Review
BibTex RIS Cite

Printed electronics-based biosensors

Year 2024, Volume: 52 Issue: 1, 31 - 39, 04.01.2024
https://doi.org/10.15671/hjbc.1341345

Abstract

Printed electronics have attracted enormous interest owing to their large production capability, low cost, and environmentally friendly properties. Printed electronics-based biosensors have also achieved increasing attention in different domains that range from laboratory to home for many applications. They will be necessary for the implementation of next-generation platforms due to printing simplifies the fabrication of platforms on several thin, rigid, and/or flexible substrates. Moreover, the printed electronics-based biosensors show an excellent chance to facilitate fast, sensitive, and real-time screening of several molecules to exploit their features. Printing technology has strong impacts to assemble more customizable and simpler production of biosensors with great resolution and combination with microfluidic and electronics systems. This review is a summary of recent progress in printed electronics-based biosensors to produce various electronic devices and circuits and also supplies a review of the properties of printed electronics-based biosensors in different applications. In the end, up-to-date experiments of the latest studies of the printed electronics-based biosensors for various target molecules is reported.

References

  • W. Wu, Inorganic nanomaterials for printed electronics: A review, Nanoscale, 9 (2017) 7342-7372.
  • A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics, Small, 10 (2014) 3515-3535.
  • M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications, Adv. Mater., 22 (2010) 673-685.
  • F. Hoeng, A. Denneulin, J. Bras, Use of nanocellulose in printed electronics: A review, Nanoscale, 8 (2016) 13131-13154.
  • E. Sardini, M. Serpelloni, S. Tonello, Printed electrochemical biosensors: Opportunities and metrological challenges, Biosensors, 10 (2020) 166.
  • F. McEachern, E. Harvey, G. Merle, Emerging technologies for the electrochemical detection of bacteria, Biotechnol. J., 15 (2020) 2000140.
  • A. Abdalla, B.A. Patel, 3D-printed electrochemical sensors: A new horizon for measurement of biomolecules, Curr. Op. Electrochem., 20 (2020) 78-81.
  • P. Yáñez-Sedeño, S. Campuzano, J.M. Pingarrón, Screen-printed electrodes: Promising paper and wearable transducers for (bio)sensing, Biosensors, 10 (2020) 76.
  • Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Molecular imprinting of macromolecules for sensor applications, Sensors, 17 (2017) 898.
  • Y. Saylan, S. Akgönüllü, H. Yavuz, S. Ünal, A. Denizli, Molecularly imprinted polymer based sensors for medical applications, Sensors, 19 (2019) 1279.
  • A. Lavín, J. de Vicente, M. Holgado, M.F. Laguna, R. Casquel, B. Santamaría, M.V. Maigler, A.L. Hernández, Y. Ramírez, On the determination of uncertainty and limit of detection in label-free biosensors, Sensors, 18 (2018) 2038.
  • D.A. Armbruster, T. Pry, Limit of blank, limit of detection and limit of quantitation, Clin. Biochem. Rev., 29 (2008) S49.
  • K.R. Rogers, Recent advances in biosensor techniques for environmental monitoring, Anal. Chim. Acta., 568 (2006) 222-231.
  • D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification, Anal. Lett., 34 (2001) 635-659.
  • E. Derin, F. Inci, Advances in biosensor technologies for acute kidney İnjury, ACS Sens., 7 (2021) 358-385.
  • Ö. Erdem, I. Eş, G.A. Akceoglu, Y. Saylan, F. Inci, Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases,Biosensors, 11 (2021) 296.
  • G.A. Akceoglu, Y. Saylan, F. Inci, A Snapshot of microfluidics in point-of-care diagnostics: Multifaceted integrity with materials and sensors, Adv. MatER. Technol., 6 (2021) 2100049.
  • Y. Saylan, Ö. Erdem, F. Inci, A. Denizli, Advances in biomimetic systems for molecular recognition and biosensing, Biomimetics, 5 (2020) 20.
  • Y. Saylan, S. Akgönüllü, A. Denizli, Plasmonic sensors for monitoring biological and chemical threat agents, Biosensors, 10 (2020) 142.
  • Y. Saylan, E. Özgür, A. Denizli, Recent advances of medical biosensors for clinical applications, Med. Dev. Sens., 4 (2021) e10129.
  • J.A. Goode, J.V.H. Rushworth, P.A. Millner, Biosensor regeneration: A review of common techniques and outcomes, Langmuir, 31 (2015) 6267-6276.
  • N. Verma, A. Bhardwaj, Biosensor technology for pesticides—A review, Appl. Biochem. Biotechnol., 175 (2015) 3093-3119.
  • Z. Altintas, I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer, Sens. Actuat. B Chem., 188 (2013) 988-998.
  • A. Sharma, K. Dulta, R. Nagraik, K. Dua, S.K. Singh, D.K. Chellappan, D. Kumar, D.S. Shin, Potentialities of aptasensors in cancer diagnosis, Mater. Lett., 308 (2022) 131240.
  • Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A.C. Arias, A new frontier of printed electronics: Flexible hybrid electronics, Adv. Mater., 32 (2020) 1905279.
  • M. Elbadawi, J.J. Ong, T.D. Pollard, S. Gaisford, A.W. Basit, Additive manufacturable materials for electrochemical biosensor electrodes, Adv. Func. Mater., 31 (2021) 2006407.
  • C.L.M. Palenzuela, M. Pumera, (Bio)analytical chemistry enabled by 3D printing: Sensors and biosensors, TrAC Trend. Anal. Chem., 103 (2018) 110-118.
  • C.H. Rao, K. Avinash, B.K.S.V.L. Varaprasad, S.A. Goel, Review on printed electronics with digital 3D printing: Fabrication techniques, materials, challenges and future opportunities, J. Electron. Mater., 51 (2022) 2747-2765.
  • P. Sharma, M.R. Hasan, M. Khanuja, J. Narang, Carbon ink printed flexible glove-based aptasensor for rapid and point of care detection of chikungunya virüs, Process Biochem., 133 (2023) 1-10.
  • S. Takaloo, M.M. Zand, Wearable electrochemical flexible biosensors: with the focus on affinity biosensors, Sens. Bio-Sens. Res., 32 (2021) 100403.
  • Y. Saylan, Ö. Altıntaş, A. Denizli, Microfluidic-based molecularly imprinted polymers-integrated optic sensors, Result. Opt., 13 (2023) 100541.
  • L.Y. Ma, N. Soin, Recent progress in printed physical sensing electronics for wearable health-monitoring devices: A review, IEEE Sens. J., 22 (2022) 3844-3859.
  • C. Luo, H. Tang, W. Cheng, L. Yan, D. Zhang, H. Ju, S. Ding, A sensitive electrochemical DNA biosensor for specific detection of enterobacteriaceae bacteria by exonuclease III-assisted signal amplification, Biosens. Bioelectron., 48 (2013) 132-137.
  • Y. Wang, J. Jin, C. Yuan, F. Zhang, L. Ma, D. Qin, D. Shan, X. Lu, A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides, Analyst, 140 (2015) 560-566.
  • L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens. Bioelectron., 63 (2015) 276-286.
  • N. Giamblanco, S. Conoci, D. Russo, G. Marletta, Single-step label-free hepatitis B virus detection by a piezoelectric biosensor, RSC Adv., 5 (2015) 38152-38158.
  • N.A. Karaseva, O.V. Farafonova, T.N. Ermolaeva, Highly sensitive detection of okadaic acid in seafood products via the unlabeled piezoelectric sensor, Food Anal. Met., 9 (2016) 1495-1501.
  • S. Akgönüllü, D. Battal, M.S. Yalcin, H. Yavuz, A. Denizli, Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly ımprinted polymer-coated QCM nanosensor in artificial saliva. Microchem, J., 153 (2020) 104454.
  • B. Sciacca, A. François, P. Hoffmann, T.M. Monro, Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber, Sens. Actuat. B Chem., 183 (2013) 454-458.
  • Y. Saylan, A. Denizli, Molecular fingerprints of hemoglobin on a nanofilm chip, Sensors, 18 (2018) 3016.
  • D.R. Shankaran, K.V. Gobi, N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sens. Actuat. B Chem., 121 (2007) 158-177.
  • J. Willmann, D. Stocker, E. Dörsam, Characteristics and evaluation criteria of substrate-based manufacturing. Is roll-to-roll the best solution for printed electronics?, Org. Electron., 15 (2014) 1631-1640.
  • R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography, Nature Nanotechnol., 9 (2014) 577-587.
  • M. Pietsch, S. Schlisske, M. Held, N. Strobel, A. Wieczorek, G. Hernandez-Sosa, Biodegradable Inkjet-Printed Electrochromic Display for Sustainable Short-Lifecycle Electronics, J. Mater. Chem. C, 8 (2020) 16716-16724.
  • K. Mondal, M.D. McMurtrey, Present status of the functional advanced micro-, nano-printings – a mini review, Mater. Today Chem., 17 (2020) 100328.
  • S. Grünwald, Reproducible dispensing of liquids in the nanolitre range, Adhes. Adhes. Sealants, 15 (2018) 28-31.
  • J. Hoffman, S. Hwang, A. Ortega, N.S. Kim, K.S. Moon, The standardization of printable materials and direct writing systems, J. Electron. Packag., 135 (2013) 011006.
  • J. Muñoz, M. Pumera, 3D-printed biosensors for electrochemical and optical applications, TrAC Trend. Anal. Chem., 128 (2020) 115933.
  • E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality, Science, 353(6307) (2016) aaf2093.
  • A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev., 45 (2016) 2740-2755.
  • Y. Xu, X. Wu, X. Guo, B. Kong, M. Zhang, X. Qian, S. Mi, W. Sun, The boom in 3D-printed sensor technology, Sensors, 17 (2017) 1166.
  • W.C. Mak, V. Beni, A.P.F. Turner, Lateral-flow technology: from visual to instrumental, TrAC Trend. Anal. Chem., 79 (2016) 297-305.
  • A.H.C. Ng, R. Fobel, C. Fobel, J. Lamanna, D.G. Rackus, A. Summers, C. Dixon, M.D.M. Dryden, C. Lam, M. Ho, N.S. Mufti, V. Lee, M.A.M. Asri, E.A. Sykes, M.D. Chamberlain, R. Joseph, M. Ope, H.M. Scobie, A. Knipes, P.A. Rota, N. Marano, P.M. Chege, M. Njuguna, R. Nzunza, N. Kisangau, J. Kiogora, M. Karuingi, J.W. Burton, P. Borus, E. Lam, A.R. Wheeler, A digital microfluidic system for serological immunoassays in remote settings, Sci. Transl. Med., 10 (2018) eaar6076.
  • M.F. Santangelo, S. Libertino, A.P.F. Turner, D. Filippini, W.C. Mak, Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection, Biosens. Bioelectron., 99 (2018) 464-470.
  • K.E. Boehle, C.S. Carrell, J. Caraway, C.S. Henry, Paper-based enzyme competition assay for detecting falsified β-lactam antibiotics, ACS Sens., 3 (2018) 1299-1307.
  • .F.C. Loo, A.H.P. Ho, A.P.F. Turner, W.C. Mak, Integrated printed microfluidic biosensors, Trend. Biotechnol., 37 (2019) 1104-1120.
  • S. Nesaei, Y. Song, Y. Wang, X. Ruan, D. Du, A. Gozen, Y. Lin, Micro Additive Manufacturing of Glucose Biosensors: A Feasibility Study, Anal. Chim. Acta, 1043 (2018) 142-149.
  • T.H. Joubert, P.H.; Bezuidenhout, H. Chen, S. Smith, K.J. Land, Inkjet-printed silver tracks on different paper substrates, Mater. Today Proceed., 2 (2015) 3891-3900.
  • S. Cinti, N. Colozza, I. Cacciotti, D. Moscone, M. Polomoshnov, E. Sowade, R.R. Baumann, F. Arduini, Electroanalysis moves towards paper-based printed electronics: Carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study, Sens. Actuat. B Chem., 265 (2018) 155-160.
  • K. Fukuda, T. Minamiki, T. Minami, M. Watanabe, T. Fukuda, D. Kumaki, S. Tokito, Printed organic transistors with uniform electrical performance and their application to amplifiers in biosensors, Adv. Electron. Mater., 1 (2015) 1400052.
  • G. Jenkins, Y. Wang, Y.L. Xie, Q. Wu, W. Huang, L. Wang, X. Yang, Printed electronics ıntegrated with paper-based microfluidics: New methodologies for next-generation health care. Microfluid, Nanofluid., 19 (2015) 251-261.
  • M. Mass, L.S. Veiga, O. Garate, G. Longinotti, A. Moya, E. Ramón, R. Villa, G. Ybarra, G. Gabriel, Fully inkjet-printed biosensors fabricated with a highly stable ınk based on carbon nanotubes and enzyme-functionalized nanoparticles, Nanomaterials, 11 (2021) 1645.

Basılı elektronik tabanlı biyosensörler

Year 2024, Volume: 52 Issue: 1, 31 - 39, 04.01.2024
https://doi.org/10.15671/hjbc.1341345

Abstract

Basılı elektronik, geniş üretim kapasitesi, düşük maliyeti ve çevre dostu özellikleri nedeniyle büyük ilgi gördü. Basılı elektronik tabanlı biyosensörler, birçok uygulama için laboratuvardan eve kadar değişen farklı alanlarda da artan ilgi gördü. Baskı, birkaç ince, sert ve/veya esnek alt tabaka üzerinde platformların üretimini basitleştirdiği için yeni nesil platformların uygulanması için gerekli olacaktır. Ayrıca, basılı elektronik tabanlı biyosensörler, özelliklerinden yararlanmak için çeşitli moleküllerin hızlı, hassas ve gerçek zamanlı taranmasını kolaylaştırmak için mükemmel bir şans gösteriyor. Baskı teknolojisinin, büyük çözünürlük ve mikroakışkan ve elektronik sistemlerle kombinasyon ile daha özelleştirilebilir ve daha basit biyosensör üretimi bir araya getirmek için güçlü etkileri vardır. Bu derleme, çeşitli elektronik cihazlar ve devreler üretmek için basılı elektronik tabanlı biyosensörlerdeki son gelişmelerin bir özetidir ve ayrıca farklı uygulamalardaki basılı elektronik tabanlı biyosensörlerin özelliklerinin gözden geçirilmesini sağlar. Sonunda, çeşitli hedef moleküller için basılı elektronik tabanlı biyosensörlerin en son çalışmalarının güncel deneyleri rapor edilmektedir.

References

  • W. Wu, Inorganic nanomaterials for printed electronics: A review, Nanoscale, 9 (2017) 7342-7372.
  • A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics, Small, 10 (2014) 3515-3535.
  • M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications, Adv. Mater., 22 (2010) 673-685.
  • F. Hoeng, A. Denneulin, J. Bras, Use of nanocellulose in printed electronics: A review, Nanoscale, 8 (2016) 13131-13154.
  • E. Sardini, M. Serpelloni, S. Tonello, Printed electrochemical biosensors: Opportunities and metrological challenges, Biosensors, 10 (2020) 166.
  • F. McEachern, E. Harvey, G. Merle, Emerging technologies for the electrochemical detection of bacteria, Biotechnol. J., 15 (2020) 2000140.
  • A. Abdalla, B.A. Patel, 3D-printed electrochemical sensors: A new horizon for measurement of biomolecules, Curr. Op. Electrochem., 20 (2020) 78-81.
  • P. Yáñez-Sedeño, S. Campuzano, J.M. Pingarrón, Screen-printed electrodes: Promising paper and wearable transducers for (bio)sensing, Biosensors, 10 (2020) 76.
  • Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Molecular imprinting of macromolecules for sensor applications, Sensors, 17 (2017) 898.
  • Y. Saylan, S. Akgönüllü, H. Yavuz, S. Ünal, A. Denizli, Molecularly imprinted polymer based sensors for medical applications, Sensors, 19 (2019) 1279.
  • A. Lavín, J. de Vicente, M. Holgado, M.F. Laguna, R. Casquel, B. Santamaría, M.V. Maigler, A.L. Hernández, Y. Ramírez, On the determination of uncertainty and limit of detection in label-free biosensors, Sensors, 18 (2018) 2038.
  • D.A. Armbruster, T. Pry, Limit of blank, limit of detection and limit of quantitation, Clin. Biochem. Rev., 29 (2008) S49.
  • K.R. Rogers, Recent advances in biosensor techniques for environmental monitoring, Anal. Chim. Acta., 568 (2006) 222-231.
  • D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification, Anal. Lett., 34 (2001) 635-659.
  • E. Derin, F. Inci, Advances in biosensor technologies for acute kidney İnjury, ACS Sens., 7 (2021) 358-385.
  • Ö. Erdem, I. Eş, G.A. Akceoglu, Y. Saylan, F. Inci, Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases,Biosensors, 11 (2021) 296.
  • G.A. Akceoglu, Y. Saylan, F. Inci, A Snapshot of microfluidics in point-of-care diagnostics: Multifaceted integrity with materials and sensors, Adv. MatER. Technol., 6 (2021) 2100049.
  • Y. Saylan, Ö. Erdem, F. Inci, A. Denizli, Advances in biomimetic systems for molecular recognition and biosensing, Biomimetics, 5 (2020) 20.
  • Y. Saylan, S. Akgönüllü, A. Denizli, Plasmonic sensors for monitoring biological and chemical threat agents, Biosensors, 10 (2020) 142.
  • Y. Saylan, E. Özgür, A. Denizli, Recent advances of medical biosensors for clinical applications, Med. Dev. Sens., 4 (2021) e10129.
  • J.A. Goode, J.V.H. Rushworth, P.A. Millner, Biosensor regeneration: A review of common techniques and outcomes, Langmuir, 31 (2015) 6267-6276.
  • N. Verma, A. Bhardwaj, Biosensor technology for pesticides—A review, Appl. Biochem. Biotechnol., 175 (2015) 3093-3119.
  • Z. Altintas, I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer, Sens. Actuat. B Chem., 188 (2013) 988-998.
  • A. Sharma, K. Dulta, R. Nagraik, K. Dua, S.K. Singh, D.K. Chellappan, D. Kumar, D.S. Shin, Potentialities of aptasensors in cancer diagnosis, Mater. Lett., 308 (2022) 131240.
  • Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A.C. Arias, A new frontier of printed electronics: Flexible hybrid electronics, Adv. Mater., 32 (2020) 1905279.
  • M. Elbadawi, J.J. Ong, T.D. Pollard, S. Gaisford, A.W. Basit, Additive manufacturable materials for electrochemical biosensor electrodes, Adv. Func. Mater., 31 (2021) 2006407.
  • C.L.M. Palenzuela, M. Pumera, (Bio)analytical chemistry enabled by 3D printing: Sensors and biosensors, TrAC Trend. Anal. Chem., 103 (2018) 110-118.
  • C.H. Rao, K. Avinash, B.K.S.V.L. Varaprasad, S.A. Goel, Review on printed electronics with digital 3D printing: Fabrication techniques, materials, challenges and future opportunities, J. Electron. Mater., 51 (2022) 2747-2765.
  • P. Sharma, M.R. Hasan, M. Khanuja, J. Narang, Carbon ink printed flexible glove-based aptasensor for rapid and point of care detection of chikungunya virüs, Process Biochem., 133 (2023) 1-10.
  • S. Takaloo, M.M. Zand, Wearable electrochemical flexible biosensors: with the focus on affinity biosensors, Sens. Bio-Sens. Res., 32 (2021) 100403.
  • Y. Saylan, Ö. Altıntaş, A. Denizli, Microfluidic-based molecularly imprinted polymers-integrated optic sensors, Result. Opt., 13 (2023) 100541.
  • L.Y. Ma, N. Soin, Recent progress in printed physical sensing electronics for wearable health-monitoring devices: A review, IEEE Sens. J., 22 (2022) 3844-3859.
  • C. Luo, H. Tang, W. Cheng, L. Yan, D. Zhang, H. Ju, S. Ding, A sensitive electrochemical DNA biosensor for specific detection of enterobacteriaceae bacteria by exonuclease III-assisted signal amplification, Biosens. Bioelectron., 48 (2013) 132-137.
  • Y. Wang, J. Jin, C. Yuan, F. Zhang, L. Ma, D. Qin, D. Shan, X. Lu, A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides, Analyst, 140 (2015) 560-566.
  • L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens. Bioelectron., 63 (2015) 276-286.
  • N. Giamblanco, S. Conoci, D. Russo, G. Marletta, Single-step label-free hepatitis B virus detection by a piezoelectric biosensor, RSC Adv., 5 (2015) 38152-38158.
  • N.A. Karaseva, O.V. Farafonova, T.N. Ermolaeva, Highly sensitive detection of okadaic acid in seafood products via the unlabeled piezoelectric sensor, Food Anal. Met., 9 (2016) 1495-1501.
  • S. Akgönüllü, D. Battal, M.S. Yalcin, H. Yavuz, A. Denizli, Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly ımprinted polymer-coated QCM nanosensor in artificial saliva. Microchem, J., 153 (2020) 104454.
  • B. Sciacca, A. François, P. Hoffmann, T.M. Monro, Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber, Sens. Actuat. B Chem., 183 (2013) 454-458.
  • Y. Saylan, A. Denizli, Molecular fingerprints of hemoglobin on a nanofilm chip, Sensors, 18 (2018) 3016.
  • D.R. Shankaran, K.V. Gobi, N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sens. Actuat. B Chem., 121 (2007) 158-177.
  • J. Willmann, D. Stocker, E. Dörsam, Characteristics and evaluation criteria of substrate-based manufacturing. Is roll-to-roll the best solution for printed electronics?, Org. Electron., 15 (2014) 1631-1640.
  • R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography, Nature Nanotechnol., 9 (2014) 577-587.
  • M. Pietsch, S. Schlisske, M. Held, N. Strobel, A. Wieczorek, G. Hernandez-Sosa, Biodegradable Inkjet-Printed Electrochromic Display for Sustainable Short-Lifecycle Electronics, J. Mater. Chem. C, 8 (2020) 16716-16724.
  • K. Mondal, M.D. McMurtrey, Present status of the functional advanced micro-, nano-printings – a mini review, Mater. Today Chem., 17 (2020) 100328.
  • S. Grünwald, Reproducible dispensing of liquids in the nanolitre range, Adhes. Adhes. Sealants, 15 (2018) 28-31.
  • J. Hoffman, S. Hwang, A. Ortega, N.S. Kim, K.S. Moon, The standardization of printable materials and direct writing systems, J. Electron. Packag., 135 (2013) 011006.
  • J. Muñoz, M. Pumera, 3D-printed biosensors for electrochemical and optical applications, TrAC Trend. Anal. Chem., 128 (2020) 115933.
  • E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality, Science, 353(6307) (2016) aaf2093.
  • A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev., 45 (2016) 2740-2755.
  • Y. Xu, X. Wu, X. Guo, B. Kong, M. Zhang, X. Qian, S. Mi, W. Sun, The boom in 3D-printed sensor technology, Sensors, 17 (2017) 1166.
  • W.C. Mak, V. Beni, A.P.F. Turner, Lateral-flow technology: from visual to instrumental, TrAC Trend. Anal. Chem., 79 (2016) 297-305.
  • A.H.C. Ng, R. Fobel, C. Fobel, J. Lamanna, D.G. Rackus, A. Summers, C. Dixon, M.D.M. Dryden, C. Lam, M. Ho, N.S. Mufti, V. Lee, M.A.M. Asri, E.A. Sykes, M.D. Chamberlain, R. Joseph, M. Ope, H.M. Scobie, A. Knipes, P.A. Rota, N. Marano, P.M. Chege, M. Njuguna, R. Nzunza, N. Kisangau, J. Kiogora, M. Karuingi, J.W. Burton, P. Borus, E. Lam, A.R. Wheeler, A digital microfluidic system for serological immunoassays in remote settings, Sci. Transl. Med., 10 (2018) eaar6076.
  • M.F. Santangelo, S. Libertino, A.P.F. Turner, D. Filippini, W.C. Mak, Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection, Biosens. Bioelectron., 99 (2018) 464-470.
  • K.E. Boehle, C.S. Carrell, J. Caraway, C.S. Henry, Paper-based enzyme competition assay for detecting falsified β-lactam antibiotics, ACS Sens., 3 (2018) 1299-1307.
  • .F.C. Loo, A.H.P. Ho, A.P.F. Turner, W.C. Mak, Integrated printed microfluidic biosensors, Trend. Biotechnol., 37 (2019) 1104-1120.
  • S. Nesaei, Y. Song, Y. Wang, X. Ruan, D. Du, A. Gozen, Y. Lin, Micro Additive Manufacturing of Glucose Biosensors: A Feasibility Study, Anal. Chim. Acta, 1043 (2018) 142-149.
  • T.H. Joubert, P.H.; Bezuidenhout, H. Chen, S. Smith, K.J. Land, Inkjet-printed silver tracks on different paper substrates, Mater. Today Proceed., 2 (2015) 3891-3900.
  • S. Cinti, N. Colozza, I. Cacciotti, D. Moscone, M. Polomoshnov, E. Sowade, R.R. Baumann, F. Arduini, Electroanalysis moves towards paper-based printed electronics: Carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study, Sens. Actuat. B Chem., 265 (2018) 155-160.
  • K. Fukuda, T. Minamiki, T. Minami, M. Watanabe, T. Fukuda, D. Kumaki, S. Tokito, Printed organic transistors with uniform electrical performance and their application to amplifiers in biosensors, Adv. Electron. Mater., 1 (2015) 1400052.
  • G. Jenkins, Y. Wang, Y.L. Xie, Q. Wu, W. Huang, L. Wang, X. Yang, Printed electronics ıntegrated with paper-based microfluidics: New methodologies for next-generation health care. Microfluid, Nanofluid., 19 (2015) 251-261.
  • M. Mass, L.S. Veiga, O. Garate, G. Longinotti, A. Moya, E. Ramón, R. Villa, G. Ybarra, G. Gabriel, Fully inkjet-printed biosensors fabricated with a highly stable ınk based on carbon nanotubes and enzyme-functionalized nanoparticles, Nanomaterials, 11 (2021) 1645.
There are 62 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Collection
Authors

Yeşeren Saylan 0000-0001-5173-1522

Seçkin Kılıç 0000-0001-8171-6892

Adil Denizli 0000-0001-7548-5741

Publication Date January 4, 2024
Acceptance Date November 20, 2023
Published in Issue Year 2024 Volume: 52 Issue: 1

Cite

APA Saylan, Y., Kılıç, S., & Denizli, A. (2024). Printed electronics-based biosensors. Hacettepe Journal of Biology and Chemistry, 52(1), 31-39. https://doi.org/10.15671/hjbc.1341345
AMA Saylan Y, Kılıç S, Denizli A. Printed electronics-based biosensors. HJBC. January 2024;52(1):31-39. doi:10.15671/hjbc.1341345
Chicago Saylan, Yeşeren, Seçkin Kılıç, and Adil Denizli. “Printed Electronics-Based Biosensors”. Hacettepe Journal of Biology and Chemistry 52, no. 1 (January 2024): 31-39. https://doi.org/10.15671/hjbc.1341345.
EndNote Saylan Y, Kılıç S, Denizli A (January 1, 2024) Printed electronics-based biosensors. Hacettepe Journal of Biology and Chemistry 52 1 31–39.
IEEE Y. Saylan, S. Kılıç, and A. Denizli, “Printed electronics-based biosensors”, HJBC, vol. 52, no. 1, pp. 31–39, 2024, doi: 10.15671/hjbc.1341345.
ISNAD Saylan, Yeşeren et al. “Printed Electronics-Based Biosensors”. Hacettepe Journal of Biology and Chemistry 52/1 (January 2024), 31-39. https://doi.org/10.15671/hjbc.1341345.
JAMA Saylan Y, Kılıç S, Denizli A. Printed electronics-based biosensors. HJBC. 2024;52:31–39.
MLA Saylan, Yeşeren et al. “Printed Electronics-Based Biosensors”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 1, 2024, pp. 31-39, doi:10.15671/hjbc.1341345.
Vancouver Saylan Y, Kılıç S, Denizli A. Printed electronics-based biosensors. HJBC. 2024;52(1):31-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc