Research Article
BibTex RIS Cite

Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics

Year 2022, Volume: 50 Issue: 2, 193 - 204, 28.02.2022
https://doi.org/10.15671/hjbc.1035918

Abstract

In this study, we developed a nanoplasmonic-based sensor design, which was constructed with a bio-inspired silk material and plasmonic materials (gold nanoparticles). We characterized this mutual integration at molecular level by using Atomic Force Microscopy, Scanning Electron Microscopy, as well as the chemical composition was confirmed with Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and X-Ray Photoelectron Spectroscopy analyses, along with contact angle measurements for hydrophilicity/hydrophobicity evaluation. Once a single layer of silk-gold nanoparticle mixture was accomplished, we serially applied an adlayer and plasmonic material to create more sensitive surface. Accordingly, we benchmarked the performance of the multi-layer sensor system, and observed ~6.8 times (or red-shifts from 7.93 nm to 12.90 nm) signal improvements compared to the one developed by a single layer. In sum, we here presented (i) a facile drop-casting method for developing a nanoplasmonic sensor design, (ii) the use of inexpensive off-the-shelf plastic as a substrate, (iii) easy-to-adapt strategy with standard spectrometer devices, and (iv) minimum training for its proper use.

Supporting Institution

TÜBİTAK; TÜBİTAK; TÜBA; BİLİM AKADEMİSİ

Project Number

118C254; 120Z335; TÜBA-GEBİP; BAGEP

Thanks

Dr. Fatih Inci gratefully acknowledges the support from TÜBİTAK 2232-International Fellowship for Outstanding Researchers (Project No: 118C254), TÜBİTAK 3501-Career Development Program (CAREER) (Project No: 120Z335), and Turkish Academy of Sciences - Outstanding Young Scientists Award Program (TÜBA-GEBİP). This publication has been produced benefiting from the 2232 International Fellowship for Outstanding Researchers Program of TÜBİTAK (Project No: 118C254). However, the entire responsibility of the publication/paper belongs to the owner of the publication/paper. The financial support received from TÜBİTAK does not mean that the content of the publication is approved in a scientific sense by TÜBİTAK. This work was supported by the BAGEP Award of the Science Academy.

References

  • [1] Y. Saylan, Ö. Erdem, S. Ünal, and A. Denizli, “An alternative medical diagnosis method: Biosensors for virus detection,” Biosensors, 2019, doi: 10.3390/bios9020065.
  • [2] Y. Saylan, Ö. Erdem, F. Inci, and A. Denizli, “Advances in biomimetic systems for molecular recognition and biosensing,” Biomimetics. 2020, doi: 10.3390/BIOMIMETICS5020020.
  • [3] E. VanArsdale, J. Pitzer, G. F. Payne, and W. E. Bentley, “Redox Electrochemistry to Interrogate and Control Biomolecular Communication,” iScience. 2020, doi: 10.1016/j.isci.2020.101545.
  • [4] G. A. Akceoglu, Y. Saylan, and F. Inci, “A Snapshot of Microfluidics in Point-of-Care Diagnostics: Multifaceted Integrity with Materials and Sensors,” Advanced Materials Technologies. 2021, doi: 10.1002/admt.202100049.
  • [5] B. O. Alunda and Y. J. Lee, “Review: Cantilever-based sensors for high speed atomic force microscopy,” Sensors (Switzerland). 2020, doi: 10.3390/s20174784.
  • [6] J. Mouro, R. Pinto, P. Paoletti, and B. Tiribilli, “Microcantilever: Dynamical response for mass sensing and fluid characterization,” Sensors (Switzerland). 2021, doi: 10.3390/s21010115.
  • [7] A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol., 2009, doi: 10.1038/nnano.2009.152.
  • [8] A. Denizli, Molecular Imprinting for Nanosensors and Other Sensing Applications. 2021.
  • [9] F. Inci et al., “Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics,” Proc. Natl. Acad. Sci. U. S. A., 2015, doi: 10.1073/pnas.1510824112.
  • [10] F. Inci, Y. Saylan, A. M. Kojouri, M. G. Ogut, A. Denizli, and U. Demirci, “A disposable microfluidic-integrated hand-held plasmonic platform for protein detection,” Appl. Mater. Today, 2020, doi: 10.1016/j.apmt.2019.100478.
  • [11] F. Inci et al., “Enhancing the nanoplasmonic signal by a nanoparticle sandwiching strategy to detect viruses,” Appl. Mater. Today, 2020, doi: 10.1016/j.apmt.2020.100709.
  • [12] F. Inci, U. Celik, B. Turken, H. Ö. Özer, and F. N. Kok, “Construction of P-glycoprotein incorporated tethered lipid bilayer membranes,” Biochem. Biophys. Reports, 2015, doi: 10.1016/j.bbrep.2015.05.012.
  • [13] E. M. Burd, “Validation of laboratory-developed molecular assays for infectious diseases,” Clinical Microbiology Reviews. 2010, doi: 10.1128/CMR.00074-09.
  • [14] Y. Shen, T. Bin Anwar, and A. Mulchandani, “Current status, advances, challenges and perspectives on biosensors for COVID-19 diagnosis in resource-limited settings,” Sensors and Actuators Reports, 2021, doi: 10.1016/j.snr.2021.100025.
  • [15] E. Morales-Narváez et al., “Nanopaper as an Optical Sensing Platform,” ACS Nano, 2015, doi: 10.1021/acsnano.5b03097.
  • [16] N. Granqvist, A. Hanning, L. Eng, J. Tuppurainen, and T. Viitala, “Label-enhanced surface plasmon resonance: A new concept for improved performance in optical biosensor analysis,” Sensors (Switzerland), 2013, doi: 10.3390/s131115348.
  • [17] A. Mataji-Kojouri, M. O. Ozen, M. Shahabadi, F. Inci, and U. Demirci, “Entangled Nanoplasmonic Cavities for Estimating Thickness of Surface-Adsorbed Layers,” ACS Nano, 2020, doi: 10.1021/acsnano.0c02797.
  • [18] R. Ahmed et al., “Tunable Fano-Resonant Metasurfaces on a Disposable Plastic-Template for Multimodal and Multiplex Biosensing,” Adv. Mater., 2020, doi: 10.1002/adma.201907160.
  • [19] F. Inci et al., “A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases.,” Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger., vol. 5, no. 9, p. 1800121, Sep. 2018, doi: 10.1002/advs.201800121.
  • [20] S. K. Vashist, E. M. Schneider, E. Lam, S. Hrapovic, and J. H. T. Luong, “One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics,” Sci. Rep., 2014, doi: 10.1038/srep04407.
  • [21] N. G. Welch, J. A. Scoble, B. W. Muir, and P. J. Pigram, “Orientation and characterization of immobilized antibodies for improved immunoassays (Review),” Biointerphases, 2017, doi: 10.1116/1.4978435.
  • [22] K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett., 2012, doi: 10.1021/nl300044a.
  • [23] H. J. Weeth, R. Witton, and C. F. Speth, “Prediction of Bovine Urine Specific Gravity and Total Solids by Refractometry,” J. Anim. Sci., 1969, doi: 10.2527/jas1969.28166x.
  • [24] S. Liu, Z. Deng, J. Li, J. Wang, and N. Huang, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt., 2019, doi: 10.1117/1.jbo.24.3.035003.
  • [25] Ö. Erdem, E. Derin, K. Sagdic, E. G. Yilmaz, and F. Inci, “Smart materials-integrated sensor technologies for COVID-19 diagnosis,” Emergent Materials. 2021, doi: 10.1007/s42247-020-00150-w.
  • [26] Ö. Erdem, I. Eş, G. A. Akceoglu, Y. Saylan, and F. Inci, “Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases,” Biosensors. 2021, doi: 10.3390/bios11090296.
Year 2022, Volume: 50 Issue: 2, 193 - 204, 28.02.2022
https://doi.org/10.15671/hjbc.1035918

Abstract

Project Number

118C254; 120Z335; TÜBA-GEBİP; BAGEP

References

  • [1] Y. Saylan, Ö. Erdem, S. Ünal, and A. Denizli, “An alternative medical diagnosis method: Biosensors for virus detection,” Biosensors, 2019, doi: 10.3390/bios9020065.
  • [2] Y. Saylan, Ö. Erdem, F. Inci, and A. Denizli, “Advances in biomimetic systems for molecular recognition and biosensing,” Biomimetics. 2020, doi: 10.3390/BIOMIMETICS5020020.
  • [3] E. VanArsdale, J. Pitzer, G. F. Payne, and W. E. Bentley, “Redox Electrochemistry to Interrogate and Control Biomolecular Communication,” iScience. 2020, doi: 10.1016/j.isci.2020.101545.
  • [4] G. A. Akceoglu, Y. Saylan, and F. Inci, “A Snapshot of Microfluidics in Point-of-Care Diagnostics: Multifaceted Integrity with Materials and Sensors,” Advanced Materials Technologies. 2021, doi: 10.1002/admt.202100049.
  • [5] B. O. Alunda and Y. J. Lee, “Review: Cantilever-based sensors for high speed atomic force microscopy,” Sensors (Switzerland). 2020, doi: 10.3390/s20174784.
  • [6] J. Mouro, R. Pinto, P. Paoletti, and B. Tiribilli, “Microcantilever: Dynamical response for mass sensing and fluid characterization,” Sensors (Switzerland). 2021, doi: 10.3390/s21010115.
  • [7] A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol., 2009, doi: 10.1038/nnano.2009.152.
  • [8] A. Denizli, Molecular Imprinting for Nanosensors and Other Sensing Applications. 2021.
  • [9] F. Inci et al., “Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics,” Proc. Natl. Acad. Sci. U. S. A., 2015, doi: 10.1073/pnas.1510824112.
  • [10] F. Inci, Y. Saylan, A. M. Kojouri, M. G. Ogut, A. Denizli, and U. Demirci, “A disposable microfluidic-integrated hand-held plasmonic platform for protein detection,” Appl. Mater. Today, 2020, doi: 10.1016/j.apmt.2019.100478.
  • [11] F. Inci et al., “Enhancing the nanoplasmonic signal by a nanoparticle sandwiching strategy to detect viruses,” Appl. Mater. Today, 2020, doi: 10.1016/j.apmt.2020.100709.
  • [12] F. Inci, U. Celik, B. Turken, H. Ö. Özer, and F. N. Kok, “Construction of P-glycoprotein incorporated tethered lipid bilayer membranes,” Biochem. Biophys. Reports, 2015, doi: 10.1016/j.bbrep.2015.05.012.
  • [13] E. M. Burd, “Validation of laboratory-developed molecular assays for infectious diseases,” Clinical Microbiology Reviews. 2010, doi: 10.1128/CMR.00074-09.
  • [14] Y. Shen, T. Bin Anwar, and A. Mulchandani, “Current status, advances, challenges and perspectives on biosensors for COVID-19 diagnosis in resource-limited settings,” Sensors and Actuators Reports, 2021, doi: 10.1016/j.snr.2021.100025.
  • [15] E. Morales-Narváez et al., “Nanopaper as an Optical Sensing Platform,” ACS Nano, 2015, doi: 10.1021/acsnano.5b03097.
  • [16] N. Granqvist, A. Hanning, L. Eng, J. Tuppurainen, and T. Viitala, “Label-enhanced surface plasmon resonance: A new concept for improved performance in optical biosensor analysis,” Sensors (Switzerland), 2013, doi: 10.3390/s131115348.
  • [17] A. Mataji-Kojouri, M. O. Ozen, M. Shahabadi, F. Inci, and U. Demirci, “Entangled Nanoplasmonic Cavities for Estimating Thickness of Surface-Adsorbed Layers,” ACS Nano, 2020, doi: 10.1021/acsnano.0c02797.
  • [18] R. Ahmed et al., “Tunable Fano-Resonant Metasurfaces on a Disposable Plastic-Template for Multimodal and Multiplex Biosensing,” Adv. Mater., 2020, doi: 10.1002/adma.201907160.
  • [19] F. Inci et al., “A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases.,” Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger., vol. 5, no. 9, p. 1800121, Sep. 2018, doi: 10.1002/advs.201800121.
  • [20] S. K. Vashist, E. M. Schneider, E. Lam, S. Hrapovic, and J. H. T. Luong, “One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics,” Sci. Rep., 2014, doi: 10.1038/srep04407.
  • [21] N. G. Welch, J. A. Scoble, B. W. Muir, and P. J. Pigram, “Orientation and characterization of immobilized antibodies for improved immunoassays (Review),” Biointerphases, 2017, doi: 10.1116/1.4978435.
  • [22] K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett., 2012, doi: 10.1021/nl300044a.
  • [23] H. J. Weeth, R. Witton, and C. F. Speth, “Prediction of Bovine Urine Specific Gravity and Total Solids by Refractometry,” J. Anim. Sci., 1969, doi: 10.2527/jas1969.28166x.
  • [24] S. Liu, Z. Deng, J. Li, J. Wang, and N. Huang, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt., 2019, doi: 10.1117/1.jbo.24.3.035003.
  • [25] Ö. Erdem, E. Derin, K. Sagdic, E. G. Yilmaz, and F. Inci, “Smart materials-integrated sensor technologies for COVID-19 diagnosis,” Emergent Materials. 2021, doi: 10.1007/s42247-020-00150-w.
  • [26] Ö. Erdem, I. Eş, G. A. Akceoglu, Y. Saylan, and F. Inci, “Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases,” Biosensors. 2021, doi: 10.3390/bios11090296.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatih İnci 0000-0002-9918-5038

Project Number 118C254; 120Z335; TÜBA-GEBİP; BAGEP
Publication Date February 28, 2022
Acceptance Date January 28, 2022
Published in Issue Year 2022 Volume: 50 Issue: 2

Cite

APA İnci, F. (2022). Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics. Hacettepe Journal of Biology and Chemistry, 50(2), 193-204. https://doi.org/10.15671/hjbc.1035918
AMA İnci F. Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics. HJBC. February 2022;50(2):193-204. doi:10.15671/hjbc.1035918
Chicago İnci, Fatih. “Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics”. Hacettepe Journal of Biology and Chemistry 50, no. 2 (February 2022): 193-204. https://doi.org/10.15671/hjbc.1035918.
EndNote İnci F (February 1, 2022) Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics. Hacettepe Journal of Biology and Chemistry 50 2 193–204.
IEEE F. İnci, “Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics”, HJBC, vol. 50, no. 2, pp. 193–204, 2022, doi: 10.15671/hjbc.1035918.
ISNAD İnci, Fatih. “Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics”. Hacettepe Journal of Biology and Chemistry 50/2 (February 2022), 193-204. https://doi.org/10.15671/hjbc.1035918.
JAMA İnci F. Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics. HJBC. 2022;50:193–204.
MLA İnci, Fatih. “Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 2, 2022, pp. 193-04, doi:10.15671/hjbc.1035918.
Vancouver İnci F. Bioinspired Material-Integrated Sensors for Improving Nanoplasmonic Characteristics. HJBC. 2022;50(2):193-204.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc