Research Article
BibTex RIS Cite

Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds

Year 2023, Volume: 51 Issue: 1, 1 - 12, 01.01.2023
https://doi.org/10.15671/hjbc.1078505

Abstract

In this work, two Schiff base ligands Z2a and Z2b derived from 5-aminoisophthalic acid were synthesized and their structures were characterized by FTIR, 1H(13C) NMR and mass spectrometries. The compounds were investigated for their chemosensor properties towards metal ions [Na+, K+, Al3+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+] were examined using colorimetric and spectrophotometric methods (UV-Vis absorption and florescence spectroscopy). Both compounds showed similar sensing properties towards metal ions and they have shown selective sensory properties for Fe+3 and Hg+2 ions. Moreover, the compounds were examined for their fluorimetric sensing abilities for nitroaromatic compounds [4-nitrofenol (NP), nitrobenzene (NB), 2,4-dinitrofenol (DNP), 1,3,5-trinitrophenol (TNP)]. Both compounds showed higher sensitivities for DNP and TNP than NP and NB. Compound Z2b showed the highest sensitivity for DNP with Ksv value of 2.4×104 M-1. Limit of detections for nitroaromatic compounds were calculated and both compounds showed LOD values in micromolar levels. Compound Z2b has shown the lowest LOD value for DNP with 2.77 M.

References

  • S. Afrin Dalia, B. Farhana Afsan, B. Md Saddam Hossain, M. Nuruzzaman Khan, B. Md Kudrat-E-Zahan, B. Md Mahasin Ali, C. Md Kudrat-E-Zahan, F. Afsan, M. Saddam Hossain, C. Zakaria, M. Kudrat-E-Zahan, M. Mahasin Ali, A short review on chemistry of schiff base metal complexes and their catalytic application, Int. J. Chem. Stud., 6 (2018) 2859-2866.
  • D. Udhayakumari, V. Inbaraj, A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications, J. Fluoresc., 30 (2020) 1203-1223.
  • D. Udhayakumari, S. Naha, S. Velmathi, Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013-15, Anal. Methods, 9 (2017) 552-578.
  • B. Das, A. Jana, A. Das Mahapatra, D. Chattopadhyay, A. Dhara, S. Mabhai, S. Dey, Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via ‘turn on’ response and its application in live cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 212 (2019) 222-231.
  • B.K. Paul, S. Kar, N. Guchhait, A Schiff base-derived new model compound for selective fluorescence sensing of Cu(II) and Zn(II) with ratiometric sensing potential: Synthesis, photophysics and mechanism of sensory action, J. Photochem. Photobiol. A Chem., 220 (2011) 153-163.
  • M. Bhuvanesh Kumar, R. Parameshwaran, Fuzzy integrated QFD, FMEA framework for the selection of lean tools in a manufacturing organisation, Prod. Plan. Control, 29 (2018) 403-417.
  • A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phyhsics, 73 (2001) 307-356.
  • K. Sarkar, M. Debnath, P.P. Kundu, Preparation of low toxic fluorescent chitosan-graft-polyethyleneimine copolymer for gene carrier, Carbohydr. Polym., 92 (2013) 2048-2057.
  • K. Thakur, S.K. Tomar, A.K. Singh, S. Mandal, S. Arora, Riboflavin and health: A review of recent human research, Crit. Rev. Food Sci. Nutr., 57 (2017) 3650-3660.
  • S. Singh, Sensors-An effective approach for the detection of explosives, J. Hazard. Mater., 144 (2007) 15-28.
  • K.G. Furton, L.J. Myers, The scientific foundation and efficacy of the use of canines as chemical detectors for explosives, Talanta, 54 (2001) 487-500.
  • J. Feng, Y. Tao, X. Shen, H. Jin, T. Zhou, Y. Zhou, L. Hu, D. Luo, S. Mei, Y.I. Lee, Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste samples using molecularly imprinted polymer coated quantum dots, Microchem. J., 144 (2019) 93-101.
  • M.E. Germain, M.J. Knapp, Optical explosives detection: From color changes to fluorescence turn-on, Chem. Soc. Rev., 38 (2009) 2543-2555.
  • T. Rasheed, F. Nabeel, K. Rizwan, M. Bilal, T. Hussain, S.A. Shehzad, Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review, TrAC - Trends Anal. Chem., 129 (2020) 115958.
  • M. Aghaei, A.H. Kianfar, M. Dinari, Synthesis and characterization of a novel Schiff base polyamide ligand and its copper(II) complex for comparative removal of Pb(II) ions from aqueous solutions, J. Polym. Res., 27 (2020) 1-13.
  • Z. Yu, F. Wang, X. Lin, C. Wang, Y. Fu, X. Wang, Y. Zhao, G. Li, Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks, J. Solid State Chem., 232 (2015) 96-101.
  • E.J. Lenardão, J. de O. Feijó, S. Thurow, G. Perin, R.G. Jacob, C.C. Silveira, Selenonium ionic liquid as efficient catalyst for the Baylis-Hillman reaction, Tetrahedron Lett., 50 (2009) 5215-5217.
  • M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles, Carbon N. Y., 42 (2004) 2929-2937.
  • L.Q. Zhang, X.W. Wang, L. Gu, Y.H. Yu, J.S. Gao, Three pairs of luminescent coordination polymers based on CoII and CdII clusters for the detection of antibiotics, pesticides and chiral nitro aromatic compounds, RSC Adv., 10 (2020) 9476-9485.
  • A. Lewanowicz, A. Olszowski, P. Dziekoński, J. Leszczyński, Spectroscopic characteristics of the micro-environmentally induced H-bond transformation in anil-type species: Experimental and theoretical study, J. Mol. Model., 11 (2005) 398-406.
  • E. İspir, M. Kurtoğlu, F. Purtaş, and S. Serin, Synthesis and antimicrobial activity of new Schiff bases having the -SiOR group (R = CH3 or CH2CH3), and their transition metal complexes, Transit. Met. Chem., 30 (2005) 1042-1047.
  • A. Golcu, M. Tumer, H. Demirelli, and R. A. Wheatley, Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity, Inorganica Chim. Acta, 358 (2005) 1785-1797.
  • M. Köse, S. Purtas, S. A. Güngör, G. Ceyhan, E. Akgün, and V. McKee, A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 136 (2015) 1388-1394.
  • M. Tümer, E. Akgün, S. Toroǧlu, A. Kayraldiz, and L. Dönbak, Synthesis and characterization of Schiff base metal complexes: Their antimicrobial, genotoxicity and electrochemical properties, J. Coord. Chem., 61 (2008) 2935-2949.
  • E.O. Hamed, M.G. Assy, M.M. Galahom, Heterocyclization of Aromatic Amino Acids: Novel Syntheses and Antibacterial Activity of Fused, Non-fused, and Spiro Polyheterocyclic Derivatives, Russ. J. Org. Chem., 56 (2020) 1062-1069.
  • I. Gonul, M. Kose, G. Ceyhan, and S. Serin, “Methoxy group containing bidentate Schiff base ligands and their transition metal complexes: Synthesis, structural characterisation, photoluminescence, antioxidant capacity and superoxide dismutase activity studies,” Inorganica Chim. Acta, 453 (2016) 522-530.
  • V.P. Singh, P. Singh, Synthesis, spectral characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-amino benzoic acid- and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide, J. Mol. Struct., 1035 (2013) 363-370.
  • M. Köse, G. Ceyhan, M. Tümer, I. Demirtaş, I. Gönül, and V. McKee, Monodentate Schiff base ligands: Their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 137 (2015) 477-485.
  • G. Ceyhan, C. Çelik, S. Uruş, I. Demirtaş, M. Elmastaş, and M. Tümer, Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 81 (2011) 184-198.
  • F. Akhgari, H. Fattahi, and Y.M. Oskoei, Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives, Sensors Actuators, B Chem., 221 (2015) 867-878.
  • B. Gole, A.K. Bar, P.S. Mukherjee, Modification of extended open frameworks with fluorescent tags for sensing explosives: Competition between size selectivity and electron deficiency, Chem. A Eur. J., 20 (2014) 2276-2291.
Year 2023, Volume: 51 Issue: 1, 1 - 12, 01.01.2023
https://doi.org/10.15671/hjbc.1078505

Abstract

References

  • S. Afrin Dalia, B. Farhana Afsan, B. Md Saddam Hossain, M. Nuruzzaman Khan, B. Md Kudrat-E-Zahan, B. Md Mahasin Ali, C. Md Kudrat-E-Zahan, F. Afsan, M. Saddam Hossain, C. Zakaria, M. Kudrat-E-Zahan, M. Mahasin Ali, A short review on chemistry of schiff base metal complexes and their catalytic application, Int. J. Chem. Stud., 6 (2018) 2859-2866.
  • D. Udhayakumari, V. Inbaraj, A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications, J. Fluoresc., 30 (2020) 1203-1223.
  • D. Udhayakumari, S. Naha, S. Velmathi, Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013-15, Anal. Methods, 9 (2017) 552-578.
  • B. Das, A. Jana, A. Das Mahapatra, D. Chattopadhyay, A. Dhara, S. Mabhai, S. Dey, Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via ‘turn on’ response and its application in live cell imaging, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 212 (2019) 222-231.
  • B.K. Paul, S. Kar, N. Guchhait, A Schiff base-derived new model compound for selective fluorescence sensing of Cu(II) and Zn(II) with ratiometric sensing potential: Synthesis, photophysics and mechanism of sensory action, J. Photochem. Photobiol. A Chem., 220 (2011) 153-163.
  • M. Bhuvanesh Kumar, R. Parameshwaran, Fuzzy integrated QFD, FMEA framework for the selection of lean tools in a manufacturing organisation, Prod. Plan. Control, 29 (2018) 403-417.
  • A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phyhsics, 73 (2001) 307-356.
  • K. Sarkar, M. Debnath, P.P. Kundu, Preparation of low toxic fluorescent chitosan-graft-polyethyleneimine copolymer for gene carrier, Carbohydr. Polym., 92 (2013) 2048-2057.
  • K. Thakur, S.K. Tomar, A.K. Singh, S. Mandal, S. Arora, Riboflavin and health: A review of recent human research, Crit. Rev. Food Sci. Nutr., 57 (2017) 3650-3660.
  • S. Singh, Sensors-An effective approach for the detection of explosives, J. Hazard. Mater., 144 (2007) 15-28.
  • K.G. Furton, L.J. Myers, The scientific foundation and efficacy of the use of canines as chemical detectors for explosives, Talanta, 54 (2001) 487-500.
  • J. Feng, Y. Tao, X. Shen, H. Jin, T. Zhou, Y. Zhou, L. Hu, D. Luo, S. Mei, Y.I. Lee, Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste samples using molecularly imprinted polymer coated quantum dots, Microchem. J., 144 (2019) 93-101.
  • M.E. Germain, M.J. Knapp, Optical explosives detection: From color changes to fluorescence turn-on, Chem. Soc. Rev., 38 (2009) 2543-2555.
  • T. Rasheed, F. Nabeel, K. Rizwan, M. Bilal, T. Hussain, S.A. Shehzad, Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review, TrAC - Trends Anal. Chem., 129 (2020) 115958.
  • M. Aghaei, A.H. Kianfar, M. Dinari, Synthesis and characterization of a novel Schiff base polyamide ligand and its copper(II) complex for comparative removal of Pb(II) ions from aqueous solutions, J. Polym. Res., 27 (2020) 1-13.
  • Z. Yu, F. Wang, X. Lin, C. Wang, Y. Fu, X. Wang, Y. Zhao, G. Li, Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks, J. Solid State Chem., 232 (2015) 96-101.
  • E.J. Lenardão, J. de O. Feijó, S. Thurow, G. Perin, R.G. Jacob, C.C. Silveira, Selenonium ionic liquid as efficient catalyst for the Baylis-Hillman reaction, Tetrahedron Lett., 50 (2009) 5215-5217.
  • M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles, Carbon N. Y., 42 (2004) 2929-2937.
  • L.Q. Zhang, X.W. Wang, L. Gu, Y.H. Yu, J.S. Gao, Three pairs of luminescent coordination polymers based on CoII and CdII clusters for the detection of antibiotics, pesticides and chiral nitro aromatic compounds, RSC Adv., 10 (2020) 9476-9485.
  • A. Lewanowicz, A. Olszowski, P. Dziekoński, J. Leszczyński, Spectroscopic characteristics of the micro-environmentally induced H-bond transformation in anil-type species: Experimental and theoretical study, J. Mol. Model., 11 (2005) 398-406.
  • E. İspir, M. Kurtoğlu, F. Purtaş, and S. Serin, Synthesis and antimicrobial activity of new Schiff bases having the -SiOR group (R = CH3 or CH2CH3), and their transition metal complexes, Transit. Met. Chem., 30 (2005) 1042-1047.
  • A. Golcu, M. Tumer, H. Demirelli, and R. A. Wheatley, Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity, Inorganica Chim. Acta, 358 (2005) 1785-1797.
  • M. Köse, S. Purtas, S. A. Güngör, G. Ceyhan, E. Akgün, and V. McKee, A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 136 (2015) 1388-1394.
  • M. Tümer, E. Akgün, S. Toroǧlu, A. Kayraldiz, and L. Dönbak, Synthesis and characterization of Schiff base metal complexes: Their antimicrobial, genotoxicity and electrochemical properties, J. Coord. Chem., 61 (2008) 2935-2949.
  • E.O. Hamed, M.G. Assy, M.M. Galahom, Heterocyclization of Aromatic Amino Acids: Novel Syntheses and Antibacterial Activity of Fused, Non-fused, and Spiro Polyheterocyclic Derivatives, Russ. J. Org. Chem., 56 (2020) 1062-1069.
  • I. Gonul, M. Kose, G. Ceyhan, and S. Serin, “Methoxy group containing bidentate Schiff base ligands and their transition metal complexes: Synthesis, structural characterisation, photoluminescence, antioxidant capacity and superoxide dismutase activity studies,” Inorganica Chim. Acta, 453 (2016) 522-530.
  • V.P. Singh, P. Singh, Synthesis, spectral characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-amino benzoic acid- and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide, J. Mol. Struct., 1035 (2013) 363-370.
  • M. Köse, G. Ceyhan, M. Tümer, I. Demirtaş, I. Gönül, and V. McKee, Monodentate Schiff base ligands: Their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 137 (2015) 477-485.
  • G. Ceyhan, C. Çelik, S. Uruş, I. Demirtaş, M. Elmastaş, and M. Tümer, Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 81 (2011) 184-198.
  • F. Akhgari, H. Fattahi, and Y.M. Oskoei, Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives, Sensors Actuators, B Chem., 221 (2015) 867-878.
  • B. Gole, A.K. Bar, P.S. Mukherjee, Modification of extended open frameworks with fluorescent tags for sensing explosives: Competition between size selectivity and electron deficiency, Chem. A Eur. J., 20 (2014) 2276-2291.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ayşegül Köse 0000-0003-3323-8149

Mehmet Tumer 0000-0002-1882-429X

Publication Date January 1, 2023
Acceptance Date March 21, 2022
Published in Issue Year 2023 Volume: 51 Issue: 1

Cite

APA Köse, A., & Tumer, M. (2023). Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds. Hacettepe Journal of Biology and Chemistry, 51(1), 1-12. https://doi.org/10.15671/hjbc.1078505
AMA Köse A, Tumer M. Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds. HJBC. January 2023;51(1):1-12. doi:10.15671/hjbc.1078505
Chicago Köse, Ayşegül, and Mehmet Tumer. “Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds”. Hacettepe Journal of Biology and Chemistry 51, no. 1 (January 2023): 1-12. https://doi.org/10.15671/hjbc.1078505.
EndNote Köse A, Tumer M (January 1, 2023) Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds. Hacettepe Journal of Biology and Chemistry 51 1 1–12.
IEEE A. Köse and M. Tumer, “Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds”, HJBC, vol. 51, no. 1, pp. 1–12, 2023, doi: 10.15671/hjbc.1078505.
ISNAD Köse, Ayşegül - Tumer, Mehmet. “Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds”. Hacettepe Journal of Biology and Chemistry 51/1 (January 2023), 1-12. https://doi.org/10.15671/hjbc.1078505.
JAMA Köse A, Tumer M. Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds. HJBC. 2023;51:1–12.
MLA Köse, Ayşegül and Mehmet Tumer. “Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds”. Hacettepe Journal of Biology and Chemistry, vol. 51, no. 1, 2023, pp. 1-12, doi:10.15671/hjbc.1078505.
Vancouver Köse A, Tumer M. Two Schiff Base Compounds Derived from 5-Aminoisophthalic Acid: Chemsensors Properties for Sensing of Metal Ions and Nitroaromatic Compounds. HJBC. 2023;51(1):1-12.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc