Research Article
BibTex RIS Cite

siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells

Year 2022, Volume: 50 Issue: 4, 349 - 358, 09.10.2022
https://doi.org/10.15671/hjbc.975466

Abstract

Diminishing the efficacy of chemotherapy because of multidrug resistance (MDR) is a major clinical problem for triple-negative breast cancer (TNBC). MDR often occurs by overexpression of ATP-binding cassette B1 (ABCB1) protein that effuses various anticancer drugs from cancer cells. One of the newly developed techniques to addressing MDR is to knockdown ABCB1 by RNA interference (RNAi). RNAi is a gene-silencing process in that small interfering RNA (siRNA) blocks the expression of desired genes with high efficiency/specificity. The aim of this work is to examine the impact of ABCB1 inhibition via specific siRNAs on the efficacy of paclitaxel or etoposide in TNBC cells. The toxicity of increasing paclitaxel and etoposide concentrations on MDA-MB-231 cells was assessed using the MTT test. Cells were then co-treated with paclitaxel or etoposide in combination with ABCB1-siRNA, followed by cytotoxicity, colony formation, and migration assays. The administration of ABCB1-siRNA with paclitaxel or etoposide exhibited a synergistic effect and siRNA-drug treatments markedly reduced viability, clonogenicity, and migration of TNBC cells compared to siRNA or drug alone. Overall, these results indicate that TNBC cells become vulnerable even to sub-toxic doses of paclitaxel and etoposide after ABCB1-siRNA transfection, representing a promising aproach to enhance the influence of chemotherapy in TNBC.

Thanks

I would like to thank Prof. Dr. Emir Baki Denkbas for his technical support.

References

  • 1. A. Lee, M.B.A. Djamgoz, Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies, Cancer Treat. Rev., 62 (2018) 110-122.
  • 2. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 71 (2021) 209-249.
  • 3. K.M. Hirshfield, S. Ganesan, Triple-negative breast cancer: molecular subtypes and targeted therapy, Curr. Opin. Obstet. Gynecol., 26 (2014) 34-40.
  • 4. P. Kumar, R. Aggarwal, An overview of triple-negative breast cancer, Arch. Gynecol. Obstet., 293 (2016) 247-269.
  • 5. M. De Laurentiis, D. Cianniello, R. Caputo, B. Stanzione, G. Arpino, S. Cinieri, V. Lorusso, S. De Placido, Treatment of triple negative breast cancer (TNBC): current options and future perspectives, Cancer Treat. Rev., 36 (2010) S80-S86.
  • 6. N.K.R. Chalakur-Ramireddy, S.B. Pakala, Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer, Biosci. Rep., 38 (2018) BSR20171357.
  • 7. Y. Tang, Y. Wang, M.F. Kiani, B. Wang, Classification, treatment strategy, and associated drug resistance in breast cancer, Clin. Breast Cancer, 16 (2016) 335-343.
  • 8. Y. Chang-Qing, L. Jie, Z. Shi-Qi, Z. Kun, G. Zi-Qian, X. Ran, L. Hui-Meng, Z. Ren-Bin, Z. Gang, Y. Da-Chuan, Z. Chen-Yan, Recent treatment progress of triple negative breast cancer, Prog. Biophys. Mol. Biol., 151 (2020) 40-53.
  • 9. L. Wein, S. Loi, Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC), The Breast, 34 (2017) S27-S30.
  • 10. M. Nedeljković, A. Damjanović, Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge, Cells, 8 (2019) 957.
  • 11. N. Fultang, A. Illendula, J. Lin, M.K. Pandey, Z. Klase, B. Peethambaran, ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1, Sci. Rep.,10 (2020) 1-12.
  • 12. M.A. Medina, G. Oza, A. Sharma, L.G. Arriaga, J.M. Hernández Hernández, V.M. Rotello, J.Y. Ramirez, Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies, Int. J. Environ. Res. Public Health, 17 (2020) 2078.
  • 13. M. Nedeljković, N. Tanić, M. Prvanović, Z. Milovanović, N. Tanić, Friend or foe: ABCG2, ABCC1 and ABCB1 expression in triple-negative breast cancer, Breast Cancer, 28 (2021) 727-736.
  • 14. K.L. Lee, Y.C. Kuo, Y.S. Ho, Y.H. Huang, Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness, Cancers, 11 (2019) 1334.
  • 15. F.J. Sharom, ABC multidrug transporters: structure, function and role in chemoresistance, Pharmacogenomics, 9 (2008) 105-127.
  • 16. Y.S. Abd El-Aziz, A.J. Spillane, P.J. Jansson, S. Sahni, Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers, Biosci. Rep., 41 (2021) BSR20204092.
  • 17. Y.T. Li, M.J. Chua, A.P. Kunnath, E.H. Chowdhury, Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs, Int. J. Nanomed., 7 (2012) 2473.
  • 18. C.P. Wu, A.M. Calcagno, S.V. Ambudkar, Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies, Curr. Mol. Pharmacol., 1 (2008) 93-105.
  • 19. D.H. Sabnis, L.C. Storer, J.F. Liu, H.K. Jackson, J.P. Kilday, R.G. Grundy, I.D. Kerr, B. Coyle, A role for ABCB1 in prognosis, invasion and drug resistance in ependymoma, Sci. Rep., 9 (2019) 1-9.
  • 20. S. Sun, J. Cai, Q. Yang, Y. Zhu, S. Zhao, Z. Wang, Prognostic value and implication for chemotherapy treatment of ABCB1 in epithelial ovarian cancer: a meta-analysis, PloS one, 11 (2016) e0166058.
  • 21. B.J. Trock, F. Leonessa, R. Clarke, Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance, J. Natl. Cancer Inst., 89 (1997) 917-931.
  • 22. H.S. Chan, T.M. Grogan, G. Haddad, G. DeBoer, V. Ling, P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy, J. Natl. Cancer Inst., 89 (1997) 1706-1715.
  • 23. A.A.A. Aziz, M.S.M. Salleh, I. Mohamad, V.M.K., Bhavaraju, M.M. Yahya, A.D. Zakaria, S.H. Gan, R. Ankathil, Genotypes and haplotypes of ABCB1 contribute to TAC chemotherapy response in Malaysian triple negative breast cancer patients, Meta Gene, 16 (2018) 21-27.
  • 24. M. Saraswathy, S. Gong, Different strategies to overcome multidrug resistance in cancer, Biotechnol. Adv., 31 (2013) 1397-1407.
  • 25. M. Majidinia, M. Mirza‐Aghazadeh‐Attari, M. Rahimi, A. Mihanfar, A. Karimian, A. Safa, B. Yousefi, Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons, IUBMB life, 72 (2020) 855-871.
  • 26. J. Zhang, Z. Du, S. Pan, M. Shi, J. Li, C. Yang, H. Hu, M. Qiao, D. Chen, X. Zhao, Overcoming multidrug resistance by Codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive Lipoplexes: In Vitro and In Vivo evaluation, ACS Appl. Mater. Interfaces, 10 (2018) 21590-21600.
  • 27. T. Fatemian, I. Othman, E.H. Chowdhury, Strategies and validation for siRNA-based therapeutics for the reversal of multi-drug resistance in cancer, Drug Discov. Today, 19 (2014) 71-78.
  • 28. A. Singh, P. Trivedi, N.K. Jain, Advances in siRNA delivery in cancer therapy, Artif. Cells Nanomed. Biotechnol., 46 (2018) 274-283.
  • 29. P. Zhang, K. An, X. Duan, H. Xu, F. Li, F. Xu, Recent advances in siRNA delivery for cancer therapy using smart nanocarriers, Drug Discov. Today, 23 (2018) 900-911.
  • 30. Y. Xin, M. Huang, W.W. Guo, Q. Huang, L.Z. Zhang, G. Jiang, Nano-based delivery of RNAi in cancer therapy, Mol. Cancer, 16 (2017) 1-9.
  • 31. J.E. Zuckerman, M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer, Nat. Rev. Drug Discov., 14 (2015) 843-856.
  • 32. C.G. Zhang, W.J. Zhu, Y. Liu, Z.Q. Yuan, S.D. Yang, W.L. Chen, J.Z. Li, X.F. Zhou, C. Liu, X.N. Zhang, Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy, Sci. Rep., 6 (2016) 1-12.
  • 33. R. Misra, M. Das, B.S. Sahoo, S.K. Sahoo, Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly (lactide-co-glycolide) nanoformulation, Int. J. Pharm., 475 (2014) 372-384.
  • 34. C. Sarisozen, J. Pan, I. Dutta, V.P. Torchilin, Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors, Int. J. Pharm. Investig., 47 (2017) 37-49.
  • 35. M.A. Erdogan, A. Ashour, E. Yuca, K. Gorgulu, B. Ozpolat, Targeting eukaryotic elongation factor-2 kinase suppresses the growth and peritoneal metastasis of ovarian cancer, Cell. Signal., 81 (2021) 109938.
  • 36. L. Chen, H. Cui, J. Fang, H. Deng, P. Kuang, H. Guo, X. Wang, L. Zhao, Glutamine deprivation plus BPTES alters etoposide-and cisplatin-induced apoptosis in triple negative breast cancer cells, Oncotarget, 7 (2016) 54691.
  • 37. X.Y. Liu, W. Jiang, D. Ma, L.P. Ge, Y.S. Yang, Z.C. Gou, X.E. Xu, Z.M. Shao, Y.Z. Jiang, SYTL4 downregulates microtubule stability and confers paclitaxel resistance in triple-negative breast cancer, Theranostics, 10 (2020) 10940.
  • 38. M. Creixell, N.A. Peppas, Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance, Nano today, 7 (2012) 367-379.
  • 39. I.U. Khan, R.U. Khan, H. Asif, Alamgeer, S.H. Khalid, S. Asghar, M. Saleem, K.U. Shah, S.U. Shah, S.A.A. Rizvi, Y. Shahzad, Co-delivery strategies to overcome multidrug resistance in ovarian cancer, Int. J. Pharm., 533 (2017) 111-124.
  • 40. Y. Qi, X. Fu, Z. Xiong, H. Zhang, S.M. Hill, B.G. Rowan, Y. Dong, Methylseleninic acid enhances paclitaxel efficacy for the treatment of triple-negative breast cancer, PloS one, 7 (2012) e31539.
  • 41. A.K. Bakrania, B.C. Variya, S.S. Patel, Novel targets for paclitaxel nano formulations: hopes and hypes in triple negative breast cancer, Pharmacol. Res., 111 (2016) 577-591.
  • 42. L.Y. Sha, Y. Zhang, W. Wang, X. Sui, S.K. Liu, T. Wang, H. Zhang, MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer, Eur. Rev. Med. Pharmacol. Sci., 20 (2016) 2201-2208.
  • 43. B.T. McGrogan, B. Gilmartin, D.N. Carney, A. McCann, Taxanes, microtubules and chemoresistant breast cancer, Biochim. Biophys. Acta Rev. Cancer, 1785 (2008) 96-132.
  • 44. M. Gaber, K.A. Elhasany, S. Sabra, M.W. Helmy, J.Y. Fang, S.N. Khattab, A.A. Bekhit, M. Teleb, K.A. Elkodairy, A.O. Elzoghby, Co-Administration of Tretinoin Enhances the Anti-Cancer Efficacy of Etoposide via Tumor-Targeted Green Nano-Micelles, Colloids Surf. B Biointerfaces, 192 (2020) 110997.
  • 45. S. Das, N. Tripathi, S. Siddharth, A. Nayak, D. Nayak, C. Sethy, P.V. Bharatam, C.N. Kundu, Etoposide and doxorubicin enhance the sensitivity of triple negative breast cancers through modulation of TRAIL-DR5 axis, Apoptosis, 22 (2017) 1205-1224.
  • 46. G. Kara, S. Tuncer, M. Türk, E.B. Denkbaş, Downregulation of ABCE1 via siRNA affects the sensitivity of A549 cells against chemotherapeutic agents, Med. Oncol., 32 (2015) 103.
  • 47. S. Kachalaki, B. Baradaran, J. Majidi, M. Yousefi, D. Shanehbandi, S. Mohammadinejad, B. Mansoori, Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60), Biomed. Pharmacother., 75 (2015) 100-104.
  • 48. J.M. de Azevedo Delou, G.M. Vignal, V. Índio-do-Brasil, M.T. de Souza Accioly, T.S.L. da Silva, D.N. Piranda, M. Sobral-Leite, M.A. de Carvalho, M.A.M. Capella, R. Vianna-Jorge, Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis, Breast Cancer, 9 (2017) 415-428.
  • 49. N.R. Patel, B.S. Pattni, A.H. Abouzeid, V.P. Torchilin, Nanopreparations to overcome multidrug resistance in cancer, Adv. Drug Deliv. Rev., 65 (2013) 1748-1762.
  • 50. S. Lu, V.B. Morris, V. Labhasetwar, Effectiveness of siRNA delivery via arginine-rich PEI-based polyplex in metastatic and doxorubicin resistant breast cancer cells, J. Pharmacol. Exp. Ther., (2019).
  • 51. X. Yang, A.K. Iyer, A. Singh, E. Choy, F.J. Hornicek, M.M. Amiji, Z. Duan, MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer, Sci. Rep., 5 (2015) 1-9.
Year 2022, Volume: 50 Issue: 4, 349 - 358, 09.10.2022
https://doi.org/10.15671/hjbc.975466

Abstract

References

  • 1. A. Lee, M.B.A. Djamgoz, Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies, Cancer Treat. Rev., 62 (2018) 110-122.
  • 2. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 71 (2021) 209-249.
  • 3. K.M. Hirshfield, S. Ganesan, Triple-negative breast cancer: molecular subtypes and targeted therapy, Curr. Opin. Obstet. Gynecol., 26 (2014) 34-40.
  • 4. P. Kumar, R. Aggarwal, An overview of triple-negative breast cancer, Arch. Gynecol. Obstet., 293 (2016) 247-269.
  • 5. M. De Laurentiis, D. Cianniello, R. Caputo, B. Stanzione, G. Arpino, S. Cinieri, V. Lorusso, S. De Placido, Treatment of triple negative breast cancer (TNBC): current options and future perspectives, Cancer Treat. Rev., 36 (2010) S80-S86.
  • 6. N.K.R. Chalakur-Ramireddy, S.B. Pakala, Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer, Biosci. Rep., 38 (2018) BSR20171357.
  • 7. Y. Tang, Y. Wang, M.F. Kiani, B. Wang, Classification, treatment strategy, and associated drug resistance in breast cancer, Clin. Breast Cancer, 16 (2016) 335-343.
  • 8. Y. Chang-Qing, L. Jie, Z. Shi-Qi, Z. Kun, G. Zi-Qian, X. Ran, L. Hui-Meng, Z. Ren-Bin, Z. Gang, Y. Da-Chuan, Z. Chen-Yan, Recent treatment progress of triple negative breast cancer, Prog. Biophys. Mol. Biol., 151 (2020) 40-53.
  • 9. L. Wein, S. Loi, Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC), The Breast, 34 (2017) S27-S30.
  • 10. M. Nedeljković, A. Damjanović, Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge, Cells, 8 (2019) 957.
  • 11. N. Fultang, A. Illendula, J. Lin, M.K. Pandey, Z. Klase, B. Peethambaran, ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1, Sci. Rep.,10 (2020) 1-12.
  • 12. M.A. Medina, G. Oza, A. Sharma, L.G. Arriaga, J.M. Hernández Hernández, V.M. Rotello, J.Y. Ramirez, Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies, Int. J. Environ. Res. Public Health, 17 (2020) 2078.
  • 13. M. Nedeljković, N. Tanić, M. Prvanović, Z. Milovanović, N. Tanić, Friend or foe: ABCG2, ABCC1 and ABCB1 expression in triple-negative breast cancer, Breast Cancer, 28 (2021) 727-736.
  • 14. K.L. Lee, Y.C. Kuo, Y.S. Ho, Y.H. Huang, Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness, Cancers, 11 (2019) 1334.
  • 15. F.J. Sharom, ABC multidrug transporters: structure, function and role in chemoresistance, Pharmacogenomics, 9 (2008) 105-127.
  • 16. Y.S. Abd El-Aziz, A.J. Spillane, P.J. Jansson, S. Sahni, Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers, Biosci. Rep., 41 (2021) BSR20204092.
  • 17. Y.T. Li, M.J. Chua, A.P. Kunnath, E.H. Chowdhury, Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs, Int. J. Nanomed., 7 (2012) 2473.
  • 18. C.P. Wu, A.M. Calcagno, S.V. Ambudkar, Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies, Curr. Mol. Pharmacol., 1 (2008) 93-105.
  • 19. D.H. Sabnis, L.C. Storer, J.F. Liu, H.K. Jackson, J.P. Kilday, R.G. Grundy, I.D. Kerr, B. Coyle, A role for ABCB1 in prognosis, invasion and drug resistance in ependymoma, Sci. Rep., 9 (2019) 1-9.
  • 20. S. Sun, J. Cai, Q. Yang, Y. Zhu, S. Zhao, Z. Wang, Prognostic value and implication for chemotherapy treatment of ABCB1 in epithelial ovarian cancer: a meta-analysis, PloS one, 11 (2016) e0166058.
  • 21. B.J. Trock, F. Leonessa, R. Clarke, Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance, J. Natl. Cancer Inst., 89 (1997) 917-931.
  • 22. H.S. Chan, T.M. Grogan, G. Haddad, G. DeBoer, V. Ling, P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy, J. Natl. Cancer Inst., 89 (1997) 1706-1715.
  • 23. A.A.A. Aziz, M.S.M. Salleh, I. Mohamad, V.M.K., Bhavaraju, M.M. Yahya, A.D. Zakaria, S.H. Gan, R. Ankathil, Genotypes and haplotypes of ABCB1 contribute to TAC chemotherapy response in Malaysian triple negative breast cancer patients, Meta Gene, 16 (2018) 21-27.
  • 24. M. Saraswathy, S. Gong, Different strategies to overcome multidrug resistance in cancer, Biotechnol. Adv., 31 (2013) 1397-1407.
  • 25. M. Majidinia, M. Mirza‐Aghazadeh‐Attari, M. Rahimi, A. Mihanfar, A. Karimian, A. Safa, B. Yousefi, Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons, IUBMB life, 72 (2020) 855-871.
  • 26. J. Zhang, Z. Du, S. Pan, M. Shi, J. Li, C. Yang, H. Hu, M. Qiao, D. Chen, X. Zhao, Overcoming multidrug resistance by Codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive Lipoplexes: In Vitro and In Vivo evaluation, ACS Appl. Mater. Interfaces, 10 (2018) 21590-21600.
  • 27. T. Fatemian, I. Othman, E.H. Chowdhury, Strategies and validation for siRNA-based therapeutics for the reversal of multi-drug resistance in cancer, Drug Discov. Today, 19 (2014) 71-78.
  • 28. A. Singh, P. Trivedi, N.K. Jain, Advances in siRNA delivery in cancer therapy, Artif. Cells Nanomed. Biotechnol., 46 (2018) 274-283.
  • 29. P. Zhang, K. An, X. Duan, H. Xu, F. Li, F. Xu, Recent advances in siRNA delivery for cancer therapy using smart nanocarriers, Drug Discov. Today, 23 (2018) 900-911.
  • 30. Y. Xin, M. Huang, W.W. Guo, Q. Huang, L.Z. Zhang, G. Jiang, Nano-based delivery of RNAi in cancer therapy, Mol. Cancer, 16 (2017) 1-9.
  • 31. J.E. Zuckerman, M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer, Nat. Rev. Drug Discov., 14 (2015) 843-856.
  • 32. C.G. Zhang, W.J. Zhu, Y. Liu, Z.Q. Yuan, S.D. Yang, W.L. Chen, J.Z. Li, X.F. Zhou, C. Liu, X.N. Zhang, Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy, Sci. Rep., 6 (2016) 1-12.
  • 33. R. Misra, M. Das, B.S. Sahoo, S.K. Sahoo, Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly (lactide-co-glycolide) nanoformulation, Int. J. Pharm., 475 (2014) 372-384.
  • 34. C. Sarisozen, J. Pan, I. Dutta, V.P. Torchilin, Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors, Int. J. Pharm. Investig., 47 (2017) 37-49.
  • 35. M.A. Erdogan, A. Ashour, E. Yuca, K. Gorgulu, B. Ozpolat, Targeting eukaryotic elongation factor-2 kinase suppresses the growth and peritoneal metastasis of ovarian cancer, Cell. Signal., 81 (2021) 109938.
  • 36. L. Chen, H. Cui, J. Fang, H. Deng, P. Kuang, H. Guo, X. Wang, L. Zhao, Glutamine deprivation plus BPTES alters etoposide-and cisplatin-induced apoptosis in triple negative breast cancer cells, Oncotarget, 7 (2016) 54691.
  • 37. X.Y. Liu, W. Jiang, D. Ma, L.P. Ge, Y.S. Yang, Z.C. Gou, X.E. Xu, Z.M. Shao, Y.Z. Jiang, SYTL4 downregulates microtubule stability and confers paclitaxel resistance in triple-negative breast cancer, Theranostics, 10 (2020) 10940.
  • 38. M. Creixell, N.A. Peppas, Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance, Nano today, 7 (2012) 367-379.
  • 39. I.U. Khan, R.U. Khan, H. Asif, Alamgeer, S.H. Khalid, S. Asghar, M. Saleem, K.U. Shah, S.U. Shah, S.A.A. Rizvi, Y. Shahzad, Co-delivery strategies to overcome multidrug resistance in ovarian cancer, Int. J. Pharm., 533 (2017) 111-124.
  • 40. Y. Qi, X. Fu, Z. Xiong, H. Zhang, S.M. Hill, B.G. Rowan, Y. Dong, Methylseleninic acid enhances paclitaxel efficacy for the treatment of triple-negative breast cancer, PloS one, 7 (2012) e31539.
  • 41. A.K. Bakrania, B.C. Variya, S.S. Patel, Novel targets for paclitaxel nano formulations: hopes and hypes in triple negative breast cancer, Pharmacol. Res., 111 (2016) 577-591.
  • 42. L.Y. Sha, Y. Zhang, W. Wang, X. Sui, S.K. Liu, T. Wang, H. Zhang, MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer, Eur. Rev. Med. Pharmacol. Sci., 20 (2016) 2201-2208.
  • 43. B.T. McGrogan, B. Gilmartin, D.N. Carney, A. McCann, Taxanes, microtubules and chemoresistant breast cancer, Biochim. Biophys. Acta Rev. Cancer, 1785 (2008) 96-132.
  • 44. M. Gaber, K.A. Elhasany, S. Sabra, M.W. Helmy, J.Y. Fang, S.N. Khattab, A.A. Bekhit, M. Teleb, K.A. Elkodairy, A.O. Elzoghby, Co-Administration of Tretinoin Enhances the Anti-Cancer Efficacy of Etoposide via Tumor-Targeted Green Nano-Micelles, Colloids Surf. B Biointerfaces, 192 (2020) 110997.
  • 45. S. Das, N. Tripathi, S. Siddharth, A. Nayak, D. Nayak, C. Sethy, P.V. Bharatam, C.N. Kundu, Etoposide and doxorubicin enhance the sensitivity of triple negative breast cancers through modulation of TRAIL-DR5 axis, Apoptosis, 22 (2017) 1205-1224.
  • 46. G. Kara, S. Tuncer, M. Türk, E.B. Denkbaş, Downregulation of ABCE1 via siRNA affects the sensitivity of A549 cells against chemotherapeutic agents, Med. Oncol., 32 (2015) 103.
  • 47. S. Kachalaki, B. Baradaran, J. Majidi, M. Yousefi, D. Shanehbandi, S. Mohammadinejad, B. Mansoori, Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60), Biomed. Pharmacother., 75 (2015) 100-104.
  • 48. J.M. de Azevedo Delou, G.M. Vignal, V. Índio-do-Brasil, M.T. de Souza Accioly, T.S.L. da Silva, D.N. Piranda, M. Sobral-Leite, M.A. de Carvalho, M.A.M. Capella, R. Vianna-Jorge, Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis, Breast Cancer, 9 (2017) 415-428.
  • 49. N.R. Patel, B.S. Pattni, A.H. Abouzeid, V.P. Torchilin, Nanopreparations to overcome multidrug resistance in cancer, Adv. Drug Deliv. Rev., 65 (2013) 1748-1762.
  • 50. S. Lu, V.B. Morris, V. Labhasetwar, Effectiveness of siRNA delivery via arginine-rich PEI-based polyplex in metastatic and doxorubicin resistant breast cancer cells, J. Pharmacol. Exp. Ther., (2019).
  • 51. X. Yang, A.K. Iyer, A. Singh, E. Choy, F.J. Hornicek, M.M. Amiji, Z. Duan, MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer, Sci. Rep., 5 (2015) 1-9.
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Göknur Kara 0000-0002-5905-9758

Publication Date October 9, 2022
Acceptance Date February 28, 2022
Published in Issue Year 2022 Volume: 50 Issue: 4

Cite

APA Kara, G. (2022). siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells. Hacettepe Journal of Biology and Chemistry, 50(4), 349-358. https://doi.org/10.15671/hjbc.975466
AMA Kara G. siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells. HJBC. October 2022;50(4):349-358. doi:10.15671/hjbc.975466
Chicago Kara, Göknur. “SiRNA Targeting ABCB1 Potentiates the Efficacy of Chemotherapy in Human Triple-Negative Breast Cancer Cells”. Hacettepe Journal of Biology and Chemistry 50, no. 4 (October 2022): 349-58. https://doi.org/10.15671/hjbc.975466.
EndNote Kara G (October 1, 2022) siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells. Hacettepe Journal of Biology and Chemistry 50 4 349–358.
IEEE G. Kara, “siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells”, HJBC, vol. 50, no. 4, pp. 349–358, 2022, doi: 10.15671/hjbc.975466.
ISNAD Kara, Göknur. “SiRNA Targeting ABCB1 Potentiates the Efficacy of Chemotherapy in Human Triple-Negative Breast Cancer Cells”. Hacettepe Journal of Biology and Chemistry 50/4 (October 2022), 349-358. https://doi.org/10.15671/hjbc.975466.
JAMA Kara G. siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells. HJBC. 2022;50:349–358.
MLA Kara, Göknur. “SiRNA Targeting ABCB1 Potentiates the Efficacy of Chemotherapy in Human Triple-Negative Breast Cancer Cells”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 4, 2022, pp. 349-58, doi:10.15671/hjbc.975466.
Vancouver Kara G. siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells. HJBC. 2022;50(4):349-58.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc