Research Article
BibTex RIS Cite

Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems

Year 2022, Volume: 50 Issue: 4, 325 - 333, 09.10.2022
https://doi.org/10.15671/hjbc.1076097

Abstract

Blending of natural/synthetic polymers is one of the most practical way to obtain a new material with desired properties such as thermal, mechanical and dynamic mechanical properties. Dynamic mechanical analysis (DMA) is a strong method to investigate the mechanical/viscoelastic properties, thermal transitions and compatibility in these polymer blend systems. In this study, biocompatible T10 and T40 dextran (DEX) and polymethacrylamide (PMAM) blend systems were prepared by solvent casting method. Variations of dynamic mechanical properties including storage modulus (SM), loss modulus (LM) and tan δ of the DEX/PMAM blends were investigated for all samples at a specific fixed frequency of dynamic mechanical loading in a certain temperature range. Thermal transitions and -relaxations were observed from results of DMA measurements. In general, a single glass transition temperature was observed in binary blend systems. It was found that temperature dependence of dynamic mechanical properties and curves exhibit typical behaviors and strongly depended on the molecular weight, intra- and intermolecular interactions due to the hydrogen bonding in these blend systems.

References

  • 1. A. Sionkowska, Current Research on the blends of natural and synthetic polymers as new biomaterials: Review, Prog. Polym. Sci., 36 (2011) 1254-1276.
  • 2. B. Imre, B. Pukanszky, Compatibilization in bio-based and biodegradable polymer blends, Eur. Polym. J., 49 (2013) 1215-1233.
  • 3. G. G. Bumbu et al., On the compatibility of polysaccharide/maleic copolymer blends I. Thermal behaviour of dextrans containing blends, Polym. Degrad. Stabil., 72 (2001) 99-108.
  • 4. O. Nikolaeva et al., Interpolymer complexation between polyacrylic acid and cellulose ethers. Formation and properties, J. Polym. Sci. Part B Polym. Phys., 38 (2000) 1323-1330.
  • 5. M. M. Raja, P. Q. Lim, Y. S. Wong, G. M. Xiong, Y. Zhang, S. Venkatraman, Y. Huang, Polymeric Nanomaterials: Methods of Preparation and Charaterization, Ed. S. S. Mohapatra el al., Nanocarriers for Drug Delivery, Elsevier, (2019) 557-653.
  • 6. M. Çelik, Graft copolymerization of methacrylamide onto acrylic fibers initiated by benzoyl peroxide, J. Appl. Polym. Sci., 94 (2004) 1519-1525.
  • 7. S. Derkaoui, M.Belbachir, S. Haoue, F. Z. Zeggai, A. Rahmouni, M. Ayat, Homopolymerization of methacrylamide by anionic process under effect of Maghnite-Na+ (Algerian MMT), J. Organomet. Chem., 893 (2019) 52-60.
  • 8. R. H. Wiley, W. E. Walter, Preparation of methacrylamide, J. Org. Chem., 13 (1948) 421-423.
  • 9. S. K. Bajpai, S. Singh, Analysis of swelling behavior of poly(methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on water uptake, React. Funct. Polym., 66 (2006) 431-440.
  • 10. R. Satchi-Fainaro, W. Wrasidlo, H.N. Lode, D. Shabat, Synthesis and Characterization of a Catalytic Antibody-HPMA Copolymer-Conjugate as a Tool for Tumor Selective Prodrug Activation, Bioorg Med. Chem., 10 (2002) 3023-3029.
  • 11. B. Rihova, M. Bilej, V. Vetvicka, K. Ulbrich, J. Strohalm, J. Kopecek, R. Duncan, Biocompatibity of N-(2-hydroxypropyl) methacrylamide copolymers containing Adriamycin: Immunogenicity, and effect of on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro, Biomaterials, 10 (1989) 335-342.
  • 12. J-G. Shiah, M. Dvorak, P. Kopeckova, Y. Sun, C.M. Peterson, J Kopecek Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in nude mice, Eur. J. Cancer, 37 (2001) 131-139.
  • 13. S. Nicoletti, K. Seifert, I. H. Gilbert, N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents, Int. J. Antimicrob. Agents, 33 (2009) 441-448.
  • 14. H. Nakamura, T. Etrych, P. Chytil, M. Ohkubo, J. Fang, K. Ulbrich, H. Maeda, Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage, J. Control. Release, 174 (2014) 81-87.
  • 15. A. Nan, N. P. D. Nanayakkara, L. A. Walker, V. Yardley, S. L. Croft, H. Ghandehari, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs, J. Control. Release, 77 (2001) 233-243.
  • 16. M. Barz, R. Luxenhofer, R. Zantel, A. V. Kabanov, The uptake of N-(2-hydroxypropyl)-methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells, Biomaterials, 30 (2009) 5682-5690.
  • 17. Z. Zhou, L. Li, Y. Yang, X. Xu, Y. Huang, Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles, Biomaterials, 35 (2014) 6622-6635.
  • 18. V. Subr, K. Ulbrich, Synthesis and properties of new N-(2-hydroxypropyl)-methacrylamide copolymers containing thiazolidine-2-thione reactive groups, React. Funct. Polym., 66 (2006) 1525-1538.
  • 19. J. G. Siah, Y. Sun, P. Kopeckova, C. M. Peterson, R. C. Straight, J. Kopecek, Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates, J. Control. Release, 74 (2001) 249-253.
  • 20. S. M. Morgan, V. Subr, K. Ulbrich, J. F. Woodley, R. Duncan, Evaluation of N-(2-hydroxypropyl)methacrylamide copolymer-peptide conjugates as potential oral vaccines. Studies on their degradation by isolated rat small intestinal peptidases and their uptake by adult rat small intestinal tissue in vitro, Int. J. Pharm., 128 (1996) 99-111.
  • 21. X. Pan, F. Zhang, B.Choi, Y. Luo, X. Guo, A. Feng, S. H. Thang, Effect of solvents on the RAFT polymerization of N-(2-hydroxypropyl) methacrylamide, Eur. Polym. J., 115 (2019) 166-172.
  • 22. Z. Qin, W. Liu, L. Guo, X. Li, Preperation and chacterization of guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide copolymers as gene delivery carriers, J. Control. Release, 152 (2011) e1680-e169.
  • 23. C. Asgreen, M. M. Knopp, J. Skytte, K. Löbmann, Influence of the polymer glass transition temperature and molecular weight on drug amorphization kinetics using ball milling, Pharmaceutics, 12 (2020) 483.
  • 24. B. V. Eerdenbrugh, L. S. Taylor, Molecular weights on the miscibility behavior of dextran and maltodextrin with poly(vinylpyrrolidone), Pharm Res 29 (2012) 2754-2765.
  • 25. B. S. Larsen, J. Skytte, A. J. Svagan, H. M. Lund, H. Grohganz, K. Löbmann, Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase, Pharm. Dev. Technol., 24 (2019) 323-328.
  • 26. C. Haeuser, P. Goldbach, J. Huwyler, W. Friess, Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations, Eur. J. Pharm. Biopharm., 147 (2020) 45-56.
  • 27. D. Z. Icoz, C. I. Moraru, J. L. Kokini, Polymer-polymer interactions in dextran systems using thermal analysis, Carbohydr. Polym., 62 (2005) 120-129.
  • 28. R. A. Omer, J. R. Hama, R. S. M. Rashıd, The effect of dextran molecular weight on the biodegradable hydrogel with oil, synthesized by the michael addition reaction, Adv. Polym. Tech., 36 (2017) 21629.
  • 29. Y. Zhang, L. Guo, D. Xu, D. Li, N. Yang, F. Chen, Z. Jin, X. Xu, Effects of dextran with different molecular weights on the quality of wheat sourdough breads, Food Chem, 256 (2018) 373-379.
  • 30. K. P. Menard, Dynamic Mechanical Analysis, A Practical Introduction, CRC Press Boca Raton, 1999, p. 1.
  • 31. U.R. Vaidya, M. Bhattacharya, D. Zhang, Effect of processing conditions on the dynamic mechanical properties of starch and anhydride functional polymer blends, Polymer, 36 (1995) 1179-1188.
  • 32. P. Lee-Sullivan, D. Dykeman, Q. Shao, Mechanical relaxation in heat-aged polycarbonate. Part I: Comparison between two molecular weights, Polym. Eng. Sci., 43 (2003) 369-382.
  • 33. J. M. G. Cowie, Some general features of Tg-M relations for oligomers and amorphous polymers, Eur. Polym. J. 11 (1975) 297-300.
  • 34. L. Slade, H. Levine, A food polymer science approach to structure-property relationship in aqueous food systems: non-equilibrium behavior of carbohydride-water systems, In H. Levine, L. Slade, Water Relationships in Food, Plenum Press, (1991) 29-101.
  • 35. S. Kavlak, A. Güner, Z.M.O. Rzaev, The synthesis and characterization of functional poly(citraconic anhydride-co-styrene-co-vinylphosphonic acid)s, Polymer, 51 (2010) 2125-2132.
  • 36. H. Kaplan Can, S. Kavlak, A. Güner, Experimental Approaches to Investigation of the Interaction in Between Anhydride Containing Copolymer and Poly(N-vinyl-Pyrrolidone) Blends, Polym. Polym. Compos., 24 (2016) 213-224.
  • 37. A. Rudin, The Elements of Polymer Science and Engineering, Academic Press San Diego, 1999, p. 445.
Year 2022, Volume: 50 Issue: 4, 325 - 333, 09.10.2022
https://doi.org/10.15671/hjbc.1076097

Abstract

References

  • 1. A. Sionkowska, Current Research on the blends of natural and synthetic polymers as new biomaterials: Review, Prog. Polym. Sci., 36 (2011) 1254-1276.
  • 2. B. Imre, B. Pukanszky, Compatibilization in bio-based and biodegradable polymer blends, Eur. Polym. J., 49 (2013) 1215-1233.
  • 3. G. G. Bumbu et al., On the compatibility of polysaccharide/maleic copolymer blends I. Thermal behaviour of dextrans containing blends, Polym. Degrad. Stabil., 72 (2001) 99-108.
  • 4. O. Nikolaeva et al., Interpolymer complexation between polyacrylic acid and cellulose ethers. Formation and properties, J. Polym. Sci. Part B Polym. Phys., 38 (2000) 1323-1330.
  • 5. M. M. Raja, P. Q. Lim, Y. S. Wong, G. M. Xiong, Y. Zhang, S. Venkatraman, Y. Huang, Polymeric Nanomaterials: Methods of Preparation and Charaterization, Ed. S. S. Mohapatra el al., Nanocarriers for Drug Delivery, Elsevier, (2019) 557-653.
  • 6. M. Çelik, Graft copolymerization of methacrylamide onto acrylic fibers initiated by benzoyl peroxide, J. Appl. Polym. Sci., 94 (2004) 1519-1525.
  • 7. S. Derkaoui, M.Belbachir, S. Haoue, F. Z. Zeggai, A. Rahmouni, M. Ayat, Homopolymerization of methacrylamide by anionic process under effect of Maghnite-Na+ (Algerian MMT), J. Organomet. Chem., 893 (2019) 52-60.
  • 8. R. H. Wiley, W. E. Walter, Preparation of methacrylamide, J. Org. Chem., 13 (1948) 421-423.
  • 9. S. K. Bajpai, S. Singh, Analysis of swelling behavior of poly(methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on water uptake, React. Funct. Polym., 66 (2006) 431-440.
  • 10. R. Satchi-Fainaro, W. Wrasidlo, H.N. Lode, D. Shabat, Synthesis and Characterization of a Catalytic Antibody-HPMA Copolymer-Conjugate as a Tool for Tumor Selective Prodrug Activation, Bioorg Med. Chem., 10 (2002) 3023-3029.
  • 11. B. Rihova, M. Bilej, V. Vetvicka, K. Ulbrich, J. Strohalm, J. Kopecek, R. Duncan, Biocompatibity of N-(2-hydroxypropyl) methacrylamide copolymers containing Adriamycin: Immunogenicity, and effect of on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro, Biomaterials, 10 (1989) 335-342.
  • 12. J-G. Shiah, M. Dvorak, P. Kopeckova, Y. Sun, C.M. Peterson, J Kopecek Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in nude mice, Eur. J. Cancer, 37 (2001) 131-139.
  • 13. S. Nicoletti, K. Seifert, I. H. Gilbert, N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents, Int. J. Antimicrob. Agents, 33 (2009) 441-448.
  • 14. H. Nakamura, T. Etrych, P. Chytil, M. Ohkubo, J. Fang, K. Ulbrich, H. Maeda, Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage, J. Control. Release, 174 (2014) 81-87.
  • 15. A. Nan, N. P. D. Nanayakkara, L. A. Walker, V. Yardley, S. L. Croft, H. Ghandehari, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs, J. Control. Release, 77 (2001) 233-243.
  • 16. M. Barz, R. Luxenhofer, R. Zantel, A. V. Kabanov, The uptake of N-(2-hydroxypropyl)-methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells, Biomaterials, 30 (2009) 5682-5690.
  • 17. Z. Zhou, L. Li, Y. Yang, X. Xu, Y. Huang, Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles, Biomaterials, 35 (2014) 6622-6635.
  • 18. V. Subr, K. Ulbrich, Synthesis and properties of new N-(2-hydroxypropyl)-methacrylamide copolymers containing thiazolidine-2-thione reactive groups, React. Funct. Polym., 66 (2006) 1525-1538.
  • 19. J. G. Siah, Y. Sun, P. Kopeckova, C. M. Peterson, R. C. Straight, J. Kopecek, Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates, J. Control. Release, 74 (2001) 249-253.
  • 20. S. M. Morgan, V. Subr, K. Ulbrich, J. F. Woodley, R. Duncan, Evaluation of N-(2-hydroxypropyl)methacrylamide copolymer-peptide conjugates as potential oral vaccines. Studies on their degradation by isolated rat small intestinal peptidases and their uptake by adult rat small intestinal tissue in vitro, Int. J. Pharm., 128 (1996) 99-111.
  • 21. X. Pan, F. Zhang, B.Choi, Y. Luo, X. Guo, A. Feng, S. H. Thang, Effect of solvents on the RAFT polymerization of N-(2-hydroxypropyl) methacrylamide, Eur. Polym. J., 115 (2019) 166-172.
  • 22. Z. Qin, W. Liu, L. Guo, X. Li, Preperation and chacterization of guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide copolymers as gene delivery carriers, J. Control. Release, 152 (2011) e1680-e169.
  • 23. C. Asgreen, M. M. Knopp, J. Skytte, K. Löbmann, Influence of the polymer glass transition temperature and molecular weight on drug amorphization kinetics using ball milling, Pharmaceutics, 12 (2020) 483.
  • 24. B. V. Eerdenbrugh, L. S. Taylor, Molecular weights on the miscibility behavior of dextran and maltodextrin with poly(vinylpyrrolidone), Pharm Res 29 (2012) 2754-2765.
  • 25. B. S. Larsen, J. Skytte, A. J. Svagan, H. M. Lund, H. Grohganz, K. Löbmann, Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase, Pharm. Dev. Technol., 24 (2019) 323-328.
  • 26. C. Haeuser, P. Goldbach, J. Huwyler, W. Friess, Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations, Eur. J. Pharm. Biopharm., 147 (2020) 45-56.
  • 27. D. Z. Icoz, C. I. Moraru, J. L. Kokini, Polymer-polymer interactions in dextran systems using thermal analysis, Carbohydr. Polym., 62 (2005) 120-129.
  • 28. R. A. Omer, J. R. Hama, R. S. M. Rashıd, The effect of dextran molecular weight on the biodegradable hydrogel with oil, synthesized by the michael addition reaction, Adv. Polym. Tech., 36 (2017) 21629.
  • 29. Y. Zhang, L. Guo, D. Xu, D. Li, N. Yang, F. Chen, Z. Jin, X. Xu, Effects of dextran with different molecular weights on the quality of wheat sourdough breads, Food Chem, 256 (2018) 373-379.
  • 30. K. P. Menard, Dynamic Mechanical Analysis, A Practical Introduction, CRC Press Boca Raton, 1999, p. 1.
  • 31. U.R. Vaidya, M. Bhattacharya, D. Zhang, Effect of processing conditions on the dynamic mechanical properties of starch and anhydride functional polymer blends, Polymer, 36 (1995) 1179-1188.
  • 32. P. Lee-Sullivan, D. Dykeman, Q. Shao, Mechanical relaxation in heat-aged polycarbonate. Part I: Comparison between two molecular weights, Polym. Eng. Sci., 43 (2003) 369-382.
  • 33. J. M. G. Cowie, Some general features of Tg-M relations for oligomers and amorphous polymers, Eur. Polym. J. 11 (1975) 297-300.
  • 34. L. Slade, H. Levine, A food polymer science approach to structure-property relationship in aqueous food systems: non-equilibrium behavior of carbohydride-water systems, In H. Levine, L. Slade, Water Relationships in Food, Plenum Press, (1991) 29-101.
  • 35. S. Kavlak, A. Güner, Z.M.O. Rzaev, The synthesis and characterization of functional poly(citraconic anhydride-co-styrene-co-vinylphosphonic acid)s, Polymer, 51 (2010) 2125-2132.
  • 36. H. Kaplan Can, S. Kavlak, A. Güner, Experimental Approaches to Investigation of the Interaction in Between Anhydride Containing Copolymer and Poly(N-vinyl-Pyrrolidone) Blends, Polym. Polym. Compos., 24 (2016) 213-224.
  • 37. A. Rudin, The Elements of Polymer Science and Engineering, Academic Press San Diego, 1999, p. 445.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Serap Kavlak 0000-0001-6103-0121

Publication Date October 9, 2022
Acceptance Date April 7, 2022
Published in Issue Year 2022 Volume: 50 Issue: 4

Cite

APA Kavlak, S. (2022). Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems. Hacettepe Journal of Biology and Chemistry, 50(4), 325-333. https://doi.org/10.15671/hjbc.1076097
AMA Kavlak S. Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems. HJBC. October 2022;50(4):325-333. doi:10.15671/hjbc.1076097
Chicago Kavlak, Serap. “Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems”. Hacettepe Journal of Biology and Chemistry 50, no. 4 (October 2022): 325-33. https://doi.org/10.15671/hjbc.1076097.
EndNote Kavlak S (October 1, 2022) Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems. Hacettepe Journal of Biology and Chemistry 50 4 325–333.
IEEE S. Kavlak, “Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems”, HJBC, vol. 50, no. 4, pp. 325–333, 2022, doi: 10.15671/hjbc.1076097.
ISNAD Kavlak, Serap. “Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems”. Hacettepe Journal of Biology and Chemistry 50/4 (October 2022), 325-333. https://doi.org/10.15671/hjbc.1076097.
JAMA Kavlak S. Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems. HJBC. 2022;50:325–333.
MLA Kavlak, Serap. “Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 4, 2022, pp. 325-33, doi:10.15671/hjbc.1076097.
Vancouver Kavlak S. Effects of Molecular Weight of Dextran on Dynamic Mechanical Properties in Functional Polymer Blend Systems. HJBC. 2022;50(4):325-33.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc