016) 1110–1117.
  • 309. K. Szwed, J. Ou, G. Huang, H. Lin, Z. Liu, H. Wang, H. Zou, Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography, J. Sep. Sci., 39 (2016) 1110–1117.
  • 310. A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta, 169 (2017) 239–248.
  • 310. A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta, 169 (2017) 239–248.
  • 311. A. Ghanem, M. Ahmed, H. Ishii, T. Ikegami, Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates, Talanta, 132 (2015) 301–314.
  • 311. A. Ghanem, M. Ahmed, H. Ishii, T. Ikegami, Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates, Talanta, 132 (2015) 301–314.
  • 312. J. Guo, Y. Xiao, Y. Lin, Q. Zhang, Y. Chang, J. Crommen, Z. Jiang, Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths, Talanta, 152 (2016) 259–268.
  • 312. J. Guo, Y. Xiao, Y. Lin, Q. Zhang, Y. Chang, J. Crommen, Z. Jiang, Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths, Talanta, 152 (2016) 259–268.
  • 313. Q. Zhang, J. Guo, F. Wang, J. Crommen, Z. Jiang, Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations, J. Chromatogr. A, 1325 (2014) 147–154.
  • 313. Q. Zhang, J. Guo, F. Wang, J. Crommen, Z. Jiang, Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations, J. Chromatogr. A, 1325 (2014) 147–154.
  • 314. Q. Zhang, J. Guo, Y. Xiao, J. Crommen, Z. Jiang, Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance, J. Sep. Sci., 38 (2015) 1813–1821.
  • 314. Q. Zhang, J. Guo, Y. Xiao, J. Crommen, Z. Jiang, Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance, J. Sep. Sci., 38 (2015) 1813–1821.
  • 315. Z. Zhang, M. Wu, R. Wu, J. Dong, J. Ou, H. Zou, Preparation of perphenylcarbamoylated β- cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography, Anal. Chem., 83 (2011) 3616–3622.
  • 315. Z. Zhang, M. Wu, R. Wu, J. Dong, J. Ou, H. Zou, Preparation of perphenylcarbamoylated β- cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography, Anal. Chem., 83 (2011) 3616–3622.
  • 316. M. Deng, M. Li, Y. Zhao, Z. Jiang, X. Guo, A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs, Talanta, 189 (2018) 458–466.
  • 316. M. Deng, M. Li, Y. Zhao, Z. Jiang, X. Guo, A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs, Talanta, 189 (2018) 458–466.
  • 317. R. Chen, C. Lin, H. Lyu, X. Lin, Z. Xie, Highly efficient preparation of β-CD-based chiral monolithic column by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography, J. Chromatogr. A, 1616 (2020) 460781.
  • 317. R. Chen, C. Lin, H. Lyu, X. Lin, Z. Xie, Highly efficient preparation of β-CD-based chiral monolithic column by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography, J. Chromatogr. A, 1616 (2020) 460781.
  • 318. P. Zhang, J. Wang, H. Yang, L. Su, Y. Xiong, F. Ye, Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol-ene click reaction for capillary liquid chromatography, RSC Adv., 6 (2016) 24835–24842.
  • 318. P. Zhang, J. Wang, H. Yang, L. Su, Y. Xiong, F. Ye, Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol-ene click reaction for capillary liquid chromatography, RSC Adv., 6 (2016) 24835–24842.
  • 319. W. Bragg, S.A. Shamsi, A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry, J. Chromatogr. A, 1267 (2012) 144– 155.
  • 319. W. Bragg, S.A. Shamsi, A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry, J. Chromatogr. A, 1267 (2012) 144– 155.
  • 320. L. Zhou, B. Liu, J. Guan, Z. Jiang, X. Guo, Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds, J. Chromatogr. A, 1620 (2020) 460932.
  • 320. L. Zhou, B. Liu, J. Guan, Z. Jiang, X. Guo, Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds, J. Chromatogr. A, 1620 (2020) 460932.
  • 321. C. Aydoǧan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem., 447 (2014) 55–57.
  • 321. C. Aydoǧan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem., 447 (2014) 55–57.
  • 322. Y. Lin, J. Guo, H. Lin, J. Wang, G.W. Somsen, J. Crommen, Z. Jiang, Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation, J. Sep. Sci., 40 (2017) 3754–3762.
  • 322. Y. Lin, J. Guo, H. Lin, J. Wang, G.W. Somsen, J. Crommen, Z. Jiang, Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation, J. Sep. Sci., 40 (2017) 3754–3762.
  • 323. R. Noel Echevarria, E.J. Carrasco-Correa, S. Keunchkarian, M. Reta, J.M. Herrero-Martinez, Photografted methacrylate-based monolithic columns coated with cellulose tris(3,5-dimethylphenylcarbamate) for chiral separation in CEC, J. Sep. Sci., 41 (2018) 1424–1432.
  • 323. R. Noel Echevarria, E.J. Carrasco-Correa, S. Keunchkarian, M. Reta, J.M. Herrero-Martinez, Photografted methacrylate-based monolithic columns coated with cellulose tris(3,5-dimethylphenylcarbamate) for chiral separation in CEC, J. Sep. Sci., 41 (2018) 1424–1432.
  • 324. C. Aydoğan, F. Yılmaz, D. Çimen, L. Uzun, A. Denizli, Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N -methacryloyl- l -histidine methyl ester, Electrophoresis, 34 (2013) 1908–1914.
  • 324. C. Aydoğan, F. Yılmaz, D. Çimen, L. Uzun, A. Denizli, Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N -methacryloyl- l -histidine methyl ester, Electrophoresis, 34 (2013) 1908–1914.
  • 325. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 325. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 326. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography, J. Chromatogr. A, 1445 (2016) 55–61.
  • 326. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography, J. Chromatogr. A, 1445 (2016) 55–61.
  • 327. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography, J. Chromatogr. A, 1445 (2016) 62–67.
  • 327. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography, J. Chromatogr. A, 1445 (2016) 62–67.
  • 328. S. Xu, R. Mo, C. Jin, X. Cui, R. Bai, Y. Ji, Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography, J. Pharm. Biomed. Anal., 140 (2017) 190–198.
  • 328. S. Xu, R. Mo, C. Jin, X. Cui, R. Bai, Y. Ji, Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography, J. Pharm. Biomed. Anal., 140 (2017) 190–198.
  • 329. C. Miao, R. Bai, S. Xu, T. Hong, Y. Ji, Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography, J. Chromatogr. A, 1487 (2017) 227–234.
  • 329. C. Miao, R. Bai, S. Xu, T. Hong, Y. Ji, Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography, J. Chromatogr. A, 1487 (2017) 227–234.
  • 330. Y. Li, X. Lin, S. Qin, L. Gao, Y. Tang, S. Liu, Y. Wang, β‐Cyclodextrin‐modified covalent organic framework as chiral stationary phase for the separation of amino acids and β‐blockers by capillary electrochromatography, Chirality, 32 (2020) 1008-1019.
  • 330. Y. Li, X. Lin, S. Qin, L. Gao, Y. Tang, S. Liu, Y. Wang, β‐Cyclodextrin‐modified covalent organic framework as chiral stationary phase for the separation of amino acids and β‐blockers by capillary electrochromatography, Chirality, 32 (2020) 1008-1019.

Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review

Year 2021, , 253 - 303, 17.05.2021
https://doi.org/10.15671/hjbc.815414

Abstract

Kiral bileşiklerin tanınma mekanizması ve enantiyomerik olarak ayrılması, hem analitik saflık hem de büyük ölçekli çalışmalar için çözüm bulmakla ilgilenen farmakoloji ve doğa bilimlerindeki araştırmacıların büyük ilgisini her zaman uyandıran konulardır. Kapiler Elektroforez, kiral selektörlerin yüksek çözünürlüğü ve yüksek verimliliği gibi üstün özellikleri nedeniyle enantiyomerik ayırımlar için en önemli analitik yaklaşımlardan biri haline gelmiştir. Araştırmacıların ilgi göstermeye devam ettiği bu alanda, teknolojinin ve farklı formdaki kiral selektörlerin gelişim sürecine paralel olarak Kapiler Elektroforez felsefesi temelinde geliştirilen yeni tekniklerin varlığıyla gün geçtikçe gelişmeler ilerlemektedir. Bu derlemede, kapiler elektroforez ve bununla ilişkili teknikler hakkında bazı tanımlayıcı teorik bilgilerin yanı sıra, moleküler baskılanmış polimerler, siklodekstrinler, metal-organik kafesler, iyonik sıvılar, monolitler ve nanopartiküller gibi farklı kiral selektörler kullanılarak kiral ayırmalar üzerine yaklaşık son 10 yıldaki (2010-2020) çalışmalar derlenmiştir.

References

  • 1. G. Gübitz, M.G. Schmid, Chiral separation by capillary electromigration techniques, J. Chromatogr. A 1204 (2008) 140–156.
  • 1. G. Gübitz, M.G. Schmid, Chiral separation by capillary electromigration techniques, J. Chromatogr. A 1204 (2008) 140–156.
  • 2. E. Sánchez-López, M. Castro-Puyana, M.L. Marina, A.L. Crego, Chiral Separations by Capillary Electrophoresis, Anal. Sep. Sci. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2 (2015) 731–775.
  • 2. E. Sánchez-López, M. Castro-Puyana, M.L. Marina, A.L. Crego, Chiral Separations by Capillary Electrophoresis, Anal. Sep. Sci. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2 (2015) 731–775.
  • 3. B. Preinerstorfer, M. Lämmerhofer, W. Lindner, Advances in enantioselective separations using electromigration capillary techniques, Electrophoresis, 30 (2009) 100–132.
  • 3. B. Preinerstorfer, M. Lämmerhofer, W. Lindner, Advances in enantioselective separations using electromigration capillary techniques, Electrophoresis, 30 (2009) 100–132.
  • 4. C. Tano, S.-H. Son, J. Furukawa, T. Furuike, N. Sakairi, Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids, Electrophoresis, 30 (2009) 2743–2746.
  • 4. C. Tano, S.-H. Son, J. Furukawa, T. Furuike, N. Sakairi, Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids, Electrophoresis, 30 (2009) 2743–2746.
  • 5. A.P. Kumar, J.H. Park, Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography, J. Chromatogr. A 1218 (2011) 6548–6553.
  • 5. A.P. Kumar, J.H. Park, Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography, J. Chromatogr. A 1218 (2011) 6548–6553.
  • 6. J. Yang, D.S. Hage, Characterization of the binding and chiral separation of d- and l-tryptophan on a high-performance immobilized human serum albumin column, J. Chromatogr. A 645 (1993) 241–250.
  • 6. J. Yang, D.S. Hage, Characterization of the binding and chiral separation of d- and l-tryptophan on a high-performance immobilized human serum albumin column, J. Chromatogr. A 645 (1993) 241–250.
  • 7. G. Sagratini, M. Buccioni, G. Marucci, E. Poggesi, M. Skorski, S. Costanzi, D. Giardinà, Chiral analogues of (+)-cyclazosin as potent α1B-adrenoceptor selective antagonist, Bioorganic Med. Chem. 26 (2018) 3502–3513.
  • 7. G. Sagratini, M. Buccioni, G. Marucci, E. Poggesi, M. Skorski, S. Costanzi, D. Giardinà, Chiral analogues of (+)-cyclazosin as potent α1B-adrenoceptor selective antagonist, Bioorganic Med. Chem. 26 (2018) 3502–3513.
  • 8. K.D. Altria, I.H. Grant, Methods in Molecular Biology, Capillary Electrophoresis Guidebook, Principles, Operation and Applications, Capillary Electrophoresis Guidebook. Humana Press, 52 (2003) 197–210.
  • 8. K.D. Altria, I.H. Grant, Methods in Molecular Biology, Capillary Electrophoresis Guidebook, Principles, Operation and Applications, Capillary Electrophoresis Guidebook. Humana Press, 52 (2003) 197–210.
  • 9. V. Houbart, M. Fillet, Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences. InTech, Edited by Xiao-Ying Yu, (2016) 1-30.
  • 9. V. Houbart, M. Fillet, Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences. InTech, Edited by Xiao-Ying Yu, (2016) 1-30.
  • 10. Tagliaro, F., Deyl, Z., Miks̆ík, I., Ulfelder, K. J., J Concepts and principles of high performance capillary electrophoresis John Wiley & Sons, Ltd, (2006) 41–63.
  • 10. Tagliaro, F., Deyl, Z., Miks̆ík, I., Ulfelder, K. J., J Concepts and principles of high performance capillary electrophoresis John Wiley & Sons, Ltd, (2006) 41–63.
  • 11. F.U. Aşıcıoğlu, S.T. Koluaçık, B.Ü. Çetinkaya, F. Akyüz, Tıp Kurumu Başkanlığı Biyoloji İhtisas Dairesi, A., Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel Jel Elektroforez Yöntemi Ile Karşılaştırma. n.d. Adli Tıp Derg., 16 (2002) 88-93.
  • 11. F.U. Aşıcıoğlu, S.T. Koluaçık, B.Ü. Çetinkaya, F. Akyüz, Tıp Kurumu Başkanlığı Biyoloji İhtisas Dairesi, A., Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel Jel Elektroforez Yöntemi Ile Karşılaştırma. n.d. Adli Tıp Derg., 16 (2002) 88-93.
  • 12. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis 38 (2017) 3003–3012.
  • 12. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis 38 (2017) 3003–3012.
  • 13. C.A. Lucy, R.S. Underhill, Characterization of the cationic surfactant induced reversal of electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 300–305.
  • 13. C.A. Lucy, R.S. Underhill, Characterization of the cationic surfactant induced reversal of electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 300–305.
  • 14. S. Aşır, A. Derazshamshir, F. Yılmaz, A. Denizli, Triazine herbicide imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 2888–2895.
  • 14. S. Aşır, A. Derazshamshir, F. Yılmaz, A. Denizli, Triazine herbicide imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 2888–2895.
  • 15. C. Aydoğan, A. Gökaltun, A. Denizli, Z. El Rassi, Biochromatographic applications of polymethacrylate monolithic columns used in electro- and liquid phase-separationsΨ, J. Liq. Chromatogr. Relat. Technol., 41 (2018) 572–582.
  • 15. C. Aydoğan, A. Gökaltun, A. Denizli, Z. El Rassi, Biochromatographic applications of polymethacrylate monolithic columns used in electro- and liquid phase-separationsΨ, J. Liq. Chromatogr. Relat. Technol., 41 (2018) 572–582.
  • 16. G. Gübitz, M.G. Schmid, Chiral separation principles in chromatographic and electromigration techniques, Mol. Biotechnol., 32 (2006) 159–179.
  • 16. G. Gübitz, M.G. Schmid, Chiral separation principles in chromatographic and electromigration techniques, Mol. Biotechnol., 32 (2006) 159–179.
  • 17. H. Poppe, A. Cifuentes, W.T. Kok, Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 888–893.
  • 17. H. Poppe, A. Cifuentes, W.T. Kok, Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 888–893.
  • 18. M.G. Cikalo, K.D. Bartle, P. Myers, Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography, J. Chromatogr. A, 836 (1999) 35–51.
  • 18. M.G. Cikalo, K.D. Bartle, P. Myers, Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography, J. Chromatogr. A, 836 (1999) 35–51.
  • 19. J.H. Knox, Terminology and nomenclature in capillary electroseparation systems, J. Chromatogr. A, 680 (1994) 3–13.
  • 19. J.H. Knox, Terminology and nomenclature in capillary electroseparation systems, J. Chromatogr. A, 680 (1994) 3–13.
  • 20. A Denizli, Ö.İ. Küfrevioğlu, Pozitif Matbaacılık, Ankara, Protein kromatografisi ve yeni nesil polimerik sistemler (2010).
  • 20. A Denizli, Ö.İ. Küfrevioğlu, Pozitif Matbaacılık, Ankara, Protein kromatografisi ve yeni nesil polimerik sistemler (2010).
  • 21. T. Gündüz, Gazi Kitabevi, Kromatografi ve elektroforez (2015).
  • 21. T. Gündüz, Gazi Kitabevi, Kromatografi ve elektroforez (2015).
  • 22. J.H. Knox, I.H., Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia, 24 (1987) 135–143.
  • 22. J.H. Knox, I.H., Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia, 24 (1987) 135–143.
  • 23. A.M. Enlund, G. Hagman, R. Isaksson, D. Westerlund, Capillary electrochromatography of basic compounds in pharmaceutical analysis, TrAC-Trends Anal. Chem., 21 (2002) 412–427.
  • 23. A.M. Enlund, G. Hagman, R. Isaksson, D. Westerlund, Capillary electrochromatography of basic compounds in pharmaceutical analysis, TrAC-Trends Anal. Chem., 21 (2002) 412–427.
  • 24. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis, 38 (2017) 3003–3012.
  • 24. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis, 38 (2017) 3003–3012.
  • 25. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 25. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 26. S. Tanwar, R. Bhushan, Enantioresolution of Amino Acids: A Decade’s Perspective, Prospects and Challenges, Chromatographia, 78 (2015) 1113–1134.
  • 26. S. Tanwar, R. Bhushan, Enantioresolution of Amino Acids: A Decade’s Perspective, Prospects and Challenges, Chromatographia, 78 (2015) 1113–1134.
  • 27. Z.-X. Zheng, J.-M. Lin, F. Qu, T. Hobo, Chiral separation with ligand-exchange micellar electrokinetic chromatography using aD-penicillamine-copper(II) ternary complex as chiral selector, Electrophoresis, 24 (2003) 4221–4226.
  • 27. Z.-X. Zheng, J.-M. Lin, F. Qu, T. Hobo, Chiral separation with ligand-exchange micellar electrokinetic chromatography using aD-penicillamine-copper(II) ternary complex as chiral selector, Electrophoresis, 24 (2003) 4221–4226.
  • 28. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries, Anal. Chem., 56 (1984) 111–113.
  • 28. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries, Anal. Chem., 56 (1984) 111–113.
  • 29. K. Otsuka, S. Terabe, T. Ando, Electrokinetic chromatography with micellar solutions. Separation of phenylthiohydantoin-amino acids, J. Chromatogr. A, 332 (1985) 219–226.
  • 29. K. Otsuka, S. Terabe, T. Ando, Electrokinetic chromatography with micellar solutions. Separation of phenylthiohydantoin-amino acids, J. Chromatogr. A, 332 (1985) 219–226.
  • 30. S. Terabe, K. Otsuka, T. Ando, Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary, Anal. Chem., (1985) 834–841.
  • 30. S. Terabe, K. Otsuka, T. Ando, Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary, Anal. Chem., (1985) 834–841.
  • 31. J. Palmer, D.S. Burgi, N.J. Munro, J.P. Landers, Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis, Anal. Chem., 73 (2001) 725–731.
  • 31. J. Palmer, D.S. Burgi, N.J. Munro, J.P. Landers, Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis, Anal. Chem., 73 (2001) 725–731.
  • 32. S. Kodama, A. Yamamoto, Y. Saitoh, A. Matsunaga, K. Okamura, R. Kizu, K. Hayakawa, Enantioseparation of vinclozolin by γ-cyclodextrin-modified micellar electrokinetic chromatography, J. Agric. Food Chem., 50 (2002) 1312–1317.
  • 32. S. Kodama, A. Yamamoto, Y. Saitoh, A. Matsunaga, K. Okamura, R. Kizu, K. Hayakawa, Enantioseparation of vinclozolin by γ-cyclodextrin-modified micellar electrokinetic chromatography, J. Agric. Food Chem., 50 (2002) 1312–1317.
  • 33. A. Aumatell, R.J. Wells, Enantiomeric differentiation of a wide range of pharmacologically active substances by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt, J. Chromatogr. A, 688 (1994) 329–337.
  • 33. A. Aumatell, R.J. Wells, Enantiomeric differentiation of a wide range of pharmacologically active substances by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt, J. Chromatogr. A, 688 (1994) 329–337.
  • 34. T. Ueda, F. Kitamura, R. Mitchell, T. Metcalf, T. Kuwana, A. Nakamoto, Chiral Separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal. Chem., 63 (1991) 2979–2981.
  • 34. T. Ueda, F. Kitamura, R. Mitchell, T. Metcalf, T. Kuwana, A. Nakamoto, Chiral Separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal. Chem., 63 (1991) 2979–2981.
  • 35. A. Dobashi, T. Ono, S. Hara, J. Yamaguchi, Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography, Anal. Chem., 61 (1989) 1984–1986.
  • 35. A. Dobashi, T. Ono, S. Hara, J. Yamaguchi, Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography, Anal. Chem., 61 (1989) 1984–1986.
  • 36. D. Sarı, A. Derazshamshir, S. Aşır, I. Göktürk, F. Yılmaz, A. Denizli, Separation of D, L-ampicillin by ligand exchange-micellar electrokinetic chromatography., Biointerface Res. Appl. Chem., (2019) 4522-4533.
  • 36. D. Sarı, A. Derazshamshir, S. Aşır, I. Göktürk, F. Yılmaz, A. Denizli, Separation of D, L-ampicillin by ligand exchange-micellar electrokinetic chromatography., Biointerface Res. Appl. Chem., (2019) 4522-4533.
  • 37. C.P. Palmer, S. Terabe, Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity, Anal. Chem., 69 (1997) 1852–1860.
  • 37. C.P. Palmer, S. Terabe, Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity, Anal. Chem., 69 (1997) 1852–1860.
  • 38. V.A. Davankov, S.V. Rogozhin, Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes, J. Chromatogr. A, 60 (1971) 284–312.
  • 38. V.A. Davankov, S.V. Rogozhin, Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes, J. Chromatogr. A, 60 (1971) 284–312.
  • 39. M.G. Schmid, R. Rinaldi, D. Dreveny, G. Gübitz, Enantioseparation of α-amino acids and dipeptides by ligand-exchange capillary electrophoresis of various L-4-hydroxyproline derivatives, J. Chromatogr. A, 846 (1999) 157–163.
  • 39. M.G. Schmid, R. Rinaldi, D. Dreveny, G. Gübitz, Enantioseparation of α-amino acids and dipeptides by ligand-exchange capillary electrophoresis of various L-4-hydroxyproline derivatives, J. Chromatogr. A, 846 (1999) 157–163.
  • 40. M.G. Schmid, N. Grobuschek, O. Lecnik, G. Gubitz, Chiral Ligand-Exchange Capillary Electrophoresis. 48, 2, (2001) 143-154.
  • 40. M.G. Schmid, N. Grobuschek, O. Lecnik, G. Gubitz, Chiral Ligand-Exchange Capillary Electrophoresis. 48, 2, (2001) 143-154.
  • 41. Z. Chen, T. Hobo, Chemically L-phenylalaninamide-modified monolithic silica column prepared by a Sol-Gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348–3357.
  • 41. Z. Chen, T. Hobo, Chemically L-phenylalaninamide-modified monolithic silica column prepared by a Sol-Gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348–3357.
  • 42. X. Mu, L. Qi, J. Qiao, X. Yang, H. Ma, Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-l-hydroxyproline complexes coordinating with γ-cyclodextrins, Anal. Chim. Acta, 846 (2014) 68–74.
  • 42. X. Mu, L. Qi, J. Qiao, X. Yang, H. Ma, Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-l-hydroxyproline complexes coordinating with γ-cyclodextrins, Anal. Chim. Acta, 846 (2014) 68–74.
  • 43. M.G. Schmid, M. Laffranchini, D. Dreveny, G. Gübitz, Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis, Electrophoresis, 20 (1999) 2458–2461.
  • 43. M.G. Schmid, M. Laffranchini, D. Dreveny, G. Gübitz, Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis, Electrophoresis, 20 (1999) 2458–2461.
  • 44. P. Gozel, H. Michelsen, R.N. Zare, E. Gassmann, Electrokinetic Resolution of Amino Acid Enantiomers with Copper(II)–Aspartame Support Electrolyte, Anal. Chem.,50 (1987) 44–49.
  • 44. P. Gozel, H. Michelsen, R.N. Zare, E. Gassmann, Electrokinetic Resolution of Amino Acid Enantiomers with Copper(II)–Aspartame Support Electrolyte, Anal. Chem.,50 (1987) 44–49.
  • 45. T.C. Bøg-Hansen, Crossed immuno-affinoelectrophoresis, An analytical method to predict the result of affinity chromatography, Anal. Biochem., 56 (1973) 480–488.
  • 45. T.C. Bøg-Hansen, Crossed immuno-affinoelectrophoresis, An analytical method to predict the result of affinity chromatography, Anal. Biochem., 56 (1973) 480–488.
  • 46. K.M. Łącki, F.J. Riske, Affinity Chromatography: An Enabling Technology for Large‐Scale Bioprocessing, Biotechnol. J., 15 (2020) 1800397.
  • 46. K.M. Łącki, F.J. Riske, Affinity Chromatography: An Enabling Technology for Large‐Scale Bioprocessing, Biotechnol. J., 15 (2020) 1800397.
  • 47. Y.H. Chu, L.Z. Avila, J. Gao, G.M. Whitesides, Affinity Capillary Electrophoresis, Acc. Chem. Res., 28 (1995) 461–468.
  • 47. Y.H. Chu, L.Z. Avila, J. Gao, G.M. Whitesides, Affinity Capillary Electrophoresis, Acc. Chem. Res., 28 (1995) 461–468.
  • 48. Y.H. Chu, L. Z. Avila, H.A. Biebuyck, G.M. Whitesides, Using Affinity Capillary Electrophoresis to Identify the Peptide in a Peptide Library that Binds Most Tightly to Vancomycin. J. Org. Chem. 58 (1993) 648-652.
  • 48. Y.H. Chu, L. Z. Avila, H.A. Biebuyck, G.M. Whitesides, Using Affinity Capillary Electrophoresis to Identify the Peptide in a Peptide Library that Binds Most Tightly to Vancomycin. J. Org. Chem. 58 (1993) 648-652.
  • 49. M. Azad, L. Hernandez, A. Plazas, M. Rudolph, F.A. Gomez, Determination of binding constants between the antibiotic ristocetin A and D-Ala-D-Ala terminus peptides by affinity capillary electrophoresis, Chromatographia, 57 (2003) 339–343.
  • 49. M. Azad, L. Hernandez, A. Plazas, M. Rudolph, F.A. Gomez, Determination of binding constants between the antibiotic ristocetin A and D-Ala-D-Ala terminus peptides by affinity capillary electrophoresis, Chromatographia, 57 (2003) 339–343.
  • 50. C. Zhang, D.S. Hage, Capillary Electromigration Separation Methods. Chapter 18-Clinical Chemistry Applications of Capillary Electromigration Methods, Elsevier (2018) 423–452.
  • 50. C. Zhang, D.S. Hage, Capillary Electromigration Separation Methods. Chapter 18-Clinical Chemistry Applications of Capillary Electromigration Methods, Elsevier (2018) 423–452.
  • 51. C. Zhang, A.G. Woolfork, K. Suh, S. Ovbude, C. Bi, M. Elzoeiry, D.S. Hage, Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review, J. Pharm. Biomed. Anal., 177 (2020) 112882.
  • 51. C. Zhang, A.G. Woolfork, K. Suh, S. Ovbude, C. Bi, M. Elzoeiry, D.S. Hage, Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review, J. Pharm. Biomed. Anal., 177 (2020) 112882.
  • 52. B. Ekberg, K. Mosbach, Molecular imprinting: A technique for producing specific separation materials, Trends Biotechnol., 7 (1989) 92–96.
  • 52. B. Ekberg, K. Mosbach, Molecular imprinting: A technique for producing specific separation materials, Trends Biotechnol., 7 (1989) 92–96.
  • 53. T. Sajini, M.G. Gigimol, B. Mathew, A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices, Mater. Today Chem., 11 (2019) 283–295.
  • 53. T. Sajini, M.G. Gigimol, B. Mathew, A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices, Mater. Today Chem., 11 (2019) 283–295.
  • 54. E. Turiel, A. Martín-Esteban, Molecularly imprinted polymers for sample preparation: A review, Anal. Chim. Acta, 668 (2010) 87–99.
  • 54. E. Turiel, A. Martín-Esteban, Molecularly imprinted polymers for sample preparation: A review, Anal. Chim. Acta, 668 (2010) 87–99.
  • 55. G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly Imprinted Polymers: Present and Future Prospective, Int. J. Mol. Sci., 12 (2011) 5908–5945.
  • 55. G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly Imprinted Polymers: Present and Future Prospective, Int. J. Mol. Sci., 12 (2011) 5908–5945.
  • 56. J. Wackerlig, P.A. Lieberzeit, Polymers, Molecularly Imprinted, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2016) 1–20.
  • 56. J. Wackerlig, P.A. Lieberzeit, Polymers, Molecularly Imprinted, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2016) 1–20.
  • 57. Z.-S. Liu, C. Zheng, C. Yan, R.-Y. Gao, Molecularly imprinted polymers as a tool for separation in CEC, Electrophoresis, 28 (2007) 127–136.
  • 57. Z.-S. Liu, C. Zheng, C. Yan, R.-Y. Gao, Molecularly imprinted polymers as a tool for separation in CEC, Electrophoresis, 28 (2007) 127–136.
  • 58. A. Malik, Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns, Electrophoresis, 23 (2002) 3973–3992.
  • 58. A. Malik, Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns, Electrophoresis, 23 (2002) 3973–3992.
  • 59. A.P. McKeown, M.R. Euerby, C.M. Johnson, M. Koeberle, H. Lomax, H. Ritchie, P. Ross, An evaluation of unbonded silica stationary phases for the separation of basic analytes using capillary electrochromatography, Chromatographia, 52 (2000) 777–786.
  • 59. A.P. McKeown, M.R. Euerby, C.M. Johnson, M. Koeberle, H. Lomax, H. Ritchie, P. Ross, An evaluation of unbonded silica stationary phases for the separation of basic analytes using capillary electrochromatography, Chromatographia, 52 (2000) 777–786.
  • 60. H. Engelhardt, F.T. Hafner, Porous and non-porous stationary phases for capillary electrochromatography under conditions of reversed phase chromatography, Chromatographia, 52 (2000) 769–776.
  • 60. H. Engelhardt, F.T. Hafner, Porous and non-porous stationary phases for capillary electrochromatography under conditions of reversed phase chromatography, Chromatographia, 52 (2000) 769–776.
  • 61. C. Chaiyasut, Y. Takatsu, S. Kitagawa, T. Tsuda, Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and pH, Electrophoresis, 22 (2001) 1267–1272.
  • 61. C. Chaiyasut, Y. Takatsu, S. Kitagawa, T. Tsuda, Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and pH, Electrophoresis, 22 (2001) 1267–1272.
  • 62. W.J. Cheong, S.H. Yang, Open tubular molecular imprinted phases in chiral capillary electrochromatography, Methods Mol. Biol., 970 (2013) 469–487.
  • 62. W.J. Cheong, S.H. Yang, Open tubular molecular imprinted phases in chiral capillary electrochromatography, Methods Mol. Biol., 970 (2013) 469–487.
  • 63. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 63. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 64. N.W. Smith, Z. Jiang, Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A, 1184 (2008) 416–440.
  • 64. N.W. Smith, Z. Jiang, Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A, 1184 (2008) 416–440.
  • 65. K. Şarkaya, A. Denizli, Moleküler Baskılama Yöntemi ile Kapiler Elektrokromatografi (CEC) Sisteminde Hidrofobik Amino Asitlerin Enantiyomerlerinin Ayrılması. 2018.
  • 65. K. Şarkaya, A. Denizli, Moleküler Baskılama Yöntemi ile Kapiler Elektrokromatografi (CEC) Sisteminde Hidrofobik Amino Asitlerin Enantiyomerlerinin Ayrılması. 2018.
  • 66. J. Ou, Z. Liu, H. Wang, H. Lin, J. Dong, H. Zou, Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC, Electrophoresis, 36 (2015) 62–75.
  • 66. J. Ou, Z. Liu, H. Wang, H. Lin, J. Dong, H. Zou, Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC, Electrophoresis, 36 (2015) 62–75.
  • 67. P. Kuś, J. Kusz, M. Książek, E. Pieprzyca, M. Rojkiewicz, Spectroscopic characterization and crystal structures of two cathinone derivatives: N-ethyl-2-amino-1-phenylpropan-1-one (ethcathinone) hydrochloride and N-ethyl-2-amino-1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride, Forensic Toxicol., 35 (2017) 114–124.
  • 67. P. Kuś, J. Kusz, M. Książek, E. Pieprzyca, M. Rojkiewicz, Spectroscopic characterization and crystal structures of two cathinone derivatives: N-ethyl-2-amino-1-phenylpropan-1-one (ethcathinone) hydrochloride and N-ethyl-2-amino-1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride, Forensic Toxicol., 35 (2017) 114–124.
  • 68. B.B. Mamba, R.W. Krause, T.J. Malefetse, E.N. Nxumalo, Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water, Environ. Chem. Lett., 5 (2007) 79–84.
  • 68. B.B. Mamba, R.W. Krause, T.J. Malefetse, E.N. Nxumalo, Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water, Environ. Chem. Lett., 5 (2007) 79–84.
  • 69. A.E. Holmes, Cyclodextrins and their complexes: Chemistry, analytical methods, applications, Chirality, 19 (2007) 162–162.
  • 69. A.E. Holmes, Cyclodextrins and their complexes: Chemistry, analytical methods, applications, Chirality, 19 (2007) 162–162.
  • 70. M. Arslan, S. Sayin, M. Yilmaz, Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-grafted iron oxide magnetic nanoparticles, Tetrahedron Asymmetry, 24 (2013) 982–989.
  • 70. M. Arslan, S. Sayin, M. Yilmaz, Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-grafted iron oxide magnetic nanoparticles, Tetrahedron Asymmetry, 24 (2013) 982–989.
  • 71. N. Li, J. Chen, Y.P. Shi, Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography, J. Chromatogr. A, 1441 (2016) 24–33.
  • 71. N. Li, J. Chen, Y.P. Shi, Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography, J. Chromatogr. A, 1441 (2016) 24–33.
  • 72. L.A. Kartsova, N.V. Komarova, Influence of α- and β-Cyclodextrins on the Separation of Positional Isomers of Benzoic Acid Nitro, Amino, Chloro, and Hydroxy Derivatives by Capillary Electrophoresis, J. Anal. Chem., 58 (2003) 972–978.
  • 72. L.A. Kartsova, N.V. Komarova, Influence of α- and β-Cyclodextrins on the Separation of Positional Isomers of Benzoic Acid Nitro, Amino, Chloro, and Hydroxy Derivatives by Capillary Electrophoresis, J. Anal. Chem., 58 (2003) 972–978.
  • 73. S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89–122.
  • 73. S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89–122.
  • 74. C. Perrin, Y.V. Heyden, M. Maftouh, D.L. Massart, Rapid screening for chiral separations by short‐end injection capillary electrophoresis using highly sulfated cyclodextrins as chiral selectors, Electrophoresis, 22 (2001) 3203–3215.
  • 74. C. Perrin, Y.V. Heyden, M. Maftouh, D.L. Massart, Rapid screening for chiral separations by short‐end injection capillary electrophoresis using highly sulfated cyclodextrins as chiral selectors, Electrophoresis, 22 (2001) 3203–3215.
  • 75. J. Zhou, J. Tang, W. Tang, Recent development of cationic cyclodextrins for chiral separation, TrAC-Trends Anal. Chem., 65 (2015) 22–29.
  • 75. J. Zhou, J. Tang, W. Tang, Recent development of cationic cyclodextrins for chiral separation, TrAC-Trends Anal. Chem., 65 (2015) 22–29.
  • 76. Z.-X. Fei, M. Zhang, J.-H. Zhang, L.-M. Yuan, Chiral metal–organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 76. Z.-X. Fei, M. Zhang, J.-H. Zhang, L.-M. Yuan, Chiral metal–organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 77. A. Kuila, N.A. Surib, N.S. Mishra, A. Nawaz, K.M. Leong, L.C. Sim, P. Saravanan, S. Ibrahim, Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis, ChemistrySelect, 2 (2017) 6163–6177.
  • 77. A. Kuila, N.A. Surib, N.S. Mishra, A. Nawaz, K.M. Leong, L.C. Sim, P. Saravanan, S. Ibrahim, Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis, ChemistrySelect, 2 (2017) 6163–6177.
  • 78. B. Li, Y. Zhang, D. Ma, L. Li, G. Li, G. Li, Z. Shi, S. Feng, A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites, Chem. Commun., 48 (2012) 6151–6153.
  • 78. B. Li, Y. Zhang, D. Ma, L. Li, G. Li, G. Li, Z. Shi, S. Feng, A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites, Chem. Commun., 48 (2012) 6151–6153.
  • 79. M. Ma, D. Zacher, X. Zhang, R.A. Fischer, N. Metzler-Nolte, A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des., 11 (2011) 185–189.
  • 79. M. Ma, D. Zacher, X. Zhang, R.A. Fischer, N. Metzler-Nolte, A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des., 11 (2011) 185–189.
  • 80. T. Grancha, J. Ferrando-Soria, D. Armentano, E. Pardo, Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear Wheel, J. Coord. Chem., 72 (2019) 1204–1221.
  • 80. T. Grancha, J. Ferrando-Soria, D. Armentano, E. Pardo, Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear Wheel, J. Coord. Chem., 72 (2019) 1204–1221.
  • 81. J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112 (2012) 869–932.
  • 81. J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112 (2012) 869–932.
  • 82. O.K. Farha, A.Ö. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem., 2 (2010) 944–948.
  • 82. O.K. Farha, A.Ö. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem., 2 (2010) 944–948.
  • 83. T. Zhang, F. Song, W. Lin, Blocking bimolecular activation pathways leads to different regioselectivity in metal-organic framework catalysis, Chem. Commun., 48 (2012) 8766–8768.
  • 83. T. Zhang, F. Song, W. Lin, Blocking bimolecular activation pathways leads to different regioselectivity in metal-organic framework catalysis, Chem. Commun., 48 (2012) 8766–8768.
  • 84. G. Wang, Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, S. Litster, G. Wu, Highly active atomically dispersed CoN 4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy, Energy Environ. Sci., 12 (2019) 250–260.
  • 84. G. Wang, Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, S. Litster, G. Wu, Highly active atomically dispersed CoN 4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy, Energy Environ. Sci., 12 (2019) 250–260.
  • 85. J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin, B. Van der Bruggen, Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration, ACS Appl. Mater. Interfaces, 9 (2017) 1975–1986.
  • 85. J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin, B. Van der Bruggen, Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration, ACS Appl. Mater. Interfaces, 9 (2017) 1975–1986.
  • 86. J. Zhuang, C.H. Kuo, L.Y. Chou, D.Y. Liu, E. Weerapana, E., C.K. Tsung, Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation, ACS Nano 8 (2014) 2812–2819.
  • 86. J. Zhuang, C.H. Kuo, L.Y. Chou, D.Y. Liu, E. Weerapana, E., C.K. Tsung, Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation, ACS Nano 8 (2014) 2812–2819.
  • 87. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112 (2012) 933–969.
  • 87. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112 (2012) 933–969.
  • 88. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev., 44 (2015) 7128–7154.
  • 88. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev., 44 (2015) 7128–7154.
  • 89. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, American Association for the Advancement of science (AAAS) 341, (2013) 374-385.
  • 89. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, American Association for the Advancement of science (AAAS) 341, (2013) 374-385.
  • 90. A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178 (2005) 2491–2510.
  • 90. A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178 (2005) 2491–2510.
  • 91. S. Han, Y. Wei, C. Valente, I. Lagzi, J.J. Gassensmith, A. Coskun, J.F. Stoddart, B.A. Grzybowski, Chromatography in a single metal-organic framework (MOF) crystal, J. Am. Chem. Soc., 132 (2010) 16358–16361.
  • 91. S. Han, Y. Wei, C. Valente, I. Lagzi, J.J. Gassensmith, A. Coskun, J.F. Stoddart, B.A. Grzybowski, Chromatography in a single metal-organic framework (MOF) crystal, J. Am. Chem. Soc., 132 (2010) 16358–16361.
  • 92. C.X. Yang, X.P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics, Anal. Chem., 83 (2011) 7144–7150.
  • 92. C.X. Yang, X.P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics, Anal. Chem., 83 (2011) 7144–7150.
  • 93. C.-X. Yang, Y.-J. Chen, H.-F. Wang, X.-P. Yan, High-performance separation of fullerenes on metal-organic framework MIL-101(Cr). Chem. - A Eur. J., 17 (2011) 11734–11737.
  • 93. C.-X. Yang, Y.-J. Chen, H.-F. Wang, X.-P. Yan, High-performance separation of fullerenes on metal-organic framework MIL-101(Cr). Chem. - A Eur. J., 17 (2011) 11734–11737.
  • 94. Z-Y. Gu, D-Q. Jiang, H-F. Wang, X-Y. Cui, X-P. Yan, Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks, J. Phys. Chem., 114 (2010) 311–316.
  • 94. Z-Y. Gu, D-Q. Jiang, H-F. Wang, X-Y. Cui, X-P. Yan, Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks, J. Phys. Chem., 114 (2010) 311–316.
  • 95. Z-X. Fei, M. Zhang, J-H. Zhang, L-M. Yuan, Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 95. Z-X. Fei, M. Zhang, J-H. Zhang, L-M. Yuan, Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49–55.
  • 96. S.M. Xie, M. Zhang, Z.X. Fei, L.M. Yuan, Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography, J. Chromatogr. A, 1363 (2014) 137–143.
  • 96. S.M. Xie, M. Zhang, Z.X. Fei, L.M. Yuan, Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography, J. Chromatogr. A, 1363 (2014) 137–143.
  • 97. Z.-X. Fei, M. Zhang, S.-M. Xie, L.-M. Yuan, Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework, Electrophoresis, 35 (2014) 3541–3548.
  • 97. Z.-X. Fei, M. Zhang, S.-M. Xie, L.-M. Yuan, Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework, Electrophoresis, 35 (2014) 3541–3548.
  • 98. M.T. Matyska, J.J. Pesek, A. Katrekar, Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals, Anal. Chem., 71 (1999) 5508–5514.
  • 98. M.T. Matyska, J.J. Pesek, A. Katrekar, Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals, Anal. Chem., 71 (1999) 5508–5514.
  • 99. X. Wang, C. Cheng, S. Wang, M. Zhao, P.K. Dasgupta, S. Liu, Nanocapillaries for open tubular chromatographic separations of proteins in femtoliter to picoliter samples, Anal. Chem., 81 (2009) 7428–7435.
  • 99. X. Wang, C. Cheng, S. Wang, M. Zhao, P.K. Dasgupta, S. Liu, Nanocapillaries for open tubular chromatographic separations of proteins in femtoliter to picoliter samples, Anal. Chem., 81 (2009) 7428–7435.
  • 100. Z-G. Gu, C. Zhan, J. Zhang, X. Bu, Chiral chemistry of metal-camphorate frameworks, Chem. Soc. Rev., 45 (2016) 3122–3144.
  • 100. Z-G. Gu, C. Zhan, J. Zhang, X. Bu, Chiral chemistry of metal-camphorate frameworks, Chem. Soc. Rev., 45 (2016) 3122–3144.
  • 101. S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chem. Commun., 48 (2012) 7447–7449.
  • 101. S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chem. Commun., 48 (2012) 7447–7449.
  • 102. R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides, Nanoscale, 4 (2012) 591–599.
  • 102. R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides, Nanoscale, 4 (2012) 591–599.
  • 103. M.M. Wanderley, C. Wang, C. De Wu, W. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols, J. Am. Chem. Soc., 134 (2012) 9050–9053.
  • 103. M.M. Wanderley, C. Wang, C. De Wu, W. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols, J. Am. Chem. Soc., 134 (2012) 9050–9053.
  • 104. L.L. Wu, R.P. Liang, J. Chen, J.D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 104. L.L. Wu, R.P. Liang, J. Chen, J.D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 105. K. Şarkaya, S. Aşir, I. Göktürk, S. Ektirici, F. Yilmaz, H. Yavuz, A. Denizli, Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. Sep. Sci. Plus (2020) 3:235–245.
  • 105. K. Şarkaya, S. Aşir, I. Göktürk, S. Ektirici, F. Yilmaz, H. Yavuz, A. Denizli, Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. Sep. Sci. Plus (2020) 3:235–245.
  • 106. K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, A. Denizli, Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns, Process Biochem., 92 (2020) 69–77.
  • 106. K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, A. Denizli, Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns, Process Biochem., 92 (2020) 69–77.
  • 107. K. Hroboň Ová, A. Lomenova, Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Monatshefte für Chemie- Chemical Monthly 149 (2018) 939–946.
  • 107. K. Hroboň Ová, A. Lomenova, Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Monatshefte für Chemie- Chemical Monthly 149 (2018) 939–946.
  • 108. C-Y. Yue, G-S. Ding, F-J. Liu, A-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013) 176–182.
  • 108. C-Y. Yue, G-S. Ding, F-J. Liu, A-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013) 176–182.
  • 109. H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal. Chim. Acta., 542 (2005) 83–89.
  • 109. H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal. Chim. Acta., 542 (2005) 83–89.
  • 110. S.H. Ou, L.S. Pan, J.J. Jow, H.R. Chen, T.R. Ling, Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine, Biosens. Bioelectron., 105 (2018) 143–150.
  • 110. S.H. Ou, L.S. Pan, J.J. Jow, H.R. Chen, T.R. Ling, Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine, Biosens. Bioelectron., 105 (2018) 143–150.
  • 111. J. Zhou, Q. Chen, Y. Wang, Q. Han, Y. Fu, Stereoselectivity of tyrosine enantiomers in electrochemical redox reactions on gold matrices, Electrochim. Acta, 59 (2012) 45–48.
  • 111. J. Zhou, Q. Chen, Y. Wang, Q. Han, Y. Fu, Stereoselectivity of tyrosine enantiomers in electrochemical redox reactions on gold matrices, Electrochim. Acta, 59 (2012) 45–48.
  • 112. X. Chen, S. Zhang, X. Shan, Z. Chen, Derivative chiral copper(II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid, Anal. Chim. Acta, 1072 (2019) 54–60.
  • 112. X. Chen, S. Zhang, X. Shan, Z. Chen, Derivative chiral copper(II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid, Anal. Chim. Acta, 1072 (2019) 54–60.
  • 113. Z. Iskierko, A. Checinska, P.S. Sharma, K. Golebiewska, K. Noworyta, P. Borowicz, K. Fronc, V. Bandi, F. D’Souza, W. Kutner, Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing, J. Mater. Chem. C, 5 (2017) 969–977.
  • 113. Z. Iskierko, A. Checinska, P.S. Sharma, K. Golebiewska, K. Noworyta, P. Borowicz, K. Fronc, V. Bandi, F. D’Souza, W. Kutner, Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing, J. Mater. Chem. C, 5 (2017) 969–977.
  • 114. Y. Kong, J. Wei, W. Wang, Z. Chen, Separation of tryptophan enantiomers with polypyrrole electrode column by potential-induced technique, Electrochim. Acta, 56 (2011) 4770–4774.
  • 114. Y. Kong, J. Wei, W. Wang, Z. Chen, Separation of tryptophan enantiomers with polypyrrole electrode column by potential-induced technique, Electrochim. Acta, 56 (2011) 4770–4774.
  • 115. H.S. Lee, J. Hong, Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents, J. Chromatogr. A, 868 (2000) 189–196.
  • 115. H.S. Lee, J. Hong, Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents, J. Chromatogr. A, 868 (2000) 189–196.
  • 116. V. Syritski, J. Reut, A. Menaker, R.E. Gyurcsányi, A. Öpik, Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid, Electrochim. Acta, 53 (2008) 2729–2736.
  • 116. V. Syritski, J. Reut, A. Menaker, R.E. Gyurcsányi, A. Öpik, Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid, Electrochim. Acta, 53 (2008) 2729–2736.
  • 117. J. Gu, H. Dai, Y. Kong, Y. Tao, H. Chu, Z. Tong, Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles, Synth. Met., 222 (2016) 137–143.
  • 117. J. Gu, H. Dai, Y. Kong, Y. Tao, H. Chu, Z. Tong, Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles, Synth. Met., 222 (2016) 137–143.
  • 118. S. Lee, Y. Choi, S. Lee, K. Jeong, S. Jung, Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated fromRhizobium meliloti, Chirality, 16 (2004) 204–210.
  • 118. S. Lee, Y. Choi, S. Lee, K. Jeong, S. Jung, Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated fromRhizobium meliloti, Chirality, 16 (2004) 204–210.
  • 119. W. Liu, C. Holdsworth, L. Ye, Synthesis of molecularly imprinted polymers using a functionalized initiator for chiral‐selective recognition of propranolol, Chirality, 32 (2020) 370–377.
  • 119. W. Liu, C. Holdsworth, L. Ye, Synthesis of molecularly imprinted polymers using a functionalized initiator for chiral‐selective recognition of propranolol, Chirality, 32 (2020) 370–377.
  • 120. G.-N. Chen, N. Li, T. Luo, Y.-M. Dong, Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl) Propyl Methacrylate as a Cross-Linking Monomer, J. Chromatogr. Sci., 55 (2017) 471–476.
  • 120. G.-N. Chen, N. Li, T. Luo, Y.-M. Dong, Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl) Propyl Methacrylate as a Cross-Linking Monomer, J. Chromatogr. Sci., 55 (2017) 471–476.
  • 121. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M.A. Goicolea, R.J. Barrio, Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A, 1508 (2017) 53–64.
  • 121. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M.A. Goicolea, R.J. Barrio, Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A, 1508 (2017) 53–64.
  • 122. R. Gutiérrez-Climente, A. Gómez-Caballero, M. Halhalli, B. Sellergren, M.A. Goicolea, R.J. Barrio, Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs, J. Mol. Recognit., 29 (2016) 106–114.
  • 122. R. Gutiérrez-Climente, A. Gómez-Caballero, M. Halhalli, B. Sellergren, M.A. Goicolea, R.J. Barrio, Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs, J. Mol. Recognit., 29 (2016) 106–114.
  • 123. J.M. Brunel, BINOL: A versatile chiral reagent. Chem. Rev. 2005, 105, 857–897.
  • 123. J.M. Brunel, BINOL: A versatile chiral reagent. Chem. Rev. 2005, 105, 857–897.
  • 124. H. Dong, D. Zhang, H. Lin, Y. Wang, L. Liu, M. Zheng, X. Li, C. Zhang, J. Li, P. Zhang, J. So, A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1′- binaphthalene-2-naphthol racemates, Chirality, 29 (2017) 340–347.
  • 124. H. Dong, D. Zhang, H. Lin, Y. Wang, L. Liu, M. Zheng, X. Li, C. Zhang, J. Li, P. Zhang, J. So, A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1′- binaphthalene-2-naphthol racemates, Chirality, 29 (2017) 340–347.
  • 125. C. Kulsing, R. Knob, M. Macka, P. Junor, R.I. Boysen, M.T.W. Hearn, Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations, J. Chromatogr. A, 1354 (2014) 85–91.
  • 125. C. Kulsing, R. Knob, M. Macka, P. Junor, R.I. Boysen, M.T.W. Hearn, Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations, J. Chromatogr. A, 1354 (2014) 85–91.
  • 126. C. Kulsing, Y. Yang, J.M. Chowdhury, R.I. Boysen, M.T.W. Hearn, Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open-tubular capillaries, Electrophoresis, 38 (2017) 1179–1187.
  • 126. C. Kulsing, Y. Yang, J.M. Chowdhury, R.I. Boysen, M.T.W. Hearn, Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open-tubular capillaries, Electrophoresis, 38 (2017) 1179–1187.
  • 127. J. Ou, X. Li, S. Feng, J. Dong, X. Dong, L. Kong, M. Ye, H. Zou, Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography, Anal. Chem., 79 (2007) 639–646.
  • 127. J. Ou, X. Li, S. Feng, J. Dong, X. Dong, L. Kong, M. Ye, H. Zou, Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography, Anal. Chem., 79 (2007) 639–646.
  • 128. Q-L. Zhao, J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta, 152 (2016) 277–282.
  • 128. Q-L. Zhao, J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta, 152 (2016) 277–282.
  • 129. H.Y. Zong, X. Liu, Z.S. Liu, Y.P. Huang, Molecular crowding-based imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 818–824.
  • 129. H.Y. Zong, X. Liu, Z.S. Liu, Y.P. Huang, Molecular crowding-based imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 818–824.
  • 130. L.N. Mu, X.H. Wang, L. Zhao, Y.P. Huang, Z.S. Liu, Low cross-linked molecularly imprinted monolithic column prepared in molecular crowding conditions, J. Chromatogr. A, 1218 (2011) 9236–9243.
  • 130. L.N. Mu, X.H. Wang, L. Zhao, Y.P. Huang, Z.S. Liu, Low cross-linked molecularly imprinted monolithic column prepared in molecular crowding conditions, J. Chromatogr. A, 1218 (2011) 9236–9243.
  • 131. X.X. Li, X. Liu, L.H. Bai, H.Q. Duan, Y.P. Huang, Z.S. Liu, Preparation of imprinted monolithic column under molecular crowding conditions, Chinese Chem. Lett., 22 (2011) 989-992.
  • 131. X.X. Li, X. Liu, L.H. Bai, H.Q. Duan, Y.P. Huang, Z.S. Liu, Preparation of imprinted monolithic column under molecular crowding conditions, Chinese Chem. Lett., 22 (2011) 989-992.
  • 132. X-H. Wang, Q. Dong, L-L. Ying, S-S. Chi, Y-H. Lan, Y-P. Huang, Z-S. Liu, Enhancement of selective separation on molecularly imprinted monolith by molecular crowding agent, Anal. Bioanal. Chem., 409 (2017) 201–211.
  • 132. X-H. Wang, Q. Dong, L-L. Ying, S-S. Chi, Y-H. Lan, Y-P. Huang, Z-S. Liu, Enhancement of selective separation on molecularly imprinted monolith by molecular crowding agent, Anal. Bioanal. Chem., 409 (2017) 201–211.
  • 133. X.-X. Shi, L. Xu, H.-Q. Duan, Y.-P. Huang, Z.-S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, Electrophoresis, 32 (2011)N1348–1356.
  • 133. X.-X. Shi, L. Xu, H.-Q. Duan, Y.-P. Huang, Z.-S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, Electrophoresis, 32 (2011)N1348–1356.
  • 134. H. Wang, Q. Xu, J. Wang, W. Du, F. Liu, X. Hu, Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing, Biosens. Bioelectron., 100 (2018) 105–114.
  • 134. H. Wang, Q. Xu, J. Wang, W. Du, F. Liu, X. Hu, Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing, Biosens. Bioelectron., 100 (2018) 105–114.
  • 135. W-F. Song, Q-L. Zhao, X-J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography, Microchim. Acta, 186 (2019) 1–7.
  • 135. W-F. Song, Q-L. Zhao, X-J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography, Microchim. Acta, 186 (2019) 1–7.
  • 136. X. Li, Z. Zhou, Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases, Anal. Chim. Acta, 819 (2014) 122–129.
  • 136. X. Li, Z. Zhou, Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases, Anal. Chim. Acta, 819 (2014) 122–129.
  • 137. J. Zhao, X. Lu, Y. Wang, J. Lv, “Click” preparation of a novel “native-phenylcarbamoylated” bilayer cyclodextrin stationary phase for enhanced chiral differentiation, J. Chromatogr. A, 1381 (2015) 253–259.
  • 137. J. Zhao, X. Lu, Y. Wang, J. Lv, “Click” preparation of a novel “native-phenylcarbamoylated” bilayer cyclodextrin stationary phase for enhanced chiral differentiation, J. Chromatogr. A, 1381 (2015) 253–259.
  • 138. P. Řezanka, D. Sýkora, M. Novotný, M. Havlík, V. Král, Nonaqueous Capillary Electrophoretic Enantioseparation of Water Insoluble Tröger’s Base Derivatives Using β-Cyclodextrin as Chiral Selector, Chirality, 25 (2013) 810–813.
  • 138. P. Řezanka, D. Sýkora, M. Novotný, M. Havlík, V. Král, Nonaqueous Capillary Electrophoretic Enantioseparation of Water Insoluble Tröger’s Base Derivatives Using β-Cyclodextrin as Chiral Selector, Chirality, 25 (2013) 810–813.
  • 139. Z.-I. Szabó, L. Szőcs, D.-L. Muntean, B. NoszáL, G. Tóth, Chiral Separation of Uncharged Pomalidomide Enantiomers Using Carboxymethyl-β-Cyclodextrin: A Validated Capillary Electrophoretic Method, Chirality, 28 (2016) 199–203.
  • 139. Z.-I. Szabó, L. Szőcs, D.-L. Muntean, B. NoszáL, G. Tóth, Chiral Separation of Uncharged Pomalidomide Enantiomers Using Carboxymethyl-β-Cyclodextrin: A Validated Capillary Electrophoretic Method, Chirality, 28 (2016) 199–203.
  • 140. E. Sánchez-López, A. Salgado, A.L. Crego, M.L. Marina, Investigation on the enantioseparation of duloxetine by capillary electrophoresis, NMR, and mass spectrometry, Electrophoresis, 35 (2014) 2842–2847.
  • 140. E. Sánchez-López, A. Salgado, A.L. Crego, M.L. Marina, Investigation on the enantioseparation of duloxetine by capillary electrophoresis, NMR, and mass spectrometry, Electrophoresis, 35 (2014) 2842–2847.
  • 141. K. Németh, G. Tárkányi, E. Varga, T. Imre, R. Mizsei, R. Iványi, J. Visy, J. Szemán, L. Jicsinszky, L. Szente, M. Simonyi, Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins, J. Pharm. Biomed. Anal., 54 (2011) 475– 481.
  • 141. K. Németh, G. Tárkányi, E. Varga, T. Imre, R. Mizsei, R. Iványi, J. Visy, J. Szemán, L. Jicsinszky, L. Szente, M. Simonyi, Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins, J. Pharm. Biomed. Anal., 54 (2011) 475– 481.
  • 142. P. Lehnert, A. Přibylka, V. Maier, J. Znaleziona, J. Ševčík, M. Douša, Enantiomeric separation of R,S-tolterodine and R,S -methoxytolterodine with negatively charged cyclodextrins by capillary electrophoresis, J. Sep. Sci., 36 (2013) 1561–1567.
  • 142. P. Lehnert, A. Přibylka, V. Maier, J. Znaleziona, J. Ševčík, M. Douša, Enantiomeric separation of R,S-tolterodine and R,S -methoxytolterodine with negatively charged cyclodextrins by capillary electrophoresis, J. Sep. Sci., 36 (2013) 1561–1567.
  • 143. A. Gogolashvili, L. Chankvetadze, N. Takaishvili, A. Salgado, B. Chankvetadze, Separation of terbutaline enantiomers in capillary electrophoresis with neutral cyclodextrin‐type chiral selectors and investigation of the structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 41 (2020) 1023–1030.
  • 143. A. Gogolashvili, L. Chankvetadze, N. Takaishvili, A. Salgado, B. Chankvetadze, Separation of terbutaline enantiomers in capillary electrophoresis with neutral cyclodextrin‐type chiral selectors and investigation of the structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 41 (2020) 1023–1030.
  • 144. Y. Dai, S. Wang, J. Zhou, J. Tang, W. Tang, A family of single-isomer, dicationic cyclodextrin chiral selectors for capillary electrophoresis: Mono-6 A -ammonium-6 C -butylimidazolium-β-cyclodextrin chlorides, Electrophoresis, 34 (2013) 833–840.
  • 144. Y. Dai, S. Wang, J. Zhou, J. Tang, W. Tang, A family of single-isomer, dicationic cyclodextrin chiral selectors for capillary electrophoresis: Mono-6 A -ammonium-6 C -butylimidazolium-β-cyclodextrin chlorides, Electrophoresis, 34 (2013) 833–840.
  • 145. Y. Dai, S. Wang, J. Zhou, Y. Liu, D. Sun, J. Tang, W. Tang, Cationic cyclodextrin as versatile chiral selector for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1246 (2012) 98–102.
  • 145. Y. Dai, S. Wang, J. Zhou, Y. Liu, D. Sun, J. Tang, W. Tang, Cationic cyclodextrin as versatile chiral selector for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1246 (2012) 98–102.
  • 146. A.S. Rizvi, G. Murtaza, M. Irfan, Y. Xiao, F. Qu, Determination of Kynurenine Enantiomers by Alpha-Cyclodextrin, Cationic-βeta-Cyclodextrin and Their Synergy Complemented with Stacking Enrichment in Capillary Electrophoresis, J. Chromatogr. A, 1622 (2020) 461128.
  • 146. A.S. Rizvi, G. Murtaza, M. Irfan, Y. Xiao, F. Qu, Determination of Kynurenine Enantiomers by Alpha-Cyclodextrin, Cationic-βeta-Cyclodextrin and Their Synergy Complemented with Stacking Enrichment in Capillary Electrophoresis, J. Chromatogr. A, 1622 (2020) 461128.
  • 147. Y. Feng, T. Wang, Z. Jiang, B. Chankvetadze, J. Crommen, Comparative enantiomer affinity pattern of β-blockers in aqueous and nonaqueous CE using single-component anionic cyclodextrins, Electrophoresis, 36 (2015) 1358–1364.
  • 147. Y. Feng, T. Wang, Z. Jiang, B. Chankvetadze, J. Crommen, Comparative enantiomer affinity pattern of β-blockers in aqueous and nonaqueous CE using single-component anionic cyclodextrins, Electrophoresis, 36 (2015) 1358–1364.
  • 148. J. Boonleang, J.F. Stobaugh, New single isomer negatively charged β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Electrophoresis, 34 (2013) 1232–1240.
  • 148. J. Boonleang, J.F. Stobaugh, New single isomer negatively charged β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Electrophoresis, 34 (2013) 1232–1240.
  • 149. K. Lomsadze, E.D. Vega, A. Salgado, A.L. Crego, G.K.E. Scriba, M.L. Marina, B. Chankvetadze, Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: Comparative CE and NMR studies, Electrophoresis, 33 (2012) 1637–1647.
  • 149. K. Lomsadze, E.D. Vega, A. Salgado, A.L. Crego, G.K.E. Scriba, M.L. Marina, B. Chankvetadze, Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: Comparative CE and NMR studies, Electrophoresis, 33 (2012) 1637–1647.
  • 150. K. Lomsadze, A. Salgado, E. Calvo, J. Antonio López, B. Chankvetadze, Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with heptakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes, Electrophoresis, 32 (2011) 1156–1163.
  • 150. K. Lomsadze, A. Salgado, E. Calvo, J. Antonio López, B. Chankvetadze, Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with heptakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes, Electrophoresis, 32 (2011) 1156–1163.
  • 151. Y. Liu, M. Deng, J. Yu, Z. Jiang, X. Guo, Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism, J. Sep. Sci., 39 (2016) 1766–1775.
  • 151. Y. Liu, M. Deng, J. Yu, Z. Jiang, X. Guo, Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism, J. Sep. Sci., 39 (2016) 1766–1775.
  • 152. S. Samakashvili, A. Salgado, G.K.E. Scriba, B. Chankvetadze, Comparative Enantioseparation of Ketoprofen with Trimethylated α-, β-, and γ-Cyclodextrins in Capillary Electrophoresis and Study of Related Selector-Selectand Interactions Using Nuclear Magnetic Resonance Spectroscopy, Chirality, 25 (2013) 79–88.
  • 152. S. Samakashvili, A. Salgado, G.K.E. Scriba, B. Chankvetadze, Comparative Enantioseparation of Ketoprofen with Trimethylated α-, β-, and γ-Cyclodextrins in Capillary Electrophoresis and Study of Related Selector-Selectand Interactions Using Nuclear Magnetic Resonance Spectroscopy, Chirality, 25 (2013) 79–88.
  • 153. L. Li, X. Li, Q. Luo, T. You, A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches, Talanta, 142 (2015) 28–34.
  • 153. L. Li, X. Li, Q. Luo, T. You, A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches, Talanta, 142 (2015) 28–34.
  • 154. W. Li, L. Zhao, H. Zhang, X. Chen, S. Chen, Z. Zhu, Z. Hong, Y. Chai, Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms, Electrophoresis, 35 (2014) 2855–2862.
  • 154. W. Li, L. Zhao, H. Zhang, X. Chen, S. Chen, Z. Zhu, Z. Hong, Y. Chai, Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms, Electrophoresis, 35 (2014) 2855–2862.
  • 155. S. Béni, T. Sohajda, G. Neumajer, R. Iványi, L. Szente, B. Noszál, Separation and characterization of modified pregabalins in terms of cyclodextrin complexation, using capillary electrophoresis and nuclear magnetic resonance, J. Pharm. Biomed. Anal., 51 (2010) 842–852.
  • 155. S. Béni, T. Sohajda, G. Neumajer, R. Iványi, L. Szente, B. Noszál, Separation and characterization of modified pregabalins in terms of cyclodextrin complexation, using capillary electrophoresis and nuclear magnetic resonance, J. Pharm. Biomed. Anal., 51 (2010) 842–852.
  • 156. W. Li, G. Tan, L. Zhao, X. Chen, X. Zhang, Z. Zhu, Y. Chai, Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: Chiral recognition mechanism and mathematical model for predicting chiral separation, Anal. Chim. Acta, 718 (2012) 138–147.
  • 156. W. Li, G. Tan, L. Zhao, X. Chen, X. Zhang, Z. Zhu, Y. Chai, Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: Chiral recognition mechanism and mathematical model for predicting chiral separation, Anal. Chim. Acta, 718 (2012) 138–147.
  • 157. X. Guo, Z. Wang, L. Zuo, Z. Zhou, X. Guo, T. Sun, Quantitative prediction of enantioseparation using 2-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Analyst, 139 (2014) 6511–6519.
  • 157. X. Guo, Z. Wang, L. Zuo, Z. Zhou, X. Guo, T. Sun, Quantitative prediction of enantioseparation using 2-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Analyst, 139 (2014) 6511–6519.
  • 158. A. Gogolashvili, E. Tatunashvili, L. Chankvetadze, T. Sohajda, M. Gumustas, S.A. Ozkan, A. Salgado, B. Chankvetadze, Separation of brombuterol enantiomers in capillary electrophoresis with cyclodextrin‐type chiral selectors and investigation of structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 40 (2019) 1904–1912.
  • 158. A. Gogolashvili, E. Tatunashvili, L. Chankvetadze, T. Sohajda, M. Gumustas, S.A. Ozkan, A. Salgado, B. Chankvetadze, Separation of brombuterol enantiomers in capillary electrophoresis with cyclodextrin‐type chiral selectors and investigation of structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 40 (2019) 1904–1912.
  • 159. I. Fradi, A.C. Servais, C. Lamalle, M. Kallel, M. Abidi, J. Crommen, M. Fillet, Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization, J. Chromatogr. A, 1267 (2012) 121–126.
  • 159. I. Fradi, A.C. Servais, C. Lamalle, M. Kallel, M. Abidi, J. Crommen, M. Fillet, Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization, J. Chromatogr. A, 1267 (2012) 121–126.
  • 160. J. Tang, L. Pang, J. Zhou, S. Zhang, W. Tang, Per(3-chloro-4-methyl) phenylcarbamate cyclodextrin clicked stationary phase for chiral separation in multiple modes high-performance liquid chromatography, Anal. Chim. Acta, 946 (2016) 96–103.
  • 160. J. Tang, L. Pang, J. Zhou, S. Zhang, W. Tang, Per(3-chloro-4-methyl) phenylcarbamate cyclodextrin clicked stationary phase for chiral separation in multiple modes high-performance liquid chromatography, Anal. Chim. Acta, 946 (2016) 96–103.
  • 161. X. Li, X. Yao, Y. Xiao, Y. Wang, Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study, Anal. Chim. Acta, 990 (2017) 174–184.
  • 161. X. Li, X. Yao, Y. Xiao, Y. Wang, Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study, Anal. Chim. Acta, 990 (2017) 174–184.
  • 162. M. Castro-Puyana, I. Lammers, J. Buijs, C. Gooijer, F. Ariese, Sensitized phosphorescence as detection method for the enantioseparation of bupropion by capillary electrophoresis, Electrophoresis, 31 (2010) 3928–3936.
  • 162. M. Castro-Puyana, I. Lammers, J. Buijs, C. Gooijer, F. Ariese, Sensitized phosphorescence as detection method for the enantioseparation of bupropion by capillary electrophoresis, Electrophoresis, 31 (2010) 3928–3936.
  • 163. A. Aranyi, A. Péter, I. Ilisz, F. Fülöp, G.K.E. Scriba, Cyclodextrin-mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis-Role of complexation constants and complex mobilities, Electrophoresis, 35 (2014) 2848–2854.
  • 163. A. Aranyi, A. Péter, I. Ilisz, F. Fülöp, G.K.E. Scriba, Cyclodextrin-mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis-Role of complexation constants and complex mobilities, Electrophoresis, 35 (2014) 2848–2854.
  • 164. Z.I. Szabó, G. Tóth, G. Völgyi, B. Komjáti, G. Hancu, L. Szente, T. Sohajda, S. Béni, D.L. Muntean, B. Noszál, Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling, J. Pharm. Biomed. Anal., 117 (2016) 398–404.
  • 164. Z.I. Szabó, G. Tóth, G. Völgyi, B. Komjáti, G. Hancu, L. Szente, T. Sohajda, S. Béni, D.L. Muntean, B. Noszál, Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling, J. Pharm. Biomed. Anal., 117 (2016) 398–404.
  • 165. K. Phatthiyaphaibun, W. Som-Aum, M. Srisa-Ard, J. Threeprom, Chiral separation of pheniramine by capillary electrophoresis partial-filling technique using hydroxypropyl-β-cyclodextrin as chiral selector, J. Anal. Chem., 65 (2010) 803–808.
  • 165. K. Phatthiyaphaibun, W. Som-Aum, M. Srisa-Ard, J. Threeprom, Chiral separation of pheniramine by capillary electrophoresis partial-filling technique using hydroxypropyl-β-cyclodextrin as chiral selector, J. Anal. Chem., 65 (2010) 803–808.
  • 166. J. Znaleziona, I. Fejos, J. Ševčík, M. Douša, S. Béni, V. Maier, Enantiomeric separation of tapentadol by capillary electrophoresis-Study of chiral selectivity manipulation by various types of cyclodextrins, J. Pharm. Biomed. Anal., 105 (2015) 10–16.
  • 166. J. Znaleziona, I. Fejos, J. Ševčík, M. Douša, S. Béni, V. Maier, Enantiomeric separation of tapentadol by capillary electrophoresis-Study of chiral selectivity manipulation by various types of cyclodextrins, J. Pharm. Biomed. Anal., 105 (2015) 10–16.
  • 167. T. Sohajda, Z. Szakács, L. Szente, B. Noszál, S. Béni, Chiral recognition of imperanene enantiomers by various cyclodextrins: A capillary electrophoresis and NMR spectroscopy study, Electrophoresis, 33 (2012) 1458–1464.
  • 167. T. Sohajda, Z. Szakács, L. Szente, B. Noszál, S. Béni, Chiral recognition of imperanene enantiomers by various cyclodextrins: A capillary electrophoresis and NMR spectroscopy study, Electrophoresis, 33 (2012) 1458–1464.
  • 168. T. Sohajda, W.H. Hu, L.L. Zeng, H. Li, L. Szente, B. Noszál, S. Béni, Evaluation of the interaction between sitagliptin and cyclodextrin derivatives by capillary electrophoresis and nuclear magnetic resonance spectroscopy, Electrophoresis, 32 (2011) 2648–2654.
  • 168. T. Sohajda, W.H. Hu, L.L. Zeng, H. Li, L. Szente, B. Noszál, S. Béni, Evaluation of the interaction between sitagliptin and cyclodextrin derivatives by capillary electrophoresis and nuclear magnetic resonance spectroscopy, Electrophoresis, 32 (2011) 2648–2654.
  • 169. W.A. Wan Ibrahim, S.R. Arsad, H. Maarof, M.M. Sanagi, H.Y. Aboul-Enein, Chiral Separation of Four Stereoisomers of Ketoconazole Drugs Using Capillary Electrophoresis, Chirality, 27 (2015) 223–227.
  • 169. W.A. Wan Ibrahim, S.R. Arsad, H. Maarof, M.M. Sanagi, H.Y. Aboul-Enein, Chiral Separation of Four Stereoisomers of Ketoconazole Drugs Using Capillary Electrophoresis, Chirality, 27 (2015) 223–227.
  • 170. M. Steinhoff, N. Vergnolle, S.H. Young, M. Tognetto, S. Amadesi, H.S. Ennes, M. Trevisani, M.D. Hollenberg, J.L. Wallace, G.H. Caughey, S.E. Mitchell, L.M. Williams, P. Geppetti, E.A. Mayer, N.W. Bunnett, Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism, Nat. Med., 6 (2000) 151–158.
  • 170. M. Steinhoff, N. Vergnolle, S.H. Young, M. Tognetto, S. Amadesi, H.S. Ennes, M. Trevisani, M.D. Hollenberg, J.L. Wallace, G.H. Caughey, S.E. Mitchell, L.M. Williams, P. Geppetti, E.A. Mayer, N.W. Bunnett, Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism, Nat. Med., 6 (2000) 151–158.
  • 171. J. Zhou, H. Yao, H. Shao, Y. Li, Z. Zhang, Enantioseparation of β-agonists with carboxymethyl-β-cyclodextrin by CE, J. Liq. Chromatogr. Relat. Technol., 35 (2012) 50–58.
  • 171. J. Zhou, H. Yao, H. Shao, Y. Li, Z. Zhang, Enantioseparation of β-agonists with carboxymethyl-β-cyclodextrin by CE, J. Liq. Chromatogr. Relat. Technol., 35 (2012) 50–58.
  • 172. C. Soares Nascimento, J. Fedoce Lopes, L. Guimarães, K. Bastos Borges, Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector, Analyst, 139 (2014) 3901–3910.
  • 172. C. Soares Nascimento, J. Fedoce Lopes, L. Guimarães, K. Bastos Borges, Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector, Analyst, 139 (2014) 3901–3910.
  • 173. Y. Qi, X. Zhang, Determination of enantiomeric impurity of levamlodipine besylate bulk drug by capillary electrophoresis using carboxymethyl-β-Cyclodextrin, Cell Biochem. Biophys., 70 (2014) 1633–1637.
  • 173. Y. Qi, X. Zhang, Determination of enantiomeric impurity of levamlodipine besylate bulk drug by capillary electrophoresis using carboxymethyl-β-Cyclodextrin, Cell Biochem. Biophys., 70 (2014) 1633–1637.
  • 174. J. Zhou, Y. Wang, Y. Liu, J. Tang, W. Tang, Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis, Anal. Chim. Acta, 868 (2015) 73–79.
  • 174. J. Zhou, Y. Wang, Y. Liu, J. Tang, W. Tang, Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis, Anal. Chim. Acta, 868 (2015) 73–79.
  • 175. I.W. Muderawan, T.T. Ong, W.H. Tang, D.J. Young, C.B. Ching, S.C. Ng, Synthesis of ammonium substituted β-cyclodextrins for enantioseparation of anionic analytes, Tetrahedron Lett., 46 (2005) 1747–1749.
  • 175. I.W. Muderawan, T.T. Ong, W.H. Tang, D.J. Young, C.B. Ching, S.C. Ng, Synthesis of ammonium substituted β-cyclodextrins for enantioseparation of anionic analytes, Tetrahedron Lett., 46 (2005) 1747–1749.
  • 176. Y. Xiao, Y. Wang, T.-T. Ong, L. Ge, S.N. Tan, D.J. Young, T.T.Y. Tan, S.-C. Ng, Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors, J. Sep. Sci., 33 (2010) 1797–1805.
  • 176. Y. Xiao, Y. Wang, T.-T. Ong, L. Ge, S.N. Tan, D.J. Young, T.T.Y. Tan, S.-C. Ng, Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors, J. Sep. Sci., 33 (2010) 1797–1805.
  • 177. S. Wang, Y. Dai, J. Wu, J. Zhou, J. Tang, W. Tang, Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1277 (2013) 84–92.
  • 177. S. Wang, Y. Dai, J. Wu, J. Zhou, J. Tang, W. Tang, Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1277 (2013) 84–92.
  • 178. S. Kodama, A. Taga, S. Aizawa, T. Kemmei, Y. Honda, K. Suzuki, A. Yamamoto, Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector, Electrophoresis, 33 (2012) 2441–2445.
  • 178. S. Kodama, A. Taga, S. Aizawa, T. Kemmei, Y. Honda, K. Suzuki, A. Yamamoto, Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector, Electrophoresis, 33 (2012) 2441–2445.
  • 179. A.C. Servais, A. Rousseau, M. Fillet, K. Lomsadze, A. Salgado, J. Crommen, B. Chankvetadze, Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes: Comparative CE and NMR study, Electrophoresis, 31 (2010) 1467–1474.
  • 179. A.C. Servais, A. Rousseau, M. Fillet, K. Lomsadze, A. Salgado, J. Crommen, B. Chankvetadze, Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes: Comparative CE and NMR study, Electrophoresis, 31 (2010) 1467–1474.
  • 180. A.C. Servais, A. Rousseau, G. Dive, M. Frederich, J. Crommen, M. Fillet, Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte, J. Chromatogr. A, 1232 (2012) 59–64.
  • 180. A.C. Servais, A. Rousseau, G. Dive, M. Frederich, J. Crommen, M. Fillet, Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte, J. Chromatogr. A, 1232 (2012) 59–64.
  • 181. E. Tutu, G. Vigh, Synthesis, analytical characterization and initial capillary electrophoretic use in an acidic background electrolyte of a new, single-isomer chiral resolving agent: Heptakis(2-O-sulfo-3-O-methyl-6-O-acetyl)-β-cyclodextrin, Electrophoresis, 32 (2011) 2655–2662.
  • 181. E. Tutu, G. Vigh, Synthesis, analytical characterization and initial capillary electrophoretic use in an acidic background electrolyte of a new, single-isomer chiral resolving agent: Heptakis(2-O-sulfo-3-O-methyl-6-O-acetyl)-β-cyclodextrin, Electrophoresis, 32 (2011) 2655–2662.
  • 182. P. Nowak, M. Garnysz, M. Woźniakiewicz, P. Kościelniak, Fast separation of warfarin and 7-hydroxywarfarin enantiomers by cyclodextrin-assisted capillary electrophoresis, J. Sep. Sci., 37 (2014) 2625–2631.
  • 182. P. Nowak, M. Garnysz, M. Woźniakiewicz, P. Kościelniak, Fast separation of warfarin and 7-hydroxywarfarin enantiomers by cyclodextrin-assisted capillary electrophoresis, J. Sep. Sci., 37 (2014) 2625–2631.
  • 183. S. Mohr, S. Pilaj, M.G. Schmid, Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis, Electrophoresis, 33 (2012) 1624–1630.
  • 183. S. Mohr, S. Pilaj, M.G. Schmid, Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis, Electrophoresis, 33 (2012) 1624–1630.
  • 184. L. Chankvetadze, A.C. Servais, M. Fillet, A. Salgado, J. Crommen, B. Chankvetadze, Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1267 (2012) 206–216.
  • 184. L. Chankvetadze, A.C. Servais, M. Fillet, A. Salgado, J. Crommen, B. Chankvetadze, Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1267 (2012) 206–216.
  • 185. Z.I. Szabó, M. Foroughbakhshfasaei, R. Gál, P. Horváth, B. Komjáti, B. Noszál, G. Tóth, Chiral separation of lenalidomide by liquid chromatography on polysaccharide-type stationary phases and by capillary electrophoresis using cyclodextrin selectors, J. Sep. Sci., 41 (2018) 1414–1423.
  • 185. Z.I. Szabó, M. Foroughbakhshfasaei, R. Gál, P. Horváth, B. Komjáti, B. Noszál, G. Tóth, Chiral separation of lenalidomide by liquid chromatography on polysaccharide-type stationary phases and by capillary electrophoresis using cyclodextrin selectors, J. Sep. Sci., 41 (2018) 1414–1423.
  • 186. Q. Zhang, Y. Du, J. Chen, G. Xu, T. Yu, X. Hua, J. Zhang, Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis, Analytical and Bioanalytical Chemistry. Springer (2014) 1557–1566.
  • 186. Q. Zhang, Y. Du, J. Chen, G. Xu, T. Yu, X. Hua, J. Zhang, Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis, Analytical and Bioanalytical Chemistry. Springer (2014) 1557–1566.
  • 187. Y. Yao, P. Song, X. Wen, M. Deng, J. Wang, X. Guo, Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-β-cyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods, J. Sep. Sci., 40 (2017) 2999–3007.
  • 187. Y. Yao, P. Song, X. Wen, M. Deng, J. Wang, X. Guo, Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-β-cyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods, J. Sep. Sci., 40 (2017) 2999–3007.
  • 188. S. Nojavan, A.R. Fakhari, Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: Effect of zwitterionic property of cetirizine on enantioseparation, Electrophoresis, 32 (2011) 764–771.
  • 188. S. Nojavan, A.R. Fakhari, Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: Effect of zwitterionic property of cetirizine on enantioseparation, Electrophoresis, 32 (2011) 764–771.
  • 189. H. Tabani, M. Mahyari, A. Sahragard, A.R. Fakhari, A. Shaabani, Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis, Electrophoresis, 36 (2015) 305–311.
  • 189. H. Tabani, M. Mahyari, A. Sahragard, A.R. Fakhari, A. Shaabani, Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis, Electrophoresis, 36 (2015) 305–311.
  • 190. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv.,5 (2015) 28762–28768.
  • 190. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv.,5 (2015) 28762–28768.
  • 191. J.A. McKee, T.K. Green, Synthesis of 2,3-O-dibenzyl-6-O-sulfobutyl-α and β cyclodextrins: new chiral surfactants for capillary electrophoresis, Tetrahedron Lett., 56 (2015) 4451–4454.
  • 191. J.A. McKee, T.K. Green, Synthesis of 2,3-O-dibenzyl-6-O-sulfobutyl-α and β cyclodextrins: new chiral surfactants for capillary electrophoresis, Tetrahedron Lett., 56 (2015) 4451–4454.
  • 192. Terabe, S., Procedia Chemistry. Twenty-five years of micellar electrokinetic chromatography 2 (2010), 2–8.
  • 192. Terabe, S., Procedia Chemistry. Twenty-five years of micellar electrokinetic chromatography 2 (2010), 2–8.
  • 193. Y. Liu, S.A. Shamsi, Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: Evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis, J. Chromatogr. A, 1360 (2014) 296–304.
  • 193. Y. Liu, S.A. Shamsi, Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: Evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis, J. Chromatogr. A, 1360 (2014) 296–304.
  • 194. A. Přibylka, M. Švidrnoch, E. Tesařová, D.W. Armstrong, V. Maier, The empirical comparison of cyclofructans and cyclodextrins as chiral selectors in capillary electrophoretic separation of atropisomers of R,S -1,1’-binaphthalene-2,2’-diyl hydrogen phosphate, J. Sep. Sci., 39 (2016) 973–979.
  • 194. A. Přibylka, M. Švidrnoch, E. Tesařová, D.W. Armstrong, V. Maier, The empirical comparison of cyclofructans and cyclodextrins as chiral selectors in capillary electrophoretic separation of atropisomers of R,S -1,1’-binaphthalene-2,2’-diyl hydrogen phosphate, J. Sep. Sci., 39 (2016) 973–979.
  • 195. W. Ding, T. Yu, Y. Du, X. Sun, Z. Feng, S. Zhao, X. Ma, M. Ma, C. Chen, A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography, Microchim. Acta, 187 (2020) 1–10.
  • 195. W. Ding, T. Yu, Y. Du, X. Sun, Z. Feng, S. Zhao, X. Ma, M. Ma, C. Chen, A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography, Microchim. Acta, 187 (2020) 1–10.
  • 196. N. Ye, J. Ma, J. An, J. Li, Z. Cai, H. Zong, Separation of amino acid enantiomers by a capillary modified with a metal-organic framework, RSC Adv., 6 (2016) 41587–41593.
  • 196. N. Ye, J. Ma, J. An, J. Li, Z. Cai, H. Zong, Separation of amino acid enantiomers by a capillary modified with a metal-organic framework, RSC Adv., 6 (2016) 41587–41593.
  • 197. Z. Geng, Q. Song, B. Yu, H. Cong, Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins, Talanta, 188 (2018) 493–498.
  • 197. Z. Geng, Q. Song, B. Yu, H. Cong, Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins, Talanta, 188 (2018) 493–498.
  • 198. X. Wang, A. Lamprou, F. Svec, Y. Bai, H. Liu, Polymer-based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography, J. Sep. Sci., 39 (2016) 4544–4548.
  • 198. X. Wang, A. Lamprou, F. Svec, Y. Bai, H. Liu, Polymer-based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography, J. Sep. Sci., 39 (2016) 4544–4548.
  • 199. C. Pan, W. Wang, H. Zhang, L. Xu, X. Chen, In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A, 1388 (2015) 207–216.
  • 199. C. Pan, W. Wang, H. Zhang, L. Xu, X. Chen, In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A, 1388 (2015) 207–216.
  • 200. J. Ma, N. Ye, J. Li, Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography, Electrophoresis, 37 (2016) 601–608.
  • 200. J. Ma, N. Ye, J. Li, Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography, Electrophoresis, 37 (2016) 601–608.
  • 201. L. He, C. Tian, J. Zhang, W. Xu, B. Peng, S. Xie, M. Zi, L. Yuan, Chiral metal‐organic cages used as stationary phase for enantioseparations in capillary electrochromatography, Electrophoresis, 41 (2020) 104–111.
  • 201. L. He, C. Tian, J. Zhang, W. Xu, B. Peng, S. Xie, M. Zi, L. Yuan, Chiral metal‐organic cages used as stationary phase for enantioseparations in capillary electrochromatography, Electrophoresis, 41 (2020) 104–111.
  • 202. D. Pérez-Quintanilla, S. Morante-Zarcero, I. Sierra, Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography, J. Colloid Interface Sci., 414 (2014) 14–23.
  • 202. D. Pérez-Quintanilla, S. Morante-Zarcero, I. Sierra, Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography, J. Colloid Interface Sci., 414 (2014) 14–23.
  • 203. M. Greño, M. Castro-Puyana, M.Á. García, M.L. Marina, Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update, Electrophoresis, 39 (2018) 235–259.
  • 203. M. Greño, M. Castro-Puyana, M.Á. García, M.L. Marina, Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update, Electrophoresis, 39 (2018) 235–259.
  • 204. T. Yu, Y. Du, B. Chen, Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis, Electrophoresis, 32 (2011) 1898–1905.
  • 204. T. Yu, Y. Du, B. Chen, Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis, Electrophoresis, 32 (2011) 1898–1905.
  • 205. B. Chen, Y. Du, Evaluation of the enantioseparation capability of the novel chiral selector clindamycin phosphate towards basic drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 1217 (2010) 1806–1812.
  • 205. B. Chen, Y. Du, Evaluation of the enantioseparation capability of the novel chiral selector clindamycin phosphate towards basic drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 1217 (2010) 1806–1812.
  • 206. S. Dixit, J.H. Park, Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis, J. Chromatogr. A, 1453 (2016) 138–142.
  • 206. S. Dixit, J.H. Park, Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis, J. Chromatogr. A, 1453 (2016) 138–142.
  • 207. A.P. Kumar, J.H. Park, Azithromycin as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1218 (2011) 1314–1317.
  • 207. A.P. Kumar, J.H. Park, Azithromycin as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1218 (2011) 1314–1317.
  • 208. B. Chankvetadze, G. Blaschke, Enantioseparations using capillary electromigration techniques in nonaqueous buffers, Electrophoresis, 21 (2000) 4159–4178.
  • 208. B. Chankvetadze, G. Blaschke, Enantioseparations using capillary electromigration techniques in nonaqueous buffers, Electrophoresis, 21 (2000) 4159–4178.
  • 209. M.V. Lebedeva, A.F. Prokhorova, E.N. Shapovalova, O.A. Shpigun, Clarithromycin as a chiral selector for enantioseparation of basic compounds in nonaqueous capillary electrophoresis, Electrophoresis, 35 (2014) 2759–2764.
  • 209. M.V. Lebedeva, A.F. Prokhorova, E.N. Shapovalova, O.A. Shpigun, Clarithromycin as a chiral selector for enantioseparation of basic compounds in nonaqueous capillary electrophoresis, Electrophoresis, 35 (2014) 2759–2764.
  • 210. D.A. Jayawardhana, J.A. Crank, Q. Zhao, D.W. Armstrong, X. Guan, Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte, Anal. Chem., 81 (2009) 460–464.
  • 210. D.A. Jayawardhana, J.A. Crank, Q. Zhao, D.W. Armstrong, X. Guan, Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte, Anal. Chem., 81 (2009) 460–464.
  • 211. V. Maier, V. Ranc, M. Švidrnoch, J. Petr, J. Ševčík, E. Tesařová, D.W. Armstrong, Study on the use of boromycin as a chiral selector in capillary electrophoresis, J. Chromatogr. A, 1237 (2012) 128–132.
  • 211. V. Maier, V. Ranc, M. Švidrnoch, J. Petr, J. Ševčík, E. Tesařová, D.W. Armstrong, Study on the use of boromycin as a chiral selector in capillary electrophoresis, J. Chromatogr. A, 1237 (2012) 128–132.
  • 212. S. Ren, Q. Zhang, S. Xue, S. Liu, M. Rui, Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis, J. Chromatogr. A, https://doi.org/10.1016/j.chroma.2020.461099.
  • 212. S. Ren, Q. Zhang, S. Xue, S. Liu, M. Rui, Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis, J. Chromatogr. A, https://doi.org/10.1016/j.chroma.2020.461099.
  • 213. A.C. Kogawa, H. Regina, N. Salgado, Hoxycyclıne Hyclate: A review of Propertıes, Applıcatıons and Analytıcal methods. International Journal of Life Science and Pharma Research, 2, 4 (2012) 11-25.
  • 213. A.C. Kogawa, H. Regina, N. Salgado, Hoxycyclıne Hyclate: A review of Propertıes, Applıcatıons and Analytıcal methods. International Journal of Life Science and Pharma Research, 2, 4 (2012) 11-25.
  • 214. M.G. Jang, M.D. Jang, J.H. Park, Doxycycline as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1508 (2017) 176–181.
  • 214. M.G. Jang, M.D. Jang, J.H. Park, Doxycycline as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1508 (2017) 176–181.
  • 215. Q. Zhang, S. Ren, S. Xue, Investigation of fusidic acid as a chiral selector in capillary electrophoresis, Sep. Purif. Technol., 242 (2020) 116768.
  • 215. Q. Zhang, S. Ren, S. Xue, Investigation of fusidic acid as a chiral selector in capillary electrophoresis, Sep. Purif. Technol., 242 (2020) 116768.
  • 216. H. Nishi, K. Nakamura, H. Nakai, T. Sato, Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics, Chromatographia, 43 (1996) 426-430.
  • 216. H. Nishi, K. Nakamura, H. Nakai, T. Sato, Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics, Chromatographia, 43 (1996) 426-430.
  • 217. X. Zhang, S. Qi, C. Liu, X. Zhao, Enantiomeric separation of five acidic drugs via capillary electrophoresis using streptomycin as chiral selector, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1063 (2017) 31–35.
  • 217. X. Zhang, S. Qi, C. Liu, X. Zhao, Enantiomeric separation of five acidic drugs via capillary electrophoresis using streptomycin as chiral selector, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1063 (2017) 31–35.
  • 218. C. Liu, J. Zhang, X. Zhang, L. Zhao, S. Li, Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles, Microchim. Acta, 185 (2018) 1–7.
  • 218. C. Liu, J. Zhang, X. Zhang, L. Zhao, S. Li, Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles, Microchim. Acta, 185 (2018) 1–7.
  • 219. S. Dixit, J.H. Park, Penicillin G as a novel chiral selector in capillary electrophoresis, J. Chromatogr. A, 1326 (2014) 134–138.
  • 219. S. Dixit, J.H. Park, Penicillin G as a novel chiral selector in capillary electrophoresis, J. Chromatogr. A, 1326 (2014) 134–138.
  • 220. A.F. Prokhorova, M.A. Kuznetsov, E.N. Shapovalova, S.M. Staroverov, O.A. Shpigun, Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary Procedia Chemistry, 2 (2010), 9–13.
  • 220. A.F. Prokhorova, M.A. Kuznetsov, E.N. Shapovalova, S.M. Staroverov, O.A. Shpigun, Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary Procedia Chemistry, 2 (2010), 9–13.
  • 221. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: Database and evaluation, J. Phys. Chem. Ref. Data, 35 (2006) 1475–1517.
  • 221. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: Database and evaluation, J. Phys. Chem. Ref. Data, 35 (2006) 1475–1517.
  • 222. H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen., 373 (2010) 1–56.
  • 222. H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen., 373 (2010) 1–56.
  • 223. W. Weber, J.T. Andersson, Ionic liquids as stationary phases in gas chromatography-An LSER investigation of six commercial phases and some applications, Anal. Bioanal. Chem., 406 (2014) 5347–5358.
  • 223. W. Weber, J.T. Andersson, Ionic liquids as stationary phases in gas chromatography-An LSER investigation of six commercial phases and some applications, Anal. Bioanal. Chem., 406 (2014) 5347–5358.
  • 224. Q. Wang, X. Chen, B. Qiu, L. Zhou, H. Zhang, J. Xie, Y. Luo, B. Wang, Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials, J. Sep. Sci., 39 (2016) 1242–1248.
  • 224. Q. Wang, X. Chen, B. Qiu, L. Zhou, H. Zhang, J. Xie, Y. Luo, B. Wang, Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials, J. Sep. Sci., 39 (2016) 1242–1248.
  • 225. F. Zhao, Y. Meng, J.L. Anderson, Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction, J. Chromatogr. A, 1208 (2008) 1–9.
  • 225. F. Zhao, Y. Meng, J.L. Anderson, Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction, J. Chromatogr. A, 1208 (2008) 1–9.
  • 226. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv., 5 (2015) 28762–28768.
  • 226. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv., 5 (2015) 28762–28768.
  • 227. Z. Ma, L. Zhang, L. Lin, P. Ji, X. Guo, Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector, Biomed. Chromatogr., 24 (2010) 1332–1337.
  • 227. Z. Ma, L. Zhang, L. Lin, P. Ji, X. Guo, Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector, Biomed. Chromatogr., 24 (2010) 1332–1337.
  • 228. J. Chen, Y. Du, X. Sun, Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis, Chirality, 29 (2017) 824–835.
  • 228. J. Chen, Y. Du, X. Sun, Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis, Chirality, 29 (2017) 824–835.
  • 229. J. Yu, L. Zuo, H. Liu, L. Zhang, X. Guo, Synthesis and application of a chiral ionic liquid functionalized β -cyclodextrin as a chiral selector in capillary electrophoresis, Biomed. Chromatogr. 27 (2013) 1027–1033.
  • 229. J. Yu, L. Zuo, H. Liu, L. Zhang, X. Guo, Synthesis and application of a chiral ionic liquid functionalized β -cyclodextrin as a chiral selector in capillary electrophoresis, Biomed. Chromatogr. 27 (2013) 1027–1033.
  • 230. M. Greño, M.L. Marina, M. Castro-Puyana, Effect of the combined use of γ-cyclodextrin and a chiral ionic liquid on the enantiomeric separation of homocysteine by capillary electrophoresis, J. Chromatogr. A, 1568 (2018) 222–228.
  • 230. M. Greño, M.L. Marina, M. Castro-Puyana, Effect of the combined use of γ-cyclodextrin and a chiral ionic liquid on the enantiomeric separation of homocysteine by capillary electrophoresis, J. Chromatogr. A, 1568 (2018) 222–228.
  • 231. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 231. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 232. Y. Cui, X. Ma, M. Zhao, Z. Jiang, S. Xu, X. Guo, Combined Use of Ionic Liquid and Hydroxypropyl- β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis, Chirality, 25 (2013) 409–414.
  • 232. Y. Cui, X. Ma, M. Zhao, Z. Jiang, S. Xu, X. Guo, Combined Use of Ionic Liquid and Hydroxypropyl- β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis, Chirality, 25 (2013) 409–414.
  • 233. J. Li, T. Yu, G. Xu, Y. Du, Z. Liu, Z. Feng, X. Yang, Y. Xi, J. Liu, Synthesis and application of ionic liquid functionalized β-cyclodextrin, mono-6-deoxy-6-(4-amino-1,2,4-triazolium)-β-cyclodextrin chloride, as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 178–185.
  • 233. J. Li, T. Yu, G. Xu, Y. Du, Z. Liu, Z. Feng, X. Yang, Y. Xi, J. Liu, Synthesis and application of ionic liquid functionalized β-cyclodextrin, mono-6-deoxy-6-(4-amino-1,2,4-triazolium)-β-cyclodextrin chloride, as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 178–185.
  • 234. X. Ma, Y. Du, X. Sun, J. Liu, Z. Huang, Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1601 (2019) 340–349.
  • 234. X. Ma, Y. Du, X. Sun, J. Liu, Z. Huang, Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1601 (2019) 340–349.
  • 235. H. Qing, X. Jiang, J. Yu, Separation of Tryptophan Enantiomers by Ligand-Exchange Chromatography With Novel Chiral Ionic Liquids Ligand, Chirality, 26 (2014) 160–165.
  • 235. H. Qing, X. Jiang, J. Yu, Separation of Tryptophan Enantiomers by Ligand-Exchange Chromatography With Novel Chiral Ionic Liquids Ligand, Chirality, 26 (2014) 160–165.
  • 236. X. Sun, K. Liu, Y. Du, J. Liu, X. Ma, Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis, Electrophoresis, 40 (2019) 1921–1930.
  • 236. X. Sun, K. Liu, Y. Du, J. Liu, X. Ma, Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis, Electrophoresis, 40 (2019) 1921–1930.
  • 237. M.C. Mavroudi, C.P. Kapnissi-Christodoulou, Evaluation of amino acid ester-based ionic liquids as buffer additives in CE for the separation of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs, Electrophoresis, 35 (2014) 2573–2578.
  • 237. M.C. Mavroudi, C.P. Kapnissi-Christodoulou, Evaluation of amino acid ester-based ionic liquids as buffer additives in CE for the separation of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs, Electrophoresis, 35 (2014) 2573–2578.
  • 238. R. Liu, Y. Du, J. Chen, Q. Zhang, S. Du, Z. Feng, Investigation of the Enantioselectivity of Tetramethylammonium L-hydroxyproline Ionic Liquid as a Novel Chiral Ligand in Ligand-Exchange CE and Ligand-Exchange MEKC, Chirality, 27 (2015) 58–63.
  • 238. R. Liu, Y. Du, J. Chen, Q. Zhang, S. Du, Z. Feng, Investigation of the Enantioselectivity of Tetramethylammonium L-hydroxyproline Ionic Liquid as a Novel Chiral Ligand in Ligand-Exchange CE and Ligand-Exchange MEKC, Chirality, 27 (2015) 58–63.
  • 239. S. Salido-Fortuna, M. Greño, M. Castro-Puyana, M.L. Marina, Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis, J. Chromatogr. A, 1607 (2019) 460375.
  • 239. S. Salido-Fortuna, M. Greño, M. Castro-Puyana, M.L. Marina, Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis, J. Chromatogr. A, 1607 (2019) 460375.
  • 240. X. Yang, Y. Du, Z. Feng, Z. Liu, J. Li, Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 170–177.
  • 240. X. Yang, Y. Du, Z. Feng, Z. Liu, J. Li, Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 170–177.
  • 241. W. Yujiao, W. Guoyan, Z. Wenyan, Z. Hongfen, J. Huanwang, C. Anjia, Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β‐CD and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors, Biomed. Chromatogr., 28 (2014) 610–614.
  • 241. W. Yujiao, W. Guoyan, Z. Wenyan, Z. Hongfen, J. Huanwang, C. Anjia, Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β‐CD and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors, Biomed. Chromatogr., 28 (2014) 610–614.
  • 242. Q. Zhang, J. Zhang, S. Xue, M. Rui, B. Gao, A. Li, J. Bai, Z. yin, E.M. Anochie, Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis, J. Sep. Sci., 41 (2018) 4525–4532.
  • 242. Q. Zhang, J. Zhang, S. Xue, M. Rui, B. Gao, A. Li, J. Bai, Z. yin, E.M. Anochie, Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis, J. Sep. Sci., 41 (2018) 4525–4532.
  • 243. Y. Zhang, Y. Du, T. Yu, Z. Feng, J. Chen, Investigation of dextrin-based synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Pharm. Biomed. Anal., 164 (2019) 413–420.
  • 243. Y. Zhang, Y. Du, T. Yu, Z. Feng, J. Chen, Investigation of dextrin-based synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Pharm. Biomed. Anal., 164 (2019) 413–420.
  • 244. Y. Zhang, S. Du, Z. Feng, Y. Du, Z. Yan, Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis, Anal. Bioanal. Chem., 408 (2016) 2543–2555.
  • 244. Y. Zhang, S. Du, Z. Feng, Y. Du, Z. Yan, Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis, Anal. Bioanal. Chem., 408 (2016) 2543–2555.
  • 245. J. Zhang, Y. Du, Q. Zhang, Y. Lei, Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti- inflamatory drugs by capillary electrophoresis, Talanta, 119 (2014) 193–201.
  • 245. J. Zhang, Y. Du, Q. Zhang, Y. Lei, Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti- inflamatory drugs by capillary electrophoresis, Talanta, 119 (2014) 193–201.
  • 246. L. Zuo, H. Meng, J. Wu, Z. Jiang, S. Xu, X. Guo, Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE, J. Sep. Sci., 36 (2013) 517–523.
  • 246. L. Zuo, H. Meng, J. Wu, Z. Jiang, S. Xu, X. Guo, Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE, J. Sep. Sci., 36 (2013) 517–523.
  • 247. Q. Zhang, Y. Du, S. Du, J. Zhang, Z. Feng, Y. Zhang, X. Li, Tetramethylammonium-lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis, Electrophoresis, 36 (2015) 1216–1223.
  • 247. Q. Zhang, Y. Du, S. Du, J. Zhang, Z. Feng, Y. Zhang, X. Li, Tetramethylammonium-lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis, Electrophoresis, 36 (2015) 1216–1223.
  • 248. J. Zhang, Y. Du, Q. Zhang, J. Chen, G. Xu, T. Yu, X. Hua, Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1316 (2013) 119–126.
  • 248. J. Zhang, Y. Du, Q. Zhang, J. Chen, G. Xu, T. Yu, X. Hua, Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1316 (2013) 119–126.
  • 249. Q. Zhang, Y. Du, Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1306 (2013) 97–103.
  • 249. Q. Zhang, Y. Du, Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1306 (2013) 97–103.
  • 250. Y. Jin, C. Chen, L. Meng, J. Chen, M. Li, Z. Zhu, Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives, Talanta, 89 (2012) 149–154.
  • 250. Y. Jin, C. Chen, L. Meng, J. Chen, M. Li, Z. Zhu, Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives, Talanta, 89 (2012) 149–154.
  • 251. Y. Su, X. Mu, L. Qi, A new chiral ligand exchange capillary electrophoresis system based on Zn(II)-l-leucine complexes coordinating with β-cyclodextrin and its application in screening tyrosinase inhibitors, RSC Adv., 4 (2014) 55280–55285.
  • 251. Y. Su, X. Mu, L. Qi, A new chiral ligand exchange capillary electrophoresis system based on Zn(II)-l-leucine complexes coordinating with β-cyclodextrin and its application in screening tyrosinase inhibitors, RSC Adv., 4 (2014) 55280–55285.
  • 252. J. Jiang, X. Mu, J. Qiao, Y. Su, L. Qi, New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands, Talanta, 175 (2017) 451–456.
  • 252. J. Jiang, X. Mu, J. Qiao, Y. Su, L. Qi, New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands, Talanta, 175 (2017) 451–456.
  • 253. H. Zhang, L. Qi, Y. Shen, J. Qiao, L. Mao, L-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE, Electrophoresis, 34 (2013) 846–853.
  • 253. H. Zhang, L. Qi, Y. Shen, J. Qiao, L. Mao, L-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE, Electrophoresis, 34 (2013) 846–853.
  • 254. S. Xue, S. Ren, L. Wang, Q. Zhang, Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis, J. Chromatogr. A, 1611 (2020) 460579.
  • 254. S. Xue, S. Ren, L. Wang, Q. Zhang, Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis, J. Chromatogr. A, 1611 (2020) 460579.
  • 255. B. Sun, X. Mu, L. Qi, Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase, Anal. Chim. Acta, 821 (2014) 97–102.
  • 255. B. Sun, X. Mu, L. Qi, Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase, Anal. Chim. Acta, 821 (2014) 97–102.
  • 256. H. Zhang, L. Qi, X. Mu, X. Zhou, D. Li, L. Mao, Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE, J. Sep. Sci., 36 (2013) 886–891.
  • 256. H. Zhang, L. Qi, X. Mu, X. Zhou, D. Li, L. Mao, Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE, J. Sep. Sci., 36 (2013) 886–891.
  • 257. I.J. Stavrou, Z.S. Breitbach, C.P. Kapnissi-Christodoulou, Combined use of cyclofructans and an amino acid ester-based ionic liquid for the enantioseparation of huperzine A and coumarin derivatives in CE, Electrophoresis, 36 (2015) 3061–3068.
  • 257. I.J. Stavrou, Z.S. Breitbach, C.P. Kapnissi-Christodoulou, Combined use of cyclofructans and an amino acid ester-based ionic liquid for the enantioseparation of huperzine A and coumarin derivatives in CE, Electrophoresis, 36 (2015) 3061–3068.
  • 258. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 258. N. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 259. X. Zhu, C. Chen, J. Chen, G. Xu, Y. Du, X. Ma, X. Sun, Z. Feng, Z. Huang, Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation, J. Pharm. Biomed. Anal., 180 (2020) 113030.
  • 259. X. Zhu, C. Chen, J. Chen, G. Xu, Y. Du, X. Ma, X. Sun, Z. Feng, Z. Huang, Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation, J. Pharm. Biomed. Anal., 180 (2020) 113030.
  • 260. G. Xu, Y. Du, F. Du, J. Chen, T. Yu, Q. Zhang, J. Zhang, S. Du, Z. Feng, Establishment and Evaluation of the Novel Tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis, Chirality, 27 (2015) 598–604.
  • 260. G. Xu, Y. Du, F. Du, J. Chen, T. Yu, Q. Zhang, J. Zhang, S. Du, Z. Feng, Establishment and Evaluation of the Novel Tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis, Chirality, 27 (2015) 598–604.
  • 261. D.L. Fedlheim, C.A. Foss, Foss, C. A., Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, ISBN 9780824706043, October 26, (2001).
  • 261. D.L. Fedlheim, C.A. Foss, Foss, C. A., Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, ISBN 9780824706043, October 26, (2001).
  • 262. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 6 (2010) 257–262.
  • 262. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 6 (2010) 257–262.
  • 263. L. Yang, C. Chen, X. Liu, J. Shi, G. Wang, L. Zhu, L. Guo, J.D. Glennon, N.M. Scully, B.E. Doherty, Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography, Electrophoresis, 31 (2010) 1697–1705.
  • 263. L. Yang, C. Chen, X. Liu, J. Shi, G. Wang, L. Zhu, L. Guo, J.D. Glennon, N.M. Scully, B.E. Doherty, Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography, Electrophoresis, 31 (2010) 1697–1705.
  • 264. W. Hu, T. Hong, X. Gao, Y. Ji, Applications of nanoparticle-modified stationary phases in capillary electrochromatography, TrAC-Trends Anal. Chem., 61 (2014) 29–39.
  • 264. W. Hu, T. Hong, X. Gao, Y. Ji, Applications of nanoparticle-modified stationary phases in capillary electrochromatography, TrAC-Trends Anal. Chem., 61 (2014) 29–39.
  • 265. T. Wang, Y. Cheng, Y. Zhang, J. Zha, J. Ye, Q. Chu, G. Cheng, β-cyclodextrin modified quantum dots as pseudo-stationary phase for direct enantioseparation based on capillary electrophoresis with laser-induced fluorescence detection, Talanta, 210 (2020) 120629.
  • 265. T. Wang, Y. Cheng, Y. Zhang, J. Zha, J. Ye, Q. Chu, G. Cheng, β-cyclodextrin modified quantum dots as pseudo-stationary phase for direct enantioseparation based on capillary electrophoresis with laser-induced fluorescence detection, Talanta, 210 (2020) 120629.
  • 266. L-l. Fang, P. Wang, X-l. Wen, X. Guo, L. da Luo, J. Yu, X-j. Guo, Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography, Talanta, 167 (2017) 158–165.
  • 266. L-l. Fang, P. Wang, X-l. Wen, X. Guo, L. da Luo, J. Yu, X-j. Guo, Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography, Talanta, 167 (2017) 158–165.
  • 267. M. Li, X. Liu, F. Jiang, L. Guo, L. Yang, Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A, 1218 (2011) 3725–3729.
  • 267. M. Li, X. Liu, F. Jiang, L. Guo, L. Yang, Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A, 1218 (2011) 3725–3729.
  • 268. L. Fang, Y. Zhao, C. Wang, C. Wang, X. Han, P. Chen, L. Zhao, J. Wang, S. Li, Z. Jiang, Preparation of a thiols β ‐cyclodextring/gold nanoparticles‐coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci., 43 (2020) 2209–2216.
  • 268. L. Fang, Y. Zhao, C. Wang, C. Wang, X. Han, P. Chen, L. Zhao, J. Wang, S. Li, Z. Jiang, Preparation of a thiols β ‐cyclodextring/gold nanoparticles‐coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci., 43 (2020) 2209–2216.
  • 269. M. Li, M. Tarawally, X. Liu, X. Liu, L. Guo, L. Yang, G. Wang, Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography, Talanta, 109 (2013) 1–6.
  • 269. M. Li, M. Tarawally, X. Liu, X. Liu, L. Guo, L. Yang, G. Wang, Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography, Talanta, 109 (2013) 1–6.
  • 270. Y. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase, Anal. Methods, 9 (2017) 3561–3568.
  • 270. Y. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase, Anal. Methods, 9 (2017) 3561–3568.
  • 271. C. Zhang, J. Qu, X. Lv, J. Zhang, L. Fang, A novel open‐tubular capillary electrochromatography using carboxymethyl‐β‐cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Sep. Sci., 43 (2020) 946–953.
  • 271. C. Zhang, J. Qu, X. Lv, J. Zhang, L. Fang, A novel open‐tubular capillary electrochromatography using carboxymethyl‐β‐cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Sep. Sci., 43 (2020) 946–953.
  • 272. X. Yang, X. Sun, Z. Feng, Y. Du, J. Chen, X. Ma, X. Li, Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta, 186 (2019) 1–8.
  • 272. X. Yang, X. Sun, Z. Feng, Y. Du, J. Chen, X. Ma, X. Li, Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta, 186 (2019) 1–8.
  • 273. P. Qu, J. Lei, L. Zhang, R. Ouyang, H. Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A, 1217 (2010) 6115–6121.
  • 273. P. Qu, J. Lei, L. Zhang, R. Ouyang, H. Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A, 1217 (2010) 6115–6121.
  • 274. L.-L. Wu, R.-P. Liang, J. Chen, J.-D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 274. L.-L. Wu, R.-P. Liang, J. Chen, J.-D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356–362.
  • 275. X. Hua, Y. Du, J. Chen, G. Xu, T. Yu, Q. Zhang, Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography, Electrophoresis, 34 (2013) 1901–1907.
  • 275. X. Hua, Y. Du, J. Chen, G. Xu, T. Yu, Q. Zhang, Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography, Electrophoresis, 34 (2013) 1901–1907.
  • 276. X.N. Wang, R.P. Liang, X.Y. Meng, J.D. Qiu, One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A, 1362 (2014) 301–308.
  • 276. X.N. Wang, R.P. Liang, X.Y. Meng, J.D. Qiu, One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A, 1362 (2014) 301–308.
  • 277. Q. Zhang, Y. Du, S. Du, Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1339 (2014) 185–191.
  • 277. Q. Zhang, Y. Du, S. Du, Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1339 (2014) 185–191.
  • 278. X. Sun, J. Guo, T. Yu, Y. Du, Z. Feng, S. Zhao, Z. Huang, J. Liu, A novel coating method for CE capillary using carboxymethyl-Β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem., 411 (2019) 1193–1202.
  • 278. X. Sun, J. Guo, T. Yu, Y. Du, Z. Feng, S. Zhao, Z. Huang, J. Liu, A novel coating method for CE capillary using carboxymethyl-Β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem., 411 (2019) 1193–1202.
  • 279. L. Huang, Y.-T. Chen, Y.-X. Li, L.-S. Yu, Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers, Appl. Spectrosc., 70 (2016) 1649–1654.
  • 279. L. Huang, Y.-T. Chen, Y.-X. Li, L.-S. Yu, Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers, Appl. Spectrosc., 70 (2016) 1649–1654.
  • 280. X. Dong, R. Wu, J. Dong, M. Wu, Y. Zhu, H. Zou, A mesoporous silica nanoparticles immobilized open‐tubular capillary column with a coating of cellulose tris(3,5‐dimethylphenyl‐carbamate) for enantioseparation in CEC, Electrophoresis, 29 (2008) 3933–3940.
  • 280. X. Dong, R. Wu, J. Dong, M. Wu, Y. Zhu, H. Zou, A mesoporous silica nanoparticles immobilized open‐tubular capillary column with a coating of cellulose tris(3,5‐dimethylphenyl‐carbamate) for enantioseparation in CEC, Electrophoresis, 29 (2008) 3933–3940.
  • 281. Z.S. Gong, L.P. Duan, A.N. Tang, Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector, Microchim. Acta, 182 (2015) 1297–1304.
  • 281. Z.S. Gong, L.P. Duan, A.N. Tang, Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector, Microchim. Acta, 182 (2015) 1297–1304.
  • 282. C.-Y. Yue, G.-S. Ding, F.-J. Liu, A.-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013), 176-182.
  • 282. C.-Y. Yue, G.-S. Ding, F.-J. Liu, A.-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013), 176-182.
  • 283. X. Sun, Y. Du, S. Zhao, Z. Huang, Z. Feng, Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles, Microchim. Acta, 186 (2019) 1–7.
  • 283. X. Sun, Y. Du, S. Zhao, Z. Huang, Z. Feng, Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles, Microchim. Acta, 186 (2019) 1–7.
  • 284. C. Aydoğan, V. Karakoç, F. Yılmaz, A. Denizli, Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand, Hacettepe J. Biol. & Chem., 41 (1) (2013) 29-36.
  • 284. C. Aydoğan, V. Karakoç, F. Yılmaz, A. Denizli, Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand, Hacettepe J. Biol. & Chem., 41 (1) (2013) 29-36.
  • 285. F. Svec, E.C. Peters, D. Sýkora, J.M.J. Fréchet, Design of the monolithic polymers used in capillary electrochromatography columns, J. Chromatogr. A, 887 (2000) 3–29.
  • 285. F. Svec, E.C. Peters, D. Sýkora, J.M.J. Fréchet, Design of the monolithic polymers used in capillary electrochromatography columns, J. Chromatogr. A, 887 (2000) 3–29.
  • 286. E.F. Hilder, F. Svec, J.M.J. Fréchet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3–22.
  • 286. E.F. Hilder, F. Svec, J.M.J. Fréchet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3–22.
  • 287. J.J. Meyers, A.I. Liapis, Network modeling of the convective flow and diffusion ofmolecules adsorbing in monoliths and in porous particles packed in a chromatographic column, J. Chromatogr. A, (1999) 3–23.
  • 287. J.J. Meyers, A.I. Liapis, Network modeling of the convective flow and diffusion ofmolecules adsorbing in monoliths and in porous particles packed in a chromatographic column, J. Chromatogr. A, (1999) 3–23.
  • 288. M. Wu, R. Wu, Z. Zhang, H. Zou, Preparation and application of organic-silica hybrid monolithic capillary columns, Electrophoresis, 32 (2011) 105–115.
  • 288. M. Wu, R. Wu, Z. Zhang, H. Zou, Preparation and application of organic-silica hybrid monolithic capillary columns, Electrophoresis, 32 (2011) 105–115.
  • 289. F. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845–8850.
  • 289. F. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845–8850.
  • 290. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 290. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124–134.
  • 291. N. Tanaka, H. Kobayashi, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Hosoya, T. Ikegami, Monolithic silica columns for high-efficiency chromatographic separations, J. Chromatogr. A, 965 (2002) 35–49.
  • 291. N. Tanaka, H. Kobayashi, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Hosoya, T. Ikegami, Monolithic silica columns for high-efficiency chromatographic separations, J. Chromatogr. A, 965 (2002) 35–49.
  • 292. M-L. Hsieh, L-K. Chau, Y-S. Hon, Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase, J. Chromatogr. A, 1358 (2014) 208–216.
  • 292. M-L. Hsieh, L-K. Chau, Y-S. Hon, Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase, J. Chromatogr. A, 1358 (2014) 208–216.
  • 293. L.L. Hench, J.K. West, The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72.
  • 293. L.L. Hench, J.K. West, The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72.
  • 294. J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229–282.
  • 294. J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229–282.
  • 295. A.P. Kumar, J.H. Park, Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography, J. Chromatogr. A, 1217 (2010) 4494–4500.
  • 295. A.P. Kumar, J.H. Park, Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography, J. Chromatogr. A, 1217 (2010) 4494–4500.
  • 296. S. Dixit, J.H. Park, Enantioseparation of basic chiral drugs on a carbamoylated erythromycin-zirconia hybrid monolith using capillary electrochromatography, J. Chromatogr. A, 1416 (2015) 129–136.
  • 296. S. Dixit, J.H. Park, Enantioseparation of basic chiral drugs on a carbamoylated erythromycin-zirconia hybrid monolith using capillary electrochromatography, J. Chromatogr. A, 1416 (2015) 129–136.
  • 297. S. Dixit, I.S. Lee, J.H. Park, Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography, J. Chromatogr. A, 1507 (2017) 132–140.
  • 297. S. Dixit, I.S. Lee, J.H. Park, Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography, J. Chromatogr. A, 1507 (2017) 132–140.
  • 298. L.N. Tran, S. Dixit, J.H. Park, Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1356 (2014) 289–293.
  • 298. L.N. Tran, S. Dixit, J.H. Park, Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1356 (2014) 289–293.
  • 299. L.N. Tran, J.H. Park, Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1396 (2015) 140–147.
  • 299. L.N. Tran, J.H. Park, Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1396 (2015) 140–147.
  • 300. M. Kim, J.H. Park, Enantioseparation of chiral acids and bases on a clindamycin phosphate-modified zirconia monolith by capillary electrochromatography, J. Chromatogr. A, 1251 (2012) 244–248.
  • 300. M. Kim, J.H. Park, Enantioseparation of chiral acids and bases on a clindamycin phosphate-modified zirconia monolith by capillary electrochromatography, J. Chromatogr. A, 1251 (2012) 244–248.
  • 301. A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography, J. Chromatogr. A, 1218 (2011) 5369–5373.
  • 301. A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography, J. Chromatogr. A, 1218 (2011) 5369–5373.
  • 302. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography. Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 302. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography. Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 303. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography, Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 303. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -Butylcarbamoylquinine-Silica Hybrid Monolith by Capillary Electrochromatography, Bull. Korean Chem. Soc., 37 (2016) 1050–1056.
  • 304. A. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A, 1358 (2014) 199–207.
  • 304. A. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A, 1358 (2014) 199–207.
  • 305. L. Fang, J. Yu, Z. Jiang, X. Guo, Preparation of a β-cyclodextrin-based open-tubular capillary electrochromatography column and application for enantioseparations of ten basic drugs, PLoS ONE 11 (2016): e0146292.
  • 305. L. Fang, J. Yu, Z. Jiang, X. Guo, Preparation of a β-cyclodextrin-based open-tubular capillary electrochromatography column and application for enantioseparations of ten basic drugs, PLoS ONE 11 (2016): e0146292.
  • 306. E. Hongjun, P. Su, M.U. Farooq, Y. Yang, Microwave-Assisted Preparation of a β-Cyclodextrin-Based Stationary Phase for Open Tubular Capillary Electrochromatography, Anal. Lett., 43 (2010) 2372–2380.
  • 306. E. Hongjun, P. Su, M.U. Farooq, Y. Yang, Microwave-Assisted Preparation of a β-Cyclodextrin-Based Stationary Phase for Open Tubular Capillary Electrochromatography, Anal. Lett., 43 (2010) 2372–2380.
  • 307. R. Yuan, G. Ding, Enantioseparations in capillary electrochromatography using sulfated poly b -cyclodextrin-modi fi ed silica-based monolith as stationary phase, Methods Mol. Biol., 970 (2013) 489–503.
  • 307. R. Yuan, G. Ding, Enantioseparations in capillary electrochromatography using sulfated poly b -cyclodextrin-modi fi ed silica-based monolith as stationary phase, Methods Mol. Biol., 970 (2013) 489–503.
  • 308. L. Zhou, J. Lun, Y. Liu, Z. Jiang, X. Di, X. Guo, In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta, 200 (2019) 1–8.
  • 308. L. Zhou, J. Lun, Y. Liu, Z. Jiang, X. Di, X. Guo, In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta, 200 (2019) 1–8.
  • 309. K. Szwed, J. Ou, G. Huang, H. Lin, Z. Liu, H. Wang, H. Zou, Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography, J. Sep. Sci., 39 (2016) 1110–1117.
  • 309. K. Szwed, J. Ou, G. Huang, H. Lin, Z. Liu, H. Wang, H. Zou, Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography, J. Sep. Sci., 39 (2016) 1110–1117.
  • 310. A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta, 169 (2017) 239–248.
  • 310. A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta, 169 (2017) 239–248.
  • 311. A. Ghanem, M. Ahmed, H. Ishii, T. Ikegami, Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates, Talanta, 132 (2015) 301–314.
  • 311. A. Ghanem, M. Ahmed, H. Ishii, T. Ikegami, Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates, Talanta, 132 (2015) 301–314.
  • 312. J. Guo, Y. Xiao, Y. Lin, Q. Zhang, Y. Chang, J. Crommen, Z. Jiang, Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths, Talanta, 152 (2016) 259–268.
  • 312. J. Guo, Y. Xiao, Y. Lin, Q. Zhang, Y. Chang, J. Crommen, Z. Jiang, Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths, Talanta, 152 (2016) 259–268.
  • 313. Q. Zhang, J. Guo, F. Wang, J. Crommen, Z. Jiang, Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations, J. Chromatogr. A, 1325 (2014) 147–154.
  • 313. Q. Zhang, J. Guo, F. Wang, J. Crommen, Z. Jiang, Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations, J. Chromatogr. A, 1325 (2014) 147–154.
  • 314. Q. Zhang, J. Guo, Y. Xiao, J. Crommen, Z. Jiang, Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance, J. Sep. Sci., 38 (2015) 1813–1821.
  • 314. Q. Zhang, J. Guo, Y. Xiao, J. Crommen, Z. Jiang, Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance, J. Sep. Sci., 38 (2015) 1813–1821.
  • 315. Z. Zhang, M. Wu, R. Wu, J. Dong, J. Ou, H. Zou, Preparation of perphenylcarbamoylated β- cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography, Anal. Chem., 83 (2011) 3616–3622.
  • 315. Z. Zhang, M. Wu, R. Wu, J. Dong, J. Ou, H. Zou, Preparation of perphenylcarbamoylated β- cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography, Anal. Chem., 83 (2011) 3616–3622.
  • 316. M. Deng, M. Li, Y. Zhao, Z. Jiang, X. Guo, A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs, Talanta, 189 (2018) 458–466.
  • 316. M. Deng, M. Li, Y. Zhao, Z. Jiang, X. Guo, A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs, Talanta, 189 (2018) 458–466.
  • 317. R. Chen, C. Lin, H. Lyu, X. Lin, Z. Xie, Highly efficient preparation of β-CD-based chiral monolithic column by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography, J. Chromatogr. A, 1616 (2020) 460781.
  • 317. R. Chen, C. Lin, H. Lyu, X. Lin, Z. Xie, Highly efficient preparation of β-CD-based chiral monolithic column by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography, J. Chromatogr. A, 1616 (2020) 460781.
  • 318. P. Zhang, J. Wang, H. Yang, L. Su, Y. Xiong, F. Ye, Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol-ene click reaction for capillary liquid chromatography, RSC Adv., 6 (2016) 24835–24842.
  • 318. P. Zhang, J. Wang, H. Yang, L. Su, Y. Xiong, F. Ye, Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol-ene click reaction for capillary liquid chromatography, RSC Adv., 6 (2016) 24835–24842.
  • 319. W. Bragg, S.A. Shamsi, A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry, J. Chromatogr. A, 1267 (2012) 144– 155.
  • 319. W. Bragg, S.A. Shamsi, A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry, J. Chromatogr. A, 1267 (2012) 144– 155.
  • 320. L. Zhou, B. Liu, J. Guan, Z. Jiang, X. Guo, Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds, J. Chromatogr. A, 1620 (2020) 460932.
  • 320. L. Zhou, B. Liu, J. Guan, Z. Jiang, X. Guo, Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds, J. Chromatogr. A, 1620 (2020) 460932.
  • 321. C. Aydoǧan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem., 447 (2014) 55–57.
  • 321. C. Aydoǧan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem., 447 (2014) 55–57.
  • 322. Y. Lin, J. Guo, H. Lin, J. Wang, G.W. Somsen, J. Crommen, Z. Jiang, Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation, J. Sep. Sci., 40 (2017) 3754–3762.
  • 322. Y. Lin, J. Guo, H. Lin, J. Wang, G.W. Somsen, J. Crommen, Z. Jiang, Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation, J. Sep. Sci., 40 (2017) 3754–3762.
  • 323. R. Noel Echevarria, E.J. Carrasco-Correa, S. Keunchkarian, M. Reta, J.M. Herrero-Martinez, Photografted methacrylate-based monolithic columns coated with cellulose tris(3,5-dimethylphenylcarbamate) for chiral separation in CEC, J. Sep. Sci., 41 (2018) 1424–1432.
  • 323. R. Noel Echevarria, E.J. Carrasco-Correa, S. Keunchkarian, M. Reta, J.M. Herrero-Martinez, Photografted methacrylate-based monolithic columns coated with cellulose tris(3,5-dimethylphenylcarbamate) for chiral separation in CEC, J. Sep. Sci., 41 (2018) 1424–1432.
  • 324. C. Aydoğan, F. Yılmaz, D. Çimen, L. Uzun, A. Denizli, Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N -methacryloyl- l -histidine methyl ester, Electrophoresis, 34 (2013) 1908–1914.
  • 324. C. Aydoğan, F. Yılmaz, D. Çimen, L. Uzun, A. Denizli, Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N -methacryloyl- l -histidine methyl ester, Electrophoresis, 34 (2013) 1908–1914.
  • 325. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 325. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606–609.
  • 326. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography, J. Chromatogr. A, 1445 (2016) 55–61.
  • 326. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography, J. Chromatogr. A, 1445 (2016) 55–61.
  • 327. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography, J. Chromatogr. A, 1445 (2016) 62–67.
  • 327. C. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography, J. Chromatogr. A, 1445 (2016) 62–67.
  • 328. S. Xu, R. Mo, C. Jin, X. Cui, R. Bai, Y. Ji, Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography, J. Pharm. Biomed. Anal., 140 (2017) 190–198.
  • 328. S. Xu, R. Mo, C. Jin, X. Cui, R. Bai, Y. Ji, Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography, J. Pharm. Biomed. Anal., 140 (2017) 190–198.
  • 329. C. Miao, R. Bai, S. Xu, T. Hong, Y. Ji, Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography, J. Chromatogr. A, 1487 (2017) 227–234.
  • 329. C. Miao, R. Bai, S. Xu, T. Hong, Y. Ji, Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography, J. Chromatogr. A, 1487 (2017) 227–234.
  • 330. Y. Li, X. Lin, S. Qin, L. Gao, Y. Tang, S. Liu, Y. Wang, β‐Cyclodextrin‐modified covalent organic framework as chiral stationary phase for the separation of amino acids and β‐blockers by capillary electrochromatography, Chirality, 32 (2020) 1008-1019.
  • 330. Y. Li, X. Lin, S. Qin, L. Gao, Y. Tang, S. Liu, Y. Wang, β‐Cyclodextrin‐modified covalent organic framework as chiral stationary phase for the separation of amino acids and β‐blockers by capillary electrochromatography, Chirality, 32 (2020) 1008-1019.
There are 660 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Koray Şarkaya 0000-0003-0177-5134

İlgim Göktürk 0000-0001-7292-7241

Fatma Yılmaz 0000-0003-3260-1639

Adil Denizli 0000-0001-7548-5741

Publication Date May 17, 2021
Acceptance Date December 26, 2020
Published in Issue Year 2021

Cite

APA Şarkaya, K., Göktürk, İ., Yılmaz, F., Denizli, A. (2021). Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review. Hacettepe Journal of Biology and Chemistry, 49(3), 253-303. https://doi.org/10.15671/hjbc.815414
AMA Şarkaya K, Göktürk İ, Yılmaz F, Denizli A. Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review. HJBC. May 2021;49(3):253-303. doi:10.15671/hjbc.815414
Chicago Şarkaya, Koray, İlgim Göktürk, Fatma Yılmaz, and Adil Denizli. “Chiral Separations by Capillary Electrophoresis and Related Techniques With Different Chiral Selectors: A Review”. Hacettepe Journal of Biology and Chemistry 49, no. 3 (May 2021): 253-303. https://doi.org/10.15671/hjbc.815414.
EndNote Şarkaya K, Göktürk İ, Yılmaz F, Denizli A (May 1, 2021) Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review. Hacettepe Journal of Biology and Chemistry 49 3 253–303.
IEEE K. Şarkaya, İ. Göktürk, F. Yılmaz, and A. Denizli, “Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review”, HJBC, vol. 49, no. 3, pp. 253–303, 2021, doi: 10.15671/hjbc.815414.
ISNAD Şarkaya, Koray et al. “Chiral Separations by Capillary Electrophoresis and Related Techniques With Different Chiral Selectors: A Review”. Hacettepe Journal of Biology and Chemistry 49/3 (May 2021), 253-303. https://doi.org/10.15671/hjbc.815414.
JAMA Şarkaya K, Göktürk İ, Yılmaz F, Denizli A. Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review. HJBC. 2021;49:253–303.
MLA Şarkaya, Koray et al. “Chiral Separations by Capillary Electrophoresis and Related Techniques With Different Chiral Selectors: A Review”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 3, 2021, pp. 253-0, doi:10.15671/hjbc.815414.
Vancouver Şarkaya K, Göktürk İ, Yılmaz F, Denizli A. Chiral Separations by Capillary Electrophoresis and related Techniques with Different Chiral Selectors: A Review. HJBC. 2021;49(3):253-30.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc