Year 2023,
Volume: 51 Issue: 2, 191 - 200, 01.04.2023
Rüveyda Üver
,
Funda Öztürk
Supporting Institution
Tekirdağ Namık kemal Üniversitesi
Project Number
NKUBAP.00.10.AR.12.12
References
- T. Fukuda, H. Muguruma, H. Iwasa, T. Tanaka, A. Hiratsuka, T. Shimizu, K.Tsuji, T.Kishimoto, Electrochemical determination of uric acid in urine and serum with uricase/ carbon nanotube /carboxymethylcellulose electrode, Anal Biochem., 590 (2020) 113533.
- F. Mazzara, B. Patella, G. Aiello, A. O’Riordan, C. Torino, A. Vilasi, R. Inguanta, Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors, Electrochim. Acta., 388 (2021) 138652.
- F. Wu, H. Yuming, L. Qian, Animal tissue-based chemiluminescence sensing of uric acid, Anal Chim Acta., 536 (2) (2005) 107–113.
- J. Perello, P. Sanchis, F. Grases, Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry, J Chromatogr B., 824 (2005) 175–180.
- PD. Martinez, M.L Ferrer, M.C. Reyes, A reagent less fluorescent sol–gel biosensor for uric acid detection in biological fluid, Anal Biochem., (2003) 322 238–242.
- E. Akyilmaz, M. K. Sezgintürk, E. Dinckaya, A biosensor based on urate oxidase–peroxidase coupled enzyme system for uric acid determination in urine. Talanta., 61 (2003) 73–79.
- J. Premkumar, S. B. Khoo, Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes, J Electroanal Chem., 576 (2005) 105–112.
- HR. Zare, N. Nasirizadeh, M. M. Ardakani, Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid, J Electroanal Chem., 577 (2005) 25–33.
- S. Tajik, H. Beitollahi, F. G. Nejad, M. Safaei, K. Zhang, Developments and applications of nanomaterial-based carbon paste electrodes, Roy Soc Ch., 10(36) (2020) 21561-21581.
- PE. Erden, B. Zeybek, Ş. Pekyardimcı, E. Kılıç, Amperometric carbon paste enzyme electrodes with Fe3O4 nanoparticles and 1, 4-Benzoquinone for glucose determination, Artif Cell Nanomed B., 41(3) (2013) 165-171.
- B. Çölkesen, F. Öztürk, P. E. Erden, Electroanalytical characterization of montelukast sodium and its voltammetric determination in pharmaceutical dosage form and biological fluids, J Brazil Chem Soc., 27 (2016) 849-856.
- AN. Amro, K. Emran, H. Alanazi, Voltammetric determination of itopride using carbon paste electrode modified with Gd doped TiO2 nanotubes, Turk J Chem., 44(4) (2020) 1122-1133.
- JM. George, A. Antony, B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta., 185(7) 2018 1-26.
- J. Jiang, Y Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage, Adv Mat Res., 24(38) (2012) 5166-5180.
- MY. Ho, P. S, Khiew, D. Isa, T. K Tan, W. S Chiu, C. H. Chia, A review of metal oxide composite electrode materials for electrochemical capacitors, Nano., 9(06) (2014) 1430002.
- R. Shashanka, G. K. Jayaprakash, B. G. Prakashaiah, M. Kumar, B. E. Kumara Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nanoflake modified carbon paste electrode by cyclic voltammetric method, Mater Res Innovations., 26(4) (2022) 229-239.
- Q. Wang, H. Yue, J. Zhang, X. Gao, H. Zhang, X. Lin, B. Wang, D. Bychano, Electrochemical determination of uric acid in the presence of ascorbic acid by hybrid of ZnO nanorods and graphene nanosheets, Ionics., 24 (2018) 2499–2507.
- MM. I. Khan, Al-M. J. Haque, K. Kim, Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode, J Electroanal Chem., 700 (2013) 54–59.
- RM. Berriozabal, L. S. Galicia, Gutie´rrez-Granados, J. Sandoval Cortes, P. Herrasti, Selective Electrochemical Determination of Uric Acid in the Presence of Ascorbic Acid Using a Carbon Paste Electrode Modified with b-Cyclodextrin, Electroanalysis., 20(15) (2008) 1678-1683.
- RS. Nicholson, I. Shain, Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem., 36(4) (1964) 706-723.
- R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson, Instrumental methods in electrochemistry. Ellis Horwood Ltd., (1990). New York.
- AJ. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons. Inc. (2001). New York.
- WU. Malik, R. Jain, S. Agarwal, Redox Behavior of Some 2 benzothiazolylhydrazones of Ethyl 2-cyanoethanoate, P Indian AS-Phy Sci., 48 (1982) 85-91.
- V. Kameswara, C. S. Venkatachalam, C. Kalidas, Electrochemical Reduction of Hydrazono Compounds Derived from Meldrum’s acid in Methanolwater Mixtures. Indian J Chem., 26 (1988) 202–204.
- IS. El-Hallag, G. B. El-Hefnawy, Y. I. Moharram, E. M. Ghoneim, Electrochemical Studies of Schiff Base Compounds Derived from Antipyrinenucleus in Ethanolic Buffer Solutions. Can J Chem., 78 (2000) 1170-1177.
- J. Wang, Analytical electrochemistry, (2006) New York, USA: Wiley.
- CM. A. Brett, A. M. O. Brett, Electrochemistry, Principles, Methods and Applications, Oxford University Press, (1994). New York, USA.
- A. Kedija, H. Tadele, T. Mekonen, P. Rishi, R. C. Saini, Electrochemical determination of uric acid in human urine using nickel hexa-cyano ferrate modified carbon paste electrode, Int J Pure App Res., 1 (2015) 43 60.
- M. Arvand, M. Hassannezhad, Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid, Mater Sci Eng., 36, (2014) 160-167.
- M. Hosseinian, G. Najafpour, A. Rajimpour, Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode, Turk J Chem., 43 (2019) 1063-1074.
- S. Tran Thanh, P. T.Qui, N. T.Thanh Tu, T. T. Tam Toan, T. T. Bich Hoa, L. V. Thanh Son, D. M. Nguyen, T. N. Tuyen, D. Q. Khieu, Electrochemical Determination of Uric Acid in Urine by Using Zeolite Imidazolate Framework-11 Modified Electrode, J Nanomater., (2021). 9914062-9914075.
- K. Shi, K. K. Shiu, Determination of Uric Acid at Electrochemically Activated Glassy Carbon Electrode, Electroanalysis., 13(16) (2001) 1319-1325.
- C. Retna Raj, T. Ohsaka, Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, J Electroanal Chem., 540 (2003) 69-77.
- M. Mazloum-Ardakani, M. A. Sheikh-Mohseni, A. Benvidi, Electropolymerization of Thin Film Conducting Polymer and Its Application for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, Electroanalysis., 23 (12) (2011) 2822-2831.
- D. Zhao, G. Yu, K. Tian, C. Xu, A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 82 (2016) 119-126.
Investigation of Electrochemical Properties of UA At Al2O3NP/CPE and Development of Voltammetric Method for its Determination in Serum
Year 2023,
Volume: 51 Issue: 2, 191 - 200, 01.04.2023
Rüveyda Üver
,
Funda Öztürk
Abstract
The electrochemical properties of uric acid (UA) were determined by cyclic voltammetry (CV) and square wave voltammetry (SWV) at a carbon paste electrode modified with aluminum oxide nanoparticles (Al2O3NP/CPE) in 0.05 M pH 5.0 phosphate buffer. The adsorption properties of the molecule on Al2O3NP/CPE were investigated and the number of electrons transferred in the electrode reaction was calculated. A new voltammetric method for the determination of UA in human serum was also proposed. The linear operating range and limit of detection (LOD) of the method were found to be 0.1µM-230 µM and 0.1µM, respectively. The developed method for UA in serum showed high reliability, reproducibility, accuracy and precision.
Project Number
NKUBAP.00.10.AR.12.12
References
- T. Fukuda, H. Muguruma, H. Iwasa, T. Tanaka, A. Hiratsuka, T. Shimizu, K.Tsuji, T.Kishimoto, Electrochemical determination of uric acid in urine and serum with uricase/ carbon nanotube /carboxymethylcellulose electrode, Anal Biochem., 590 (2020) 113533.
- F. Mazzara, B. Patella, G. Aiello, A. O’Riordan, C. Torino, A. Vilasi, R. Inguanta, Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors, Electrochim. Acta., 388 (2021) 138652.
- F. Wu, H. Yuming, L. Qian, Animal tissue-based chemiluminescence sensing of uric acid, Anal Chim Acta., 536 (2) (2005) 107–113.
- J. Perello, P. Sanchis, F. Grases, Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry, J Chromatogr B., 824 (2005) 175–180.
- PD. Martinez, M.L Ferrer, M.C. Reyes, A reagent less fluorescent sol–gel biosensor for uric acid detection in biological fluid, Anal Biochem., (2003) 322 238–242.
- E. Akyilmaz, M. K. Sezgintürk, E. Dinckaya, A biosensor based on urate oxidase–peroxidase coupled enzyme system for uric acid determination in urine. Talanta., 61 (2003) 73–79.
- J. Premkumar, S. B. Khoo, Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes, J Electroanal Chem., 576 (2005) 105–112.
- HR. Zare, N. Nasirizadeh, M. M. Ardakani, Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid, J Electroanal Chem., 577 (2005) 25–33.
- S. Tajik, H. Beitollahi, F. G. Nejad, M. Safaei, K. Zhang, Developments and applications of nanomaterial-based carbon paste electrodes, Roy Soc Ch., 10(36) (2020) 21561-21581.
- PE. Erden, B. Zeybek, Ş. Pekyardimcı, E. Kılıç, Amperometric carbon paste enzyme electrodes with Fe3O4 nanoparticles and 1, 4-Benzoquinone for glucose determination, Artif Cell Nanomed B., 41(3) (2013) 165-171.
- B. Çölkesen, F. Öztürk, P. E. Erden, Electroanalytical characterization of montelukast sodium and its voltammetric determination in pharmaceutical dosage form and biological fluids, J Brazil Chem Soc., 27 (2016) 849-856.
- AN. Amro, K. Emran, H. Alanazi, Voltammetric determination of itopride using carbon paste electrode modified with Gd doped TiO2 nanotubes, Turk J Chem., 44(4) (2020) 1122-1133.
- JM. George, A. Antony, B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta., 185(7) 2018 1-26.
- J. Jiang, Y Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage, Adv Mat Res., 24(38) (2012) 5166-5180.
- MY. Ho, P. S, Khiew, D. Isa, T. K Tan, W. S Chiu, C. H. Chia, A review of metal oxide composite electrode materials for electrochemical capacitors, Nano., 9(06) (2014) 1430002.
- R. Shashanka, G. K. Jayaprakash, B. G. Prakashaiah, M. Kumar, B. E. Kumara Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nanoflake modified carbon paste electrode by cyclic voltammetric method, Mater Res Innovations., 26(4) (2022) 229-239.
- Q. Wang, H. Yue, J. Zhang, X. Gao, H. Zhang, X. Lin, B. Wang, D. Bychano, Electrochemical determination of uric acid in the presence of ascorbic acid by hybrid of ZnO nanorods and graphene nanosheets, Ionics., 24 (2018) 2499–2507.
- MM. I. Khan, Al-M. J. Haque, K. Kim, Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode, J Electroanal Chem., 700 (2013) 54–59.
- RM. Berriozabal, L. S. Galicia, Gutie´rrez-Granados, J. Sandoval Cortes, P. Herrasti, Selective Electrochemical Determination of Uric Acid in the Presence of Ascorbic Acid Using a Carbon Paste Electrode Modified with b-Cyclodextrin, Electroanalysis., 20(15) (2008) 1678-1683.
- RS. Nicholson, I. Shain, Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem., 36(4) (1964) 706-723.
- R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson, Instrumental methods in electrochemistry. Ellis Horwood Ltd., (1990). New York.
- AJ. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons. Inc. (2001). New York.
- WU. Malik, R. Jain, S. Agarwal, Redox Behavior of Some 2 benzothiazolylhydrazones of Ethyl 2-cyanoethanoate, P Indian AS-Phy Sci., 48 (1982) 85-91.
- V. Kameswara, C. S. Venkatachalam, C. Kalidas, Electrochemical Reduction of Hydrazono Compounds Derived from Meldrum’s acid in Methanolwater Mixtures. Indian J Chem., 26 (1988) 202–204.
- IS. El-Hallag, G. B. El-Hefnawy, Y. I. Moharram, E. M. Ghoneim, Electrochemical Studies of Schiff Base Compounds Derived from Antipyrinenucleus in Ethanolic Buffer Solutions. Can J Chem., 78 (2000) 1170-1177.
- J. Wang, Analytical electrochemistry, (2006) New York, USA: Wiley.
- CM. A. Brett, A. M. O. Brett, Electrochemistry, Principles, Methods and Applications, Oxford University Press, (1994). New York, USA.
- A. Kedija, H. Tadele, T. Mekonen, P. Rishi, R. C. Saini, Electrochemical determination of uric acid in human urine using nickel hexa-cyano ferrate modified carbon paste electrode, Int J Pure App Res., 1 (2015) 43 60.
- M. Arvand, M. Hassannezhad, Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid, Mater Sci Eng., 36, (2014) 160-167.
- M. Hosseinian, G. Najafpour, A. Rajimpour, Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode, Turk J Chem., 43 (2019) 1063-1074.
- S. Tran Thanh, P. T.Qui, N. T.Thanh Tu, T. T. Tam Toan, T. T. Bich Hoa, L. V. Thanh Son, D. M. Nguyen, T. N. Tuyen, D. Q. Khieu, Electrochemical Determination of Uric Acid in Urine by Using Zeolite Imidazolate Framework-11 Modified Electrode, J Nanomater., (2021). 9914062-9914075.
- K. Shi, K. K. Shiu, Determination of Uric Acid at Electrochemically Activated Glassy Carbon Electrode, Electroanalysis., 13(16) (2001) 1319-1325.
- C. Retna Raj, T. Ohsaka, Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, J Electroanal Chem., 540 (2003) 69-77.
- M. Mazloum-Ardakani, M. A. Sheikh-Mohseni, A. Benvidi, Electropolymerization of Thin Film Conducting Polymer and Its Application for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, Electroanalysis., 23 (12) (2011) 2822-2831.
- D. Zhao, G. Yu, K. Tian, C. Xu, A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 82 (2016) 119-126.