Conference Paper
BibTex RIS Cite

High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design

Year 2022, Volume: 50 Issue: 3, 301 - 312, 01.08.2022
https://doi.org/10.15671/hjbc.1024810

Abstract

In this study, a total of 6 different composites were obtained by adding 5%, 10% and 15% chopped aramid fiber reinforcement in 6 mm dimensions to each of the polypropylene and polyethylene matrix elements under the same production method and same conditions. The reinforcement and matrix materials were mixed using the extrusion method and then formed into plates by the press molding technique. Tensile and charpy tests of these composites were performed and their mechanical properties were examined. S/N ratios were calculated for the mechanical properties of the composites and the effect of matrix, fiber and additive ratios on mechanical properties was determined using analysis of variance (ANOVA). According to the Signal/Noise (S/N) ratios and ANOVA results, it was observed that the composites had different effects on the mechanical properties. Pipes are designed considering the mechanical properties of composite materials with 15% aramid fiber added to each matrix element. The composite pipe design to be pressure tested was designed in Solidworks program with a length of 500 mm according to ISO 1167 standards. Pipe dimensions with an outer diameter of 125mm, which are used as a standard in natural gas infrastructure works, are taken as reference.

References

  • KK. Kar (Ed.), Composite Materials: Processing, Applications, Characterizations, Springer Berlin, Germany, 2016.
  • S.Y. Fu, B. Lauke, and E. Mader, Fracture resistance of unfilled and calcite-particle filled ABS composites reinforced by short glass fiber (SGF) under impact load. Composites Part A. 29 (1998) 631–41
  • T. Harmia, J. Hartikainen and M. Lindner, Long Fiber-Reinforced Thermoplastic Composites in Automotive Applications. Polymer Composites, (2005) 255–262.
  • T.P. Sathishkumar, S. Satheeshkumar, and J. Naveen, Glass fiber-reinforced polymer composites – a review. Reinforced Plastics and Composites, 33 (2014) 1258-1275
  • D. S. Choudhari and V. J. Kakhandki, Comprehensive study and analysis of mechanical properties of chopped carbon fibre reinforced nylon 66 composite materials. Materials Today: Proceedings. (2020) Doi: 10.1016/j.matpr.2020.10.828.
  • B. M. İçten, R. Karakuzu, and M. E. Toygar, Failure analysis of woven kevlar fiber reinforced epoxy composites pinned joints. Composite Structures, 73(4) (2006) 443–450 doi: 10.1016/j.compstruct.2005.02.016.
  • B.W. Imes, Glass-Polymer Composite Pipes and Joints: Manufacturing, Testing, and Characterization (Doctoral thesis, West Virginia University, Morgantown) Accessed from database ProQuest Dissertations and Theses. (2018) (UMI No. 10793813)
  • H. Chen, J. Wang, A. Ni, A. Ding, Z. Sun, and X. Han, Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fiber reinforced polypropylene composites. Composite Structures, 203 (2018) 894–902
  • P. K. Mallick, 2.18 Particulate Filled and Short Fiber Reinforced Polymer Composites. Comprehensive Composite Materials II. (2018) 360–400. doi:10.1016/b978-0-12-803581-8.03837-6
  • H.-Q. Xie, S. Zhang and D. Xie, An efficient way to improve the mechanical properties of polypropylene/short glass fiber composites. Applied Polymer Science, 96(4) (2005) 1414–1420 doi:10.1002/app.21575
  • S. Panthapulakkal and M. Sain, Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. Applied Polymer Science, 103(4) (2006) 2432–2441 doi:10.1002/app.25486.
  • J. O. Akindoyo, M. D. H. Beg, S. Ghazali, H. P. Heim, M. Feldmann, and M. Mariatti Simultaneous impact modified and chain extended glass fiber reinforced poly(lactic acid) composites: Mechanical, thermal, crystallization, and dynamic mechanical performance. Applied Polymer Science, (2020) 49752. Doi:10.1002/app.49752.
  • R. Day, K. Hewson and P. Lovell, Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites. Composites Science and Technology, 62(2) (2002) 153–166. doi:10.1016/s0266-3538(01)00135-x.
  • G. Qi, B. Zhang and S. Du, Assessment of F-III and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens. Composites Part A: Applied Science and Manufacturing, 112 (2018) 549–557. doi: 10.1016/j.compositesa.2018.06.001.
  • S. L.Crabtree, M. A. Spalding and C. L. Pavlicek, Single-screw extruder zone temperature selection for optimized performance. ANTEC, (2008) 1410-1415.
  • H. M. Da Costa, V. D. Ramos and M. G. Oliveira, Degradation of polypropylene (PP) during multiple extrusions: Thermal analysis, mechanical properties and analysis of variance. Polymer Testing, 26(5), (2007) 676–684. doi: 10.1016/j.polymertesting.2007.04.003.
  • B. Alişer, S.Yıldız, E. Arıcı and O. Keleştemur, Analysis of Sulfate Resistance of Cement Mortars Containing Glass Fiber and Marble Dust by Using Taguchi Method. 2nd International Sustainable Buildings Symposium, (2015) 117-122.
  • M. Savaşkan, Y. Taptık and M. Ürgen, Performance Optimization of Drill Bits Using Design of Experiments. Itüdergisi/d mühendislik, 3 (6) (2004) 117-128.
  • B. Özçelik, and A. Özbay, Determination of Effect On the Mechanical Properties of Polypropylene Product of Molding Materials Using Taguchi Method. Engineering and Natural Sciences, Sigma 29, (2011) 231-243.
  • T. Fu, B. Haworth and L. Mascia, Analysis of process parameters related to the single-screw extrusion of recycled polypropylene blends by using design of experiments. Plastic Film & Sheeting, 33(2), (2016) 168–190. doi:10.1177/8756087916649006
  • N. Ravi Kumar, P. Srikant, C. Ranga Rao and K. Meera Saheb, Statistical analysis of mechanical properties of vakka fiber reinforced polypropylene composites using Taguchi method. Materials Today: Proceedings, 4(2), (2017) 3361–3370. Doi: 10.1016/j.matpr.2017.02.224.
  • G. Ozkoc, G. Bayram and E. Bayramli, Short glass fiber reinforced ABS and ABS/PA6 composites: Processing and characterization. Polymer Composites, 26(6), (2005) 745–755. doi:10.1002/pc.20144.
  • A. Ghanbari, N.S. Jalili, S.A. Haddadi, M. Arjmand and M. Nofar, Mechanical properties of extruded glass fiber reinforced thermoplastic polyolefin composites. Polymer Composites, 41(9), (2020) 3748-3757. https://doi.org/10.1002/pc.25672.
  • S. Kumar and S. Balachander, Studying the effect of reinforcement parameters on the mechanical properties of natural fibre-woven composites by Taguchi method. Industrial Textiles, (2019) 1-16 doi:10.1177/1528083718823292.
  • C. Lu, J. Wang, X. Lu, T.Zheng, Y. Liu, X. Wang and D. Seveno, Wettability and interfacial properties of carbon fiber and poly (ether ether ketone) fiber hybrid composite. ACS Applied Materials and Interfaces. (2019) doi:10.1021/acsami.9b09735
  • F. Fenouillot, , P. Cassagnau and J.-C. Majesté, Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer, 50(6), (2009) 1333–1350. doi:10.1016/j.polymer.2008.12.029
  • S. Somashekhar, G. C. Shanthakumar and M. Nagamadhu, Influence of Fiber content and screw speed on the Mechanical characterization of Jute fiber reinforced Polypropylene composite using Taguchi Method. Materials Today: Proceedings, 24, (2020) 2366–2374. doi:10.1016/j.matpr.2020.03.766.
Year 2022, Volume: 50 Issue: 3, 301 - 312, 01.08.2022
https://doi.org/10.15671/hjbc.1024810

Abstract

References

  • KK. Kar (Ed.), Composite Materials: Processing, Applications, Characterizations, Springer Berlin, Germany, 2016.
  • S.Y. Fu, B. Lauke, and E. Mader, Fracture resistance of unfilled and calcite-particle filled ABS composites reinforced by short glass fiber (SGF) under impact load. Composites Part A. 29 (1998) 631–41
  • T. Harmia, J. Hartikainen and M. Lindner, Long Fiber-Reinforced Thermoplastic Composites in Automotive Applications. Polymer Composites, (2005) 255–262.
  • T.P. Sathishkumar, S. Satheeshkumar, and J. Naveen, Glass fiber-reinforced polymer composites – a review. Reinforced Plastics and Composites, 33 (2014) 1258-1275
  • D. S. Choudhari and V. J. Kakhandki, Comprehensive study and analysis of mechanical properties of chopped carbon fibre reinforced nylon 66 composite materials. Materials Today: Proceedings. (2020) Doi: 10.1016/j.matpr.2020.10.828.
  • B. M. İçten, R. Karakuzu, and M. E. Toygar, Failure analysis of woven kevlar fiber reinforced epoxy composites pinned joints. Composite Structures, 73(4) (2006) 443–450 doi: 10.1016/j.compstruct.2005.02.016.
  • B.W. Imes, Glass-Polymer Composite Pipes and Joints: Manufacturing, Testing, and Characterization (Doctoral thesis, West Virginia University, Morgantown) Accessed from database ProQuest Dissertations and Theses. (2018) (UMI No. 10793813)
  • H. Chen, J. Wang, A. Ni, A. Ding, Z. Sun, and X. Han, Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fiber reinforced polypropylene composites. Composite Structures, 203 (2018) 894–902
  • P. K. Mallick, 2.18 Particulate Filled and Short Fiber Reinforced Polymer Composites. Comprehensive Composite Materials II. (2018) 360–400. doi:10.1016/b978-0-12-803581-8.03837-6
  • H.-Q. Xie, S. Zhang and D. Xie, An efficient way to improve the mechanical properties of polypropylene/short glass fiber composites. Applied Polymer Science, 96(4) (2005) 1414–1420 doi:10.1002/app.21575
  • S. Panthapulakkal and M. Sain, Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. Applied Polymer Science, 103(4) (2006) 2432–2441 doi:10.1002/app.25486.
  • J. O. Akindoyo, M. D. H. Beg, S. Ghazali, H. P. Heim, M. Feldmann, and M. Mariatti Simultaneous impact modified and chain extended glass fiber reinforced poly(lactic acid) composites: Mechanical, thermal, crystallization, and dynamic mechanical performance. Applied Polymer Science, (2020) 49752. Doi:10.1002/app.49752.
  • R. Day, K. Hewson and P. Lovell, Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites. Composites Science and Technology, 62(2) (2002) 153–166. doi:10.1016/s0266-3538(01)00135-x.
  • G. Qi, B. Zhang and S. Du, Assessment of F-III and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens. Composites Part A: Applied Science and Manufacturing, 112 (2018) 549–557. doi: 10.1016/j.compositesa.2018.06.001.
  • S. L.Crabtree, M. A. Spalding and C. L. Pavlicek, Single-screw extruder zone temperature selection for optimized performance. ANTEC, (2008) 1410-1415.
  • H. M. Da Costa, V. D. Ramos and M. G. Oliveira, Degradation of polypropylene (PP) during multiple extrusions: Thermal analysis, mechanical properties and analysis of variance. Polymer Testing, 26(5), (2007) 676–684. doi: 10.1016/j.polymertesting.2007.04.003.
  • B. Alişer, S.Yıldız, E. Arıcı and O. Keleştemur, Analysis of Sulfate Resistance of Cement Mortars Containing Glass Fiber and Marble Dust by Using Taguchi Method. 2nd International Sustainable Buildings Symposium, (2015) 117-122.
  • M. Savaşkan, Y. Taptık and M. Ürgen, Performance Optimization of Drill Bits Using Design of Experiments. Itüdergisi/d mühendislik, 3 (6) (2004) 117-128.
  • B. Özçelik, and A. Özbay, Determination of Effect On the Mechanical Properties of Polypropylene Product of Molding Materials Using Taguchi Method. Engineering and Natural Sciences, Sigma 29, (2011) 231-243.
  • T. Fu, B. Haworth and L. Mascia, Analysis of process parameters related to the single-screw extrusion of recycled polypropylene blends by using design of experiments. Plastic Film & Sheeting, 33(2), (2016) 168–190. doi:10.1177/8756087916649006
  • N. Ravi Kumar, P. Srikant, C. Ranga Rao and K. Meera Saheb, Statistical analysis of mechanical properties of vakka fiber reinforced polypropylene composites using Taguchi method. Materials Today: Proceedings, 4(2), (2017) 3361–3370. Doi: 10.1016/j.matpr.2017.02.224.
  • G. Ozkoc, G. Bayram and E. Bayramli, Short glass fiber reinforced ABS and ABS/PA6 composites: Processing and characterization. Polymer Composites, 26(6), (2005) 745–755. doi:10.1002/pc.20144.
  • A. Ghanbari, N.S. Jalili, S.A. Haddadi, M. Arjmand and M. Nofar, Mechanical properties of extruded glass fiber reinforced thermoplastic polyolefin composites. Polymer Composites, 41(9), (2020) 3748-3757. https://doi.org/10.1002/pc.25672.
  • S. Kumar and S. Balachander, Studying the effect of reinforcement parameters on the mechanical properties of natural fibre-woven composites by Taguchi method. Industrial Textiles, (2019) 1-16 doi:10.1177/1528083718823292.
  • C. Lu, J. Wang, X. Lu, T.Zheng, Y. Liu, X. Wang and D. Seveno, Wettability and interfacial properties of carbon fiber and poly (ether ether ketone) fiber hybrid composite. ACS Applied Materials and Interfaces. (2019) doi:10.1021/acsami.9b09735
  • F. Fenouillot, , P. Cassagnau and J.-C. Majesté, Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer, 50(6), (2009) 1333–1350. doi:10.1016/j.polymer.2008.12.029
  • S. Somashekhar, G. C. Shanthakumar and M. Nagamadhu, Influence of Fiber content and screw speed on the Mechanical characterization of Jute fiber reinforced Polypropylene composite using Taguchi Method. Materials Today: Proceedings, 24, (2020) 2366–2374. doi:10.1016/j.matpr.2020.03.766.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ali Arı 0000-0003-2702-2982

Ali Bayram 0000-0001-7311-8358

Early Pub Date September 1, 2022
Publication Date August 1, 2022
Acceptance Date July 27, 2022
Published in Issue Year 2022 Volume: 50 Issue: 3

Cite

APA Arı, A., & Bayram, A. (2022). High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design. Hacettepe Journal of Biology and Chemistry, 50(3), 301-312. https://doi.org/10.15671/hjbc.1024810
AMA Arı A, Bayram A. High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design. HJBC. August 2022;50(3):301-312. doi:10.15671/hjbc.1024810
Chicago Arı, Ali, and Ali Bayram. “High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design”. Hacettepe Journal of Biology and Chemistry 50, no. 3 (August 2022): 301-12. https://doi.org/10.15671/hjbc.1024810.
EndNote Arı A, Bayram A (August 1, 2022) High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design. Hacettepe Journal of Biology and Chemistry 50 3 301–312.
IEEE A. Arı and A. Bayram, “High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design”, HJBC, vol. 50, no. 3, pp. 301–312, 2022, doi: 10.15671/hjbc.1024810.
ISNAD Arı, Ali - Bayram, Ali. “High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design”. Hacettepe Journal of Biology and Chemistry 50/3 (August 2022), 301-312. https://doi.org/10.15671/hjbc.1024810.
JAMA Arı A, Bayram A. High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design. HJBC. 2022;50:301–312.
MLA Arı, Ali and Ali Bayram. “High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 3, 2022, pp. 301-12, doi:10.15671/hjbc.1024810.
Vancouver Arı A, Bayram A. High Pressure Resistant Aramid Fiber Reinforced Polymer Matrix Composite Pipe Design. HJBC. 2022;50(3):301-12.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc