Research Article
BibTex RIS Cite

Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities

Year 2022, Volume: 50 Issue: 4, 335 - 347, 09.10.2022
https://doi.org/10.15671/hjbc.984727

Abstract

The silver (Ag) is a well-known material with interesting properties (i.e. catalytic activity, antimicrobial, etc.). The nano-sized particles of silver propose enhanced properties due to having relatively higher surface areas. The green synthesis is a promising way of material preparation/production being relatively more environmentally friendly by utilization of less harmful materials. In this work, the plant extracts (Cynara & Walnut shell powder) were used as reaction media for the synthesis of silver nanoparticles (Ag NPs). The nanoparticles produced via two plant extracts were ~46 nm and ~109 nm in size, respectively. The antibacterial activities of the produced silver nanoparticles (against E. coli and S. aureus species) were determined and minimum effective concentrations (MIC) for antibacterial activity were investigated.

References

  • L. Marchiol, A. Mattiello, F. Poscic, C. Giordano, R. Musetti, In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett, 9(1) (2014) 101.
  • S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem, 27(9) (2008) 1825-51.
  • P. Vaid, P. Raizada, A.K. Saini, R.V. Saini, Biogenic silver, gold and copper nanoparticles - a sustainable green chemistry approach for cancer therapy, Sustain Chem Pharm, 16 (2020) 100247.
  • J.R. Peralta-Videa, L. Zhao, M.L. Lopez-Moreno, G. de la Rosa, J. Hong, J.L. Garrea-Torresday, Nanomaterials and the environment: a review for the biennium 2008-2010. J Hazard Mater, 186(1) (2011) 1-15.
  • A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv, 31(2) (2013) 346-56.
  • H.D., Beyene, A.A. Werkneh, H.K. Bezabh, T.G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Mater Technologies, 13 (2017) 18-23.
  • K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomedicine, 6(2) (2010) 257-62.
  • L. Gan, S. Zhang, Y. Zhang, S. He, Y. Tian, Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Prep Biochem Biotechnol, (2018) 1-7.
  • S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci, 9(6) (2014) 385-406.
  • M. Ndikau, N.M. Noah, D.M. Andala, E. Masika, Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract. Int J Anal Chem, 2017 (2017) 8108504.
  • H. Korbekandi, S. Mohseni, R.M. Jouneghani, M. Pourhossein, S. Iravani, Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol, 44(1) (2016) 235-9.
  • H. Korbekandi, M.R. Chitsazi, G. Asghari, R.B. Najafi, A. Badii, S. Iravani, Green biosynthesis of silver nanoparticles using Quercus brantii (oak) leaves hydroalcoholic extract. Pharm Biol, 53(6) (2015) 807-12.
  • S. Iravani, B. Zolfaghari, Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int, 2013 (2013) 639725.
  • P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J, 24(4) (2016) 473-84.
  • C. Dong, C. Cao, X. Zhang, Y. Zhan, X. Wang, X. Yang, K. Zhou, X. Xiao, B. Yuan, Wolfberry fruit (Lycium barbarum) extract mediated novel route for the green synthesis of silver nanoparticles. Optik, 130 (2017) 162-170.
  • J.R. Nakkala, R. Mata, K. Raja, V.K. Chandra, S.R. Sadras, Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater Sci Eng C, 91 (2018) 372-381.
  • P.T. Anastas, M.M. Kirchoff, Origins, current status, and future challenges of gereen chemistry, Acc Chem Res, 35 (2002) 686-694.
  • K. Vijayaraghavan, S.P.K. Nalini, N.U. Prakash, D. Madhankumar, Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzgium aromaticum, Mater Lett, 75 (2012) 33-35.
  • T. Jasrotia, S. Chaudhardy, A. Kaushik, R. Kumar, G.R. Gaudhardy, Green chemistry-assisted synthesis of biocompatible Ag, Cu, and Fe2O3 nanoparticles, Mater Today Chem, 15 (2020) 100214.
  • P. Gomez-Lopez, A. Puente-Santiago, A. Castro-Beltran, L.A.S. do Nascimento, A.M. Balu, R. Luque, C.G. Alvarado-Beltran, Nanomaterials and catalysis for green chemistry, Curr Opin Green and Sustainable Chem, 24 (2020) 48-55.
  • V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid and Interface Sci, 145(1-2) (2009) 83-96.
  • K. Parveen, V. Banse, and L. Ledwani, Green Synthesis of Nanoparticles: Their Advantages and Disadvantages. 2nd International Conference on Emerging Technologies: Micro to Nano 2015 (ETMN-2015), (2016) 1724.
  • V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat, 6(1) (2014) 35-44.
  • M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27(1) (2009) 76-83.
  • J.R. Nakkala, R. Mata, S.R. Sadras, Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci, 499 (2017) 33-45.
  • S. Islam, B.S. Butola, A. Gupta, A. Roy, Multifunctional finishing of cellulosic fabric via facile, rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustainable Chem and Pharm, 12 (2019) 100135.
  • K. Shameli, M.B. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed, 7 (2012) 5603-10.
  • A. Balkrishna, N. Sharma, V.K. Sharma, N.D. Mishra, C.S. Joshi, Green synthesis, characterisation and biological studies of AgNPs prepared using Shivlingi (Bryonia laciniosa) seed extract. IET Nanobiotechnology, 12(3) (2018) 371-375.
  • M.S. Muthuraman, S. Nithya, V.V. Kumar, L.R. Christena, V. Vadivel, N.S. Subramanian, S.P. Anthony, Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb Pathog, 126 (2018) 1-5.
  • R. Sood, D.S. Chopra, Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater Sci Eng C, 92 (2018) 575-589.
  • D. Nayak, S. Ashe., P.R. Rauta, M. Kumari, B. Nayak, Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C, 58 (2016) 44-52.
  • S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf, 168 (2019) 260-278.
  • F. Öztürk Küp, S. Coşkunçay, F. Duman, Biosynthesis of silvr nanoparticles usig leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Mater Scie Eng C, 107 (2020) 110207.
  • W.R. Li, T.L. Sun, S.L. Zhou, Y.K. Ma, Q.S. Shi, V.B. Xie, X.M. Huang, A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterioration Biodegradation, 123 (2017) 304-310.
  • V. Chahar, B. Sharma, G. Shukla, A. Srivastava, A. Bhatnagar, Study of antimicrobial activity of silver nanoparticles synthesized using green and chemical approach. Colloids Surf, A, 554 (2018) 149-155.
  • P. Palaniappan, G. Sathishkumar, R. Sankar, Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cell line, Spectrochim Acta, Part A, 138 (2015) 885-890.
  • X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci, 17 (2016) 1534.
  • E. Ediz, G. Kurtay, B. Karaca, İ. Büyük, F.Ş. Gökdemir, S. Aras, Green synthesis of silver nanoparticles from Phaseolus vulgaris L. extracts and investigation of their antifungal activities, Hacettepe J Biol Chem, 49(1), (2021), 11-23.
  • B.S. Anisha, R. Biswas, K.P. Chennazi, R. Jayakumar, Chitosan-hyaluronic acid/ silver composite sponges for drug resistant bacteria infected diabetic wounds, Int J Biol Macromol, 62 (2013) 310-320.
  • A. Ravindran, P. Chandran, S.S. Khan, Biofunctionalized silver nanoparticles: advances and prospects, Colloids Surf, B, 105 (2013) 342-352.
  • K. Jadhav, D. Dhamecha, D. Bhattacharya, M. Patil, Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility, studies and gel formulation for treatment of infections in burns. J Photochem Photobiol, B, 155 (2016) 109-115.
  • V.K. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron, 56 (2014). 54-62.
  • A. Rajan, V. Vilas, D. Philip, Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut, J Mol Liquids, 207 (2015) 231-236.
  • R.T.V. Vimala, G. Sathishkumar, S. Sivaramakrsihnan, Optimization of reaction conditions to fabricate nano-silver using Couropita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect, Spectrochim Acta, Part A, 135 (2015) 110-115.
  • F. Erci, R. Cakir-Koc, I. Isildak, Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif Cells Nanomed Biotechnol, (2017) 1-9.
  • A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 102 (2017) 133-142.
  • I.M. Krishna, G.B. Reddy, G. Veerabhadram, A. Madhusudhan, Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. Appl Nanosci, 6(5) (2016) 681-689.
  • M.P. Patil, G.D. Kim, Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol and Biotechnol, 101(1) (2017) 79-92.
  • K. Selvam, C. Sudhakar, M. Govarthanan, P. Thiyagarajan, A. Sengottaiyan, B. Senthilkumar, T. Selvankumar, Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res and Appl Sci, 10(1) (2017) 6-12.
  • R.S. Vijayan, S. Joseph, B. Mathew, Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnology, 12(6) (2018) 850-856.
  • E.F. Aboelfetoh, R.A. El-Shenody, M.M. Ghobara, Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monitoring Assess,189(349) (2017).
  • O. Ahmadi, H. Jafarizadeh-Malmiri, N. Jodeiri, Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Process Synth, 7(3) (2018) 231-240.
  • B. Ajitha, Y.A.K. Reddy, H.J. Jeon, C.W. Ahn, Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv Powder Technol, 29(1) (2018) 86-93.
  • E. Navarro, C. Bonafos, A. Pugliara, M. Bayle, P. Benzo, A. Mlayah, K. Makasheva, M.C. Sancho, Y. Echegoyen, G. Benessayag, B. Pecassou, R. Carles, B. Wagner, R. Behra, The use of biosensors for improving the development of nanotechnology under realistic-use scenarios: applications for cheaper and more effective silver nanoparticles and nanostructured surfaces. 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), (2016).
  • I. Ocsoy, M.L. Paret, M.A., Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. Acs Nano, 7(10) (2013) 8972-8980.
  • M. Singh, S. Singh, S. Prasad, I.S. Gambhir, Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostructures, 3(3) ( 2008) 115-122.
  • T. Tani, Nanoparticles and nanotechnology in silver halide imaging. J Dispers Sci Technol, 25(4) (2004) 375-388.
  • P. Prasher, M. Singh, H. Mudila, Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech, 8 (2018) 411.
  • E.Z. Gomaa, Iron Nanoparticles -Chitin Nanocomposite for Enhanced Antimicrobial, Dyes Degradation and Heavy Metals Removal Activities. J Polym Environ, 26(9) (2018) 3638-3654.
  • A. Özgen, S. Gürkan Aydın, E. Bilgiç, Enhancing the antibacterial activity of the biosynthesized silver nanoparticles by “püse“, Istanbul J Pharm, 50(3), 2019, 245-250.
  • A. Özgen, E. Bilgiç, S. Gürkan Aydin, M. Nizamlıoğlu, Characterization of biosynthesized silver nanoparticles using Hypericum perforatum leaf and determination of their antibacterial activity, Med Sci, 8(3), (2019), 503-507.
  • M. Sudağıdan, İ. Erdem, C. Çavuşoğlu, M. Çiftçioğlu, Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials. Bull Microbiol, 44 (2010) 93-103.
Year 2022, Volume: 50 Issue: 4, 335 - 347, 09.10.2022
https://doi.org/10.15671/hjbc.984727

Abstract

Gümüş (Ag) ilgi çeken özellikleri ile (katalitik etkinlik, antimikrobiyal, vb.) bilinen bir malzemedir. Nano boyuttaki Gümüş artan yüzey alanı sebebiyle gelişmiş özellikler sunar. Yeşil üretim görece daha az zararlı malzemelerin kullanılması sebebiyle umut veren daha çevre dostu bir malzeme hazırlama/üretme yöntemidir. Bu çalışmada, gümüş nano parçacıkların (Ag NP) hazırlanması için bitki özütleri (enginar, ceviz kabuğu tozu) hazırlama ortamı olarak kullanılmıştır. Farklı iki bitki özütüyle hazırlanan nano parçacıkların boyutları, sırasıyla ~46 nm ve ~109 nm olmuştur. Hazırlanan Ag NP’ların E.coli and S.aureus suşlarına karşı antibakteriyel etkileri belirlenmiş ve minimum etkili yoğunlukları araştırılmıştır.

References

  • L. Marchiol, A. Mattiello, F. Poscic, C. Giordano, R. Musetti, In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett, 9(1) (2014) 101.
  • S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem, 27(9) (2008) 1825-51.
  • P. Vaid, P. Raizada, A.K. Saini, R.V. Saini, Biogenic silver, gold and copper nanoparticles - a sustainable green chemistry approach for cancer therapy, Sustain Chem Pharm, 16 (2020) 100247.
  • J.R. Peralta-Videa, L. Zhao, M.L. Lopez-Moreno, G. de la Rosa, J. Hong, J.L. Garrea-Torresday, Nanomaterials and the environment: a review for the biennium 2008-2010. J Hazard Mater, 186(1) (2011) 1-15.
  • A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv, 31(2) (2013) 346-56.
  • H.D., Beyene, A.A. Werkneh, H.K. Bezabh, T.G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Mater Technologies, 13 (2017) 18-23.
  • K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomedicine, 6(2) (2010) 257-62.
  • L. Gan, S. Zhang, Y. Zhang, S. He, Y. Tian, Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Prep Biochem Biotechnol, (2018) 1-7.
  • S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci, 9(6) (2014) 385-406.
  • M. Ndikau, N.M. Noah, D.M. Andala, E. Masika, Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract. Int J Anal Chem, 2017 (2017) 8108504.
  • H. Korbekandi, S. Mohseni, R.M. Jouneghani, M. Pourhossein, S. Iravani, Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol, 44(1) (2016) 235-9.
  • H. Korbekandi, M.R. Chitsazi, G. Asghari, R.B. Najafi, A. Badii, S. Iravani, Green biosynthesis of silver nanoparticles using Quercus brantii (oak) leaves hydroalcoholic extract. Pharm Biol, 53(6) (2015) 807-12.
  • S. Iravani, B. Zolfaghari, Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int, 2013 (2013) 639725.
  • P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J, 24(4) (2016) 473-84.
  • C. Dong, C. Cao, X. Zhang, Y. Zhan, X. Wang, X. Yang, K. Zhou, X. Xiao, B. Yuan, Wolfberry fruit (Lycium barbarum) extract mediated novel route for the green synthesis of silver nanoparticles. Optik, 130 (2017) 162-170.
  • J.R. Nakkala, R. Mata, K. Raja, V.K. Chandra, S.R. Sadras, Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater Sci Eng C, 91 (2018) 372-381.
  • P.T. Anastas, M.M. Kirchoff, Origins, current status, and future challenges of gereen chemistry, Acc Chem Res, 35 (2002) 686-694.
  • K. Vijayaraghavan, S.P.K. Nalini, N.U. Prakash, D. Madhankumar, Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzgium aromaticum, Mater Lett, 75 (2012) 33-35.
  • T. Jasrotia, S. Chaudhardy, A. Kaushik, R. Kumar, G.R. Gaudhardy, Green chemistry-assisted synthesis of biocompatible Ag, Cu, and Fe2O3 nanoparticles, Mater Today Chem, 15 (2020) 100214.
  • P. Gomez-Lopez, A. Puente-Santiago, A. Castro-Beltran, L.A.S. do Nascimento, A.M. Balu, R. Luque, C.G. Alvarado-Beltran, Nanomaterials and catalysis for green chemistry, Curr Opin Green and Sustainable Chem, 24 (2020) 48-55.
  • V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid and Interface Sci, 145(1-2) (2009) 83-96.
  • K. Parveen, V. Banse, and L. Ledwani, Green Synthesis of Nanoparticles: Their Advantages and Disadvantages. 2nd International Conference on Emerging Technologies: Micro to Nano 2015 (ETMN-2015), (2016) 1724.
  • V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat, 6(1) (2014) 35-44.
  • M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27(1) (2009) 76-83.
  • J.R. Nakkala, R. Mata, S.R. Sadras, Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci, 499 (2017) 33-45.
  • S. Islam, B.S. Butola, A. Gupta, A. Roy, Multifunctional finishing of cellulosic fabric via facile, rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustainable Chem and Pharm, 12 (2019) 100135.
  • K. Shameli, M.B. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed, 7 (2012) 5603-10.
  • A. Balkrishna, N. Sharma, V.K. Sharma, N.D. Mishra, C.S. Joshi, Green synthesis, characterisation and biological studies of AgNPs prepared using Shivlingi (Bryonia laciniosa) seed extract. IET Nanobiotechnology, 12(3) (2018) 371-375.
  • M.S. Muthuraman, S. Nithya, V.V. Kumar, L.R. Christena, V. Vadivel, N.S. Subramanian, S.P. Anthony, Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb Pathog, 126 (2018) 1-5.
  • R. Sood, D.S. Chopra, Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater Sci Eng C, 92 (2018) 575-589.
  • D. Nayak, S. Ashe., P.R. Rauta, M. Kumari, B. Nayak, Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C, 58 (2016) 44-52.
  • S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf, 168 (2019) 260-278.
  • F. Öztürk Küp, S. Coşkunçay, F. Duman, Biosynthesis of silvr nanoparticles usig leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Mater Scie Eng C, 107 (2020) 110207.
  • W.R. Li, T.L. Sun, S.L. Zhou, Y.K. Ma, Q.S. Shi, V.B. Xie, X.M. Huang, A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterioration Biodegradation, 123 (2017) 304-310.
  • V. Chahar, B. Sharma, G. Shukla, A. Srivastava, A. Bhatnagar, Study of antimicrobial activity of silver nanoparticles synthesized using green and chemical approach. Colloids Surf, A, 554 (2018) 149-155.
  • P. Palaniappan, G. Sathishkumar, R. Sankar, Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cell line, Spectrochim Acta, Part A, 138 (2015) 885-890.
  • X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci, 17 (2016) 1534.
  • E. Ediz, G. Kurtay, B. Karaca, İ. Büyük, F.Ş. Gökdemir, S. Aras, Green synthesis of silver nanoparticles from Phaseolus vulgaris L. extracts and investigation of their antifungal activities, Hacettepe J Biol Chem, 49(1), (2021), 11-23.
  • B.S. Anisha, R. Biswas, K.P. Chennazi, R. Jayakumar, Chitosan-hyaluronic acid/ silver composite sponges for drug resistant bacteria infected diabetic wounds, Int J Biol Macromol, 62 (2013) 310-320.
  • A. Ravindran, P. Chandran, S.S. Khan, Biofunctionalized silver nanoparticles: advances and prospects, Colloids Surf, B, 105 (2013) 342-352.
  • K. Jadhav, D. Dhamecha, D. Bhattacharya, M. Patil, Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility, studies and gel formulation for treatment of infections in burns. J Photochem Photobiol, B, 155 (2016) 109-115.
  • V.K. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron, 56 (2014). 54-62.
  • A. Rajan, V. Vilas, D. Philip, Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut, J Mol Liquids, 207 (2015) 231-236.
  • R.T.V. Vimala, G. Sathishkumar, S. Sivaramakrsihnan, Optimization of reaction conditions to fabricate nano-silver using Couropita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect, Spectrochim Acta, Part A, 135 (2015) 110-115.
  • F. Erci, R. Cakir-Koc, I. Isildak, Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif Cells Nanomed Biotechnol, (2017) 1-9.
  • A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 102 (2017) 133-142.
  • I.M. Krishna, G.B. Reddy, G. Veerabhadram, A. Madhusudhan, Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. Appl Nanosci, 6(5) (2016) 681-689.
  • M.P. Patil, G.D. Kim, Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol and Biotechnol, 101(1) (2017) 79-92.
  • K. Selvam, C. Sudhakar, M. Govarthanan, P. Thiyagarajan, A. Sengottaiyan, B. Senthilkumar, T. Selvankumar, Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res and Appl Sci, 10(1) (2017) 6-12.
  • R.S. Vijayan, S. Joseph, B. Mathew, Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnology, 12(6) (2018) 850-856.
  • E.F. Aboelfetoh, R.A. El-Shenody, M.M. Ghobara, Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monitoring Assess,189(349) (2017).
  • O. Ahmadi, H. Jafarizadeh-Malmiri, N. Jodeiri, Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Process Synth, 7(3) (2018) 231-240.
  • B. Ajitha, Y.A.K. Reddy, H.J. Jeon, C.W. Ahn, Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv Powder Technol, 29(1) (2018) 86-93.
  • E. Navarro, C. Bonafos, A. Pugliara, M. Bayle, P. Benzo, A. Mlayah, K. Makasheva, M.C. Sancho, Y. Echegoyen, G. Benessayag, B. Pecassou, R. Carles, B. Wagner, R. Behra, The use of biosensors for improving the development of nanotechnology under realistic-use scenarios: applications for cheaper and more effective silver nanoparticles and nanostructured surfaces. 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), (2016).
  • I. Ocsoy, M.L. Paret, M.A., Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. Acs Nano, 7(10) (2013) 8972-8980.
  • M. Singh, S. Singh, S. Prasad, I.S. Gambhir, Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostructures, 3(3) ( 2008) 115-122.
  • T. Tani, Nanoparticles and nanotechnology in silver halide imaging. J Dispers Sci Technol, 25(4) (2004) 375-388.
  • P. Prasher, M. Singh, H. Mudila, Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech, 8 (2018) 411.
  • E.Z. Gomaa, Iron Nanoparticles -Chitin Nanocomposite for Enhanced Antimicrobial, Dyes Degradation and Heavy Metals Removal Activities. J Polym Environ, 26(9) (2018) 3638-3654.
  • A. Özgen, S. Gürkan Aydın, E. Bilgiç, Enhancing the antibacterial activity of the biosynthesized silver nanoparticles by “püse“, Istanbul J Pharm, 50(3), 2019, 245-250.
  • A. Özgen, E. Bilgiç, S. Gürkan Aydin, M. Nizamlıoğlu, Characterization of biosynthesized silver nanoparticles using Hypericum perforatum leaf and determination of their antibacterial activity, Med Sci, 8(3), (2019), 503-507.
  • M. Sudağıdan, İ. Erdem, C. Çavuşoğlu, M. Çiftçioğlu, Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials. Bull Microbiol, 44 (2010) 93-103.
There are 62 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İlker Erdem 0000-0001-5743-0835

Şerife Çakır This is me 0000-0001-8965-6580

Publication Date October 9, 2022
Acceptance Date March 6, 2022
Published in Issue Year 2022 Volume: 50 Issue: 4

Cite

APA Erdem, İ., & Çakır, Ş. (2022). Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities. Hacettepe Journal of Biology and Chemistry, 50(4), 335-347. https://doi.org/10.15671/hjbc.984727
AMA Erdem İ, Çakır Ş. Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities. HJBC. October 2022;50(4):335-347. doi:10.15671/hjbc.984727
Chicago Erdem, İlker, and Şerife Çakır. “Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara Sp. And Their Antibacterial Activities”. Hacettepe Journal of Biology and Chemistry 50, no. 4 (October 2022): 335-47. https://doi.org/10.15671/hjbc.984727.
EndNote Erdem İ, Çakır Ş (October 1, 2022) Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities. Hacettepe Journal of Biology and Chemistry 50 4 335–347.
IEEE İ. Erdem and Ş. Çakır, “Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities”, HJBC, vol. 50, no. 4, pp. 335–347, 2022, doi: 10.15671/hjbc.984727.
ISNAD Erdem, İlker - Çakır, Şerife. “Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara Sp. And Their Antibacterial Activities”. Hacettepe Journal of Biology and Chemistry 50/4 (October 2022), 335-347. https://doi.org/10.15671/hjbc.984727.
JAMA Erdem İ, Çakır Ş. Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities. HJBC. 2022;50:335–347.
MLA Erdem, İlker and Şerife Çakır. “Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara Sp. And Their Antibacterial Activities”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 4, 2022, pp. 335-47, doi:10.15671/hjbc.984727.
Vancouver Erdem İ, Çakır Ş. Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities. HJBC. 2022;50(4):335-47.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc