Research Article
BibTex RIS Cite
Year 2021, Issue: 4, 333 - 344, 25.05.2021
https://doi.org/10.15671/hjbc.922633

Abstract

References

  • 1. H. Zhang, L. Yang, B. Zhou, X. Wang, G. Liu, W. Liu, P. Wang, Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 121 (2014) 381-386.
  • 2. J. Buijs, G.C. Franklin, SPR-MS in functional proteomics, Brief. Funct. Genomic. Proteomic. 4 (2005) 39-47.
  • 3. W.M. Mullett, E.P. Lai, J.M. Yeung, Surface plasmon resonance-based immunoassays. Methods. 22 (2000) 77-91.
  • 4. G. Krishnamoorthy, E.T. Carlen, A. Van Der Berg, R.B.M. Schasfoort, Surface plasmon resonance imaging based multiplex biosensor: integration of biomolecular screening detection and kinetics estimation. Sensor. Actuators B 148 (2010) 511-521.
  • 5. A.S. Kushwaha, A. Kumar, R. Kumar, and S.K. Srivastava, A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity, Photonics Nanostruct. 31 (2018) 99–106.
  • 6. S. Zeng, D. Baillargeat, H.P. Ho, and K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev. 43 (2014) 3426-3452.
  • 7. F.R. Caetano, E.A. Carneiro, D. Agustini, L.C.S. Figueiredo-Filho, C.E. Banks, M.F. Bergamini, L.H. Marcolino-Junior, Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water, Biosens. Bioelectron. 99 (2018) 382–388.
  • 8. H. Li, C. Han, Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water, Chem. Mater. 20 (2008) 6053–6059.
  • 9. L. Wu, X. Lu, Dhanjai, Z. Wu, Y. Dong, X. Wang, S. Zheng, J. Chen, 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol, Biosens. Bioelectron. 107 (2018) 69–75.
  • 10. X.H. Zhou, L.H. Liu, X. Bai, H.C. Shi, A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples, Sens. Actuators B Chem. (2013) 661–667.
  • 11. L. Lu, L. Zhang, X. Zhang, S. Huan, G. Shen, R. Yu, A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds, Anal. Chim. Acta 665 (2010), 146–151.
  • 12. E. Bazrafshan, F.K. Mostafapour, H.J. Mansourian, Phenolic compounds: health effects and its removal from aqueous environments by low cost adsorbents, Health Scope. 2 (2013) 65–66.
  • 13. U.S. Environmental Protection Agency Toxicological Review Phenol. In: Support of summary information on integrated risk information system (IRIS), CAS No. 108-95-2: 104. 2002.
  • 14. C.L. Dang, Y. Lin, Detection of phenol by defective inorganic BN nanosheet: A DFT study, Inorg. Chem. Commun. 117 (2020) 107977.
  • 15. X.D. Lv, P. Gao, An optical sensor for selective detection of phenol via double cross-linker precipitation polymerization, RSC Adv. 10 (2020) 25402-25407.
  • 16. A. Puszkarewicz, J. Kaleta, D. Papciak, Adsorption of phenol from water on Natural Minerals, Ecol. Eng. 19 (2018) 132–138.
  • 17. M.H. Aliabadi, N. Esmaeili, H.S. Jahromi, An electrochemical composite sensor for phenol detection in waste water, Appl. Nanosci. 10 (2020) 597–609.
  • 18. R. Wahab, F. khan, N. Ahmad, M. Alam, J. Ahmad, A.A. Al-Khedhairy, Rapid sensing response for phenol with CuO nanoparticles, colloids and surfaces a-physicochemical and engineering aspects, Colloids Surf. A 607 (2020) 125424.
  • 19. C.A. Arenal, B.E. Sample, Chapter 29:Wildlife toxicity assessment for phenol. In: Wildlife toxicity assessments for chemicals of military concern. Elsevier; 2015. p. 555–579.
  • 20. IARC, International Agency for Research on Cancer Phenol. In: IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, World Health Organization, 47 (1989) 263-287.
  • 21. A. Rico-Yuste, S. Carrasco, Molecularly imprinted polymer-based hybrid materials for the development of optical sensors, Polymer, 11 (2019) 1173.
  • 22. C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O'Mahony, M.J. Whitcombe, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J. Mol. Recognit. 19 (2006) 106-180.
  • 23. J.E. Lofgreen, G.A. Ozin, Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica, Chem. Soc. Rev. 43 (2014) 911-933.
  • 24. O.K. Castell, D.A. Barrow, A.R. Kamarudin, C.J. Allender, Current practices for describing the performance of molecularly imprinted polymers can be misleading and may be hampering the development of the field, J. Mol. Recognit. 24 (2011) 1115-1122.
  • 25. L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev. 40 (2011) 2922-2942.
  • 26. R. Schirhagl, Bioapplications for Molecularly Imprinted Polymers, Anal. Chem 86 (2013) 250-261.
  • 27. X. Zhou, W. Li, X. He, L. Chen, Recent Advances in the Study of Protein Imprinting, Sep. Purif. Rev. 36 (2007) 257–283.
  • 28. R. Schirhagl, Bioapplications for Molecularly Imprinted Polymers, Anal. Chem. 86 (2013) 250-261.
  • 29. S. Li, S. Cao, M. J. Whitcombe, S.A. Piletsky, Size matters: Challenges in imprinting macromolecules, Prog. Polym. Sci. 39 (2014) 145-163.
  • 30. L. Chen, X. Wang, W. Lu, X. Wua, J. Lia, Molecular imprinting: perspectives and applications, Chem. Soc. Rev. 45 (2016) 2137.
  • 31. Ş. Öncel, L. Uzun, B. Garipcan, A. Denizli, Synthesis of Phenylalanine-Containing Hydrophobic Beads for Lysozyme Adsorption, Ind. Eng. Chem. Res. 44 (2005)7049–7056.
  • 32. R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D. Shimizu, Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm, Anal. Chem. 73 (2001) 4584-4591.

Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol

Year 2021, Issue: 4, 333 - 344, 25.05.2021
https://doi.org/10.15671/hjbc.922633

Abstract

Son yıllarda, canlılar ve halk sağlığı için önemli bir tehdit oluşturan fenol ve bileşiklerinin tespit edilmesi önem kazanmaktadır. Bu çalışmada, fenolün tespiti için moleküler baskılama yöntemi temel alınarak yüzey plazmon rezonans (SPR) sensörler tasarlanmıştır. Fenol moleküllerine ait boşluklara sahip polimerik film hazırlanarak UV polimerizasyonu ile SPR sensör yüzeyinden oluşturulmuştur. 0.15 ila 10 nM arasındaki tayin aralığında en düşük saptama sınırı 0.011 nM’dir. Ayrıca, biz katekolün yarışmacı ajan olarak seçicilik deneylerini gerçekleştirdik. Genel olarak, moleküler baskılama yaklaşımı ile hazırlanan fenol baskılanmış SPR sensörünün fenol için oldukça hassas ve seçici olduğu bulunmuştur. Fenol baskılı SPR sensörleri, yüksek seçicilikleri, tekrarlayan kullanımları ve hızlı yanıtları özelliği ile mevcut fenol belirleme yöntemlerine yeni bir yöntem olarak kullanılmak düşünülmektedir.

References

  • 1. H. Zhang, L. Yang, B. Zhou, X. Wang, G. Liu, W. Liu, P. Wang, Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 121 (2014) 381-386.
  • 2. J. Buijs, G.C. Franklin, SPR-MS in functional proteomics, Brief. Funct. Genomic. Proteomic. 4 (2005) 39-47.
  • 3. W.M. Mullett, E.P. Lai, J.M. Yeung, Surface plasmon resonance-based immunoassays. Methods. 22 (2000) 77-91.
  • 4. G. Krishnamoorthy, E.T. Carlen, A. Van Der Berg, R.B.M. Schasfoort, Surface plasmon resonance imaging based multiplex biosensor: integration of biomolecular screening detection and kinetics estimation. Sensor. Actuators B 148 (2010) 511-521.
  • 5. A.S. Kushwaha, A. Kumar, R. Kumar, and S.K. Srivastava, A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity, Photonics Nanostruct. 31 (2018) 99–106.
  • 6. S. Zeng, D. Baillargeat, H.P. Ho, and K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev. 43 (2014) 3426-3452.
  • 7. F.R. Caetano, E.A. Carneiro, D. Agustini, L.C.S. Figueiredo-Filho, C.E. Banks, M.F. Bergamini, L.H. Marcolino-Junior, Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water, Biosens. Bioelectron. 99 (2018) 382–388.
  • 8. H. Li, C. Han, Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water, Chem. Mater. 20 (2008) 6053–6059.
  • 9. L. Wu, X. Lu, Dhanjai, Z. Wu, Y. Dong, X. Wang, S. Zheng, J. Chen, 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol, Biosens. Bioelectron. 107 (2018) 69–75.
  • 10. X.H. Zhou, L.H. Liu, X. Bai, H.C. Shi, A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples, Sens. Actuators B Chem. (2013) 661–667.
  • 11. L. Lu, L. Zhang, X. Zhang, S. Huan, G. Shen, R. Yu, A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds, Anal. Chim. Acta 665 (2010), 146–151.
  • 12. E. Bazrafshan, F.K. Mostafapour, H.J. Mansourian, Phenolic compounds: health effects and its removal from aqueous environments by low cost adsorbents, Health Scope. 2 (2013) 65–66.
  • 13. U.S. Environmental Protection Agency Toxicological Review Phenol. In: Support of summary information on integrated risk information system (IRIS), CAS No. 108-95-2: 104. 2002.
  • 14. C.L. Dang, Y. Lin, Detection of phenol by defective inorganic BN nanosheet: A DFT study, Inorg. Chem. Commun. 117 (2020) 107977.
  • 15. X.D. Lv, P. Gao, An optical sensor for selective detection of phenol via double cross-linker precipitation polymerization, RSC Adv. 10 (2020) 25402-25407.
  • 16. A. Puszkarewicz, J. Kaleta, D. Papciak, Adsorption of phenol from water on Natural Minerals, Ecol. Eng. 19 (2018) 132–138.
  • 17. M.H. Aliabadi, N. Esmaeili, H.S. Jahromi, An electrochemical composite sensor for phenol detection in waste water, Appl. Nanosci. 10 (2020) 597–609.
  • 18. R. Wahab, F. khan, N. Ahmad, M. Alam, J. Ahmad, A.A. Al-Khedhairy, Rapid sensing response for phenol with CuO nanoparticles, colloids and surfaces a-physicochemical and engineering aspects, Colloids Surf. A 607 (2020) 125424.
  • 19. C.A. Arenal, B.E. Sample, Chapter 29:Wildlife toxicity assessment for phenol. In: Wildlife toxicity assessments for chemicals of military concern. Elsevier; 2015. p. 555–579.
  • 20. IARC, International Agency for Research on Cancer Phenol. In: IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, World Health Organization, 47 (1989) 263-287.
  • 21. A. Rico-Yuste, S. Carrasco, Molecularly imprinted polymer-based hybrid materials for the development of optical sensors, Polymer, 11 (2019) 1173.
  • 22. C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O'Mahony, M.J. Whitcombe, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J. Mol. Recognit. 19 (2006) 106-180.
  • 23. J.E. Lofgreen, G.A. Ozin, Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica, Chem. Soc. Rev. 43 (2014) 911-933.
  • 24. O.K. Castell, D.A. Barrow, A.R. Kamarudin, C.J. Allender, Current practices for describing the performance of molecularly imprinted polymers can be misleading and may be hampering the development of the field, J. Mol. Recognit. 24 (2011) 1115-1122.
  • 25. L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev. 40 (2011) 2922-2942.
  • 26. R. Schirhagl, Bioapplications for Molecularly Imprinted Polymers, Anal. Chem 86 (2013) 250-261.
  • 27. X. Zhou, W. Li, X. He, L. Chen, Recent Advances in the Study of Protein Imprinting, Sep. Purif. Rev. 36 (2007) 257–283.
  • 28. R. Schirhagl, Bioapplications for Molecularly Imprinted Polymers, Anal. Chem. 86 (2013) 250-261.
  • 29. S. Li, S. Cao, M. J. Whitcombe, S.A. Piletsky, Size matters: Challenges in imprinting macromolecules, Prog. Polym. Sci. 39 (2014) 145-163.
  • 30. L. Chen, X. Wang, W. Lu, X. Wua, J. Lia, Molecular imprinting: perspectives and applications, Chem. Soc. Rev. 45 (2016) 2137.
  • 31. Ş. Öncel, L. Uzun, B. Garipcan, A. Denizli, Synthesis of Phenylalanine-Containing Hydrophobic Beads for Lysozyme Adsorption, Ind. Eng. Chem. Res. 44 (2005)7049–7056.
  • 32. R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D. Shimizu, Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm, Anal. Chem. 73 (2001) 4584-4591.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ali Derazshamshir 0000-0002-4757-0161

Publication Date May 25, 2021
Acceptance Date May 19, 2021
Published in Issue Year 2021 Issue: 4

Cite

APA Derazshamshir, A. (2021). Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol. Hacettepe Journal of Biology and Chemistry, 49(4), 333-344. https://doi.org/10.15671/hjbc.922633
AMA Derazshamshir A. Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol. HJBC. May 2021;49(4):333-344. doi:10.15671/hjbc.922633
Chicago Derazshamshir, Ali. “Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol”. Hacettepe Journal of Biology and Chemistry 49, no. 4 (May 2021): 333-44. https://doi.org/10.15671/hjbc.922633.
EndNote Derazshamshir A (May 1, 2021) Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol. Hacettepe Journal of Biology and Chemistry 49 4 333–344.
IEEE A. Derazshamshir, “Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol”, HJBC, vol. 49, no. 4, pp. 333–344, 2021, doi: 10.15671/hjbc.922633.
ISNAD Derazshamshir, Ali. “Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol”. Hacettepe Journal of Biology and Chemistry 49/4 (May 2021), 333-344. https://doi.org/10.15671/hjbc.922633.
JAMA Derazshamshir A. Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol. HJBC. 2021;49:333–344.
MLA Derazshamshir, Ali. “Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 4, 2021, pp. 333-44, doi:10.15671/hjbc.922633.
Vancouver Derazshamshir A. Preparation of Molecularly Imprinted Optical Sensors for The Real Time Detection of Phenol. HJBC. 2021;49(4):333-44.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc