Research Article
BibTex RIS Cite

Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis

Year 2024, Volume: 52 Issue: 2, 129 - 138, 01.04.2024
https://doi.org/10.15671/hjbc.1381196

Abstract

In this study, the interaction between the 12 indole-bearing azo compounds (a-l), which were previously synthesized by our research group, and two proteins, 2XIR and 5TGZ, was investigated using an in silico method. The ligand-protein interaction parameters and quantities were determined via molecular docking simulation studies. Since compound e has the lowest docking scores for both 2XIR and 5TGZ, it was selected for additional research on binding interactions. Both e-2XIR and e-5TGZ had docking scores that were lower than those of the control molecules. ADMET characteristics (absorption, distribution, metabolism, excretion, and toxicity) were anticipated using the ADMETlab 2.0 and ProTox-II server. Compound b was categorized as having the greatest levels of toxicity, falling into the sixth toxicity class.

References

  • F. de Sa Alves, E. Barreiro, C. Manssour Fraga, From Nature to Drug Discovery: The Indole Scaffold as a “Privileged Structure,” Mini Rev. Med. Chem., 9 (2009) 782–793.
  • P.F. Lamie, J.N. Philoppes, Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors, Bioorg. Chem., 116 (2021) 105335.
  • H. Abdel-Gawad, H.A. Mohamed, K.M. Dawood, F.A.-R. Badria, Synthesis and Antiviral Activity of New Indole-Based Heterocycles, Chem. Pharm. Bull (Tokyo)., 58 (2010) 1529–1531.
  • Y. Li, H. Wu, L. Tang, C. Feng, J. Yu, Y. Li, Y. Yang, B. Yang, Q. He, The potential insulin sensitizing and glucose lowering effects of a novel indole derivative in vitro and in vivo, Pharmacol. Res., 56 (2007) 335–343.
  • M.S. Estevão, L.C. Carvalho, D. Ribeiro, D. Couto, M. Freitas, A. Gomes, L.M. Ferreira, E. Fernandes, M.M.B. Marques, Antioxidant activity of unexplored indole derivatives: Synthesis and screening, Eur. J. Med. Chem., 45 (2010) 4869–4878.
  • S. Battaglia, E. Boldrini, F. Da Settimo, G. Dondio, C. La Motta, A.M. Marini, G. Primofiore, Indole amide derivatives: synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists, Eur. J. Med. Chem., 34 (1999) 93–105.
  • M.A.A. Radwan, E.A. Ragab, N.M. Sabry, S.M. El-Shenawy, Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents, Bioorg. Med. Chem., 15 (2007) 3832–3841.
  • A.Y. Alzahrani, Y.A. Ammar, M.A. Salem, M. Abu‐Elghait, A. Ragab, Design, synthesis, molecular modeling, and antimicrobial potential of novel 3‐[(1H ‐pyrazol‐3‐yl)imino]indolin‐2‐one derivatives as DNA gyrase inhibitors, Arch. Pharm (Weinheim)., 355 (2022) e2100266.
  • S. Ghanei-Nasab, M. Khoobi, F. Hadizadeh, A. Marjani, A. Moradi, H. Nadri, S. Emami, A. Foroumadi, A. Shafiee, Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety, Eur. J. Med. Chem., 121 (2016) 40–46.
  • S. Dadashpour, S. Emami, Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms, Eur. J. Med. Chem., 150 (2018) 9–29.
  • H. Sachdeva, J. Mathur, A. Guleria, Indole Derivatives as Potential Anticancer Agents: A Review, J. Chil. Chem. Soc., 65 (2020) 4900–4907.
  • K. Kaur, V. Jaitak, Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer, Anticancer Agents Med. Chem., 19 (2019) 962–983.
  • W. Cui, A. Aouidate, S. Wang, Q. Yu, Y. Li, and S. Yuan, Discovering Anti-Cancer Drugs via Computational Methods, Front Pharmacol., 11 (2020) 733.
  • M. H. Baig, K. Ahmad, G. Rabbani, M. Danishuddin, and I. Choi, Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders, Curr Neuropharmacol., 16 (2018) 740–748.
  • H. M. Patel et al., “Design and synthesis of VEGFR-2 tyrosine kinase inhibitors as potential anticancer agents by virtual based screening,” RSC Adv, 5(2015) 56724–56771.
  • R. Hanachi et al., “Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists,” New Journal of Chemistry, 45 (2021) 17796–17807.
  • Ç. Karabacak, Ö. Dilek, Synthesis, solvatochromic properties and theoretical calculation of some novel disazo indole dyes, J. Mol. Liq., 199 (2014) 227–236.
  • A. Daina, O. Michielin, V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res., 47 (2019) W357–W364.
  • O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31 (2010) 455–461.
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (2004) 1605–1612.
  • BIOVIA (2021) Discovery Studio Visualizer, version 21.1.0.20298. Dassault Systèmes, San Diego, CA.
  • B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER, Curr. Protoc. Bioinformatics, 54 (2016) 5.6.1-5.6.37.
  • S. Russo, W.F. De Azevedo, Advances in the Understanding of the Cannabinoid Receptor 1 – Focusing on the Inverse Agonists Interactions, Curr. Med. Chem., 26 (2019) 1908–1919.
  • Ç. Karabacak Atay, Ö. Dilek, T. Tilki, B. Dede, A novel imidazole-based azo molecule: synthesis, characterization, quantum chemical calculations, molecular docking, molecular dynamics simulations and ADMET properties, J. Mol. Model., 29 (2023) 226.
  • M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4 (2012) 17.
  • G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res., 49 (2021) W5–W14.
  • P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46 (2018) W257–W263.
  • R. Hanachi, R. Ben Said, H. Allal, S. Rahali, M.A.M. Alkhalifah, F. Alresheedi, B. Tangour, M. Hochlaf, Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists, New J. Chem., 45 (2021) 17796–17807.
  • G.S. Amato, A. Manke, D.L. Harris, R.W. Wiethe, V. Vasukuttan, R.W. Snyder, T.W. Lefever, R. Cortes, Y. Zhang, S. Wang, S.P. Runyon, R. Maitra, Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor, J. Med. Chem., 61 (2018) 4370–4385.
Year 2024, Volume: 52 Issue: 2, 129 - 138, 01.04.2024
https://doi.org/10.15671/hjbc.1381196

Abstract

References

  • F. de Sa Alves, E. Barreiro, C. Manssour Fraga, From Nature to Drug Discovery: The Indole Scaffold as a “Privileged Structure,” Mini Rev. Med. Chem., 9 (2009) 782–793.
  • P.F. Lamie, J.N. Philoppes, Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors, Bioorg. Chem., 116 (2021) 105335.
  • H. Abdel-Gawad, H.A. Mohamed, K.M. Dawood, F.A.-R. Badria, Synthesis and Antiviral Activity of New Indole-Based Heterocycles, Chem. Pharm. Bull (Tokyo)., 58 (2010) 1529–1531.
  • Y. Li, H. Wu, L. Tang, C. Feng, J. Yu, Y. Li, Y. Yang, B. Yang, Q. He, The potential insulin sensitizing and glucose lowering effects of a novel indole derivative in vitro and in vivo, Pharmacol. Res., 56 (2007) 335–343.
  • M.S. Estevão, L.C. Carvalho, D. Ribeiro, D. Couto, M. Freitas, A. Gomes, L.M. Ferreira, E. Fernandes, M.M.B. Marques, Antioxidant activity of unexplored indole derivatives: Synthesis and screening, Eur. J. Med. Chem., 45 (2010) 4869–4878.
  • S. Battaglia, E. Boldrini, F. Da Settimo, G. Dondio, C. La Motta, A.M. Marini, G. Primofiore, Indole amide derivatives: synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists, Eur. J. Med. Chem., 34 (1999) 93–105.
  • M.A.A. Radwan, E.A. Ragab, N.M. Sabry, S.M. El-Shenawy, Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents, Bioorg. Med. Chem., 15 (2007) 3832–3841.
  • A.Y. Alzahrani, Y.A. Ammar, M.A. Salem, M. Abu‐Elghait, A. Ragab, Design, synthesis, molecular modeling, and antimicrobial potential of novel 3‐[(1H ‐pyrazol‐3‐yl)imino]indolin‐2‐one derivatives as DNA gyrase inhibitors, Arch. Pharm (Weinheim)., 355 (2022) e2100266.
  • S. Ghanei-Nasab, M. Khoobi, F. Hadizadeh, A. Marjani, A. Moradi, H. Nadri, S. Emami, A. Foroumadi, A. Shafiee, Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety, Eur. J. Med. Chem., 121 (2016) 40–46.
  • S. Dadashpour, S. Emami, Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms, Eur. J. Med. Chem., 150 (2018) 9–29.
  • H. Sachdeva, J. Mathur, A. Guleria, Indole Derivatives as Potential Anticancer Agents: A Review, J. Chil. Chem. Soc., 65 (2020) 4900–4907.
  • K. Kaur, V. Jaitak, Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer, Anticancer Agents Med. Chem., 19 (2019) 962–983.
  • W. Cui, A. Aouidate, S. Wang, Q. Yu, Y. Li, and S. Yuan, Discovering Anti-Cancer Drugs via Computational Methods, Front Pharmacol., 11 (2020) 733.
  • M. H. Baig, K. Ahmad, G. Rabbani, M. Danishuddin, and I. Choi, Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders, Curr Neuropharmacol., 16 (2018) 740–748.
  • H. M. Patel et al., “Design and synthesis of VEGFR-2 tyrosine kinase inhibitors as potential anticancer agents by virtual based screening,” RSC Adv, 5(2015) 56724–56771.
  • R. Hanachi et al., “Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists,” New Journal of Chemistry, 45 (2021) 17796–17807.
  • Ç. Karabacak, Ö. Dilek, Synthesis, solvatochromic properties and theoretical calculation of some novel disazo indole dyes, J. Mol. Liq., 199 (2014) 227–236.
  • A. Daina, O. Michielin, V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res., 47 (2019) W357–W364.
  • O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31 (2010) 455–461.
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (2004) 1605–1612.
  • BIOVIA (2021) Discovery Studio Visualizer, version 21.1.0.20298. Dassault Systèmes, San Diego, CA.
  • B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER, Curr. Protoc. Bioinformatics, 54 (2016) 5.6.1-5.6.37.
  • S. Russo, W.F. De Azevedo, Advances in the Understanding of the Cannabinoid Receptor 1 – Focusing on the Inverse Agonists Interactions, Curr. Med. Chem., 26 (2019) 1908–1919.
  • Ç. Karabacak Atay, Ö. Dilek, T. Tilki, B. Dede, A novel imidazole-based azo molecule: synthesis, characterization, quantum chemical calculations, molecular docking, molecular dynamics simulations and ADMET properties, J. Mol. Model., 29 (2023) 226.
  • M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4 (2012) 17.
  • G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res., 49 (2021) W5–W14.
  • P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46 (2018) W257–W263.
  • R. Hanachi, R. Ben Said, H. Allal, S. Rahali, M.A.M. Alkhalifah, F. Alresheedi, B. Tangour, M. Hochlaf, Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists, New J. Chem., 45 (2021) 17796–17807.
  • G.S. Amato, A. Manke, D.L. Harris, R.W. Wiethe, V. Vasukuttan, R.W. Snyder, T.W. Lefever, R. Cortes, Y. Zhang, S. Wang, S.P. Runyon, R. Maitra, Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor, J. Med. Chem., 61 (2018) 4370–4385.
There are 29 citations in total.

Details

Primary Language English
Subjects Biomolecular Modelling and Design
Journal Section Research Article
Authors

Ömer Dilek 0000-0003-1409-782X

Tahir Tilki 0000-0002-1040-2375

Çiğdem Karabacak Atay 0000-0001-7226-9971

Publication Date April 1, 2024
Submission Date October 26, 2023
Acceptance Date December 9, 2023
Published in Issue Year 2024 Volume: 52 Issue: 2

Cite

APA Dilek, Ö., Tilki, T., & Karabacak Atay, Ç. (2024). Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis. Hacettepe Journal of Biology and Chemistry, 52(2), 129-138. https://doi.org/10.15671/hjbc.1381196
AMA Dilek Ö, Tilki T, Karabacak Atay Ç. Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis. HJBC. April 2024;52(2):129-138. doi:10.15671/hjbc.1381196
Chicago Dilek, Ömer, Tahir Tilki, and Çiğdem Karabacak Atay. “Indole-Bearing Azo Compounds: Molecular Docking and in Silico ADMET Analysis”. Hacettepe Journal of Biology and Chemistry 52, no. 2 (April 2024): 129-38. https://doi.org/10.15671/hjbc.1381196.
EndNote Dilek Ö, Tilki T, Karabacak Atay Ç (April 1, 2024) Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis. Hacettepe Journal of Biology and Chemistry 52 2 129–138.
IEEE Ö. Dilek, T. Tilki, and Ç. Karabacak Atay, “Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis”, HJBC, vol. 52, no. 2, pp. 129–138, 2024, doi: 10.15671/hjbc.1381196.
ISNAD Dilek, Ömer et al. “Indole-Bearing Azo Compounds: Molecular Docking and in Silico ADMET Analysis”. Hacettepe Journal of Biology and Chemistry 52/2 (April 2024), 129-138. https://doi.org/10.15671/hjbc.1381196.
JAMA Dilek Ö, Tilki T, Karabacak Atay Ç. Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis. HJBC. 2024;52:129–138.
MLA Dilek, Ömer et al. “Indole-Bearing Azo Compounds: Molecular Docking and in Silico ADMET Analysis”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 2, 2024, pp. 129-38, doi:10.15671/hjbc.1381196.
Vancouver Dilek Ö, Tilki T, Karabacak Atay Ç. Indole-Bearing Azo Compounds: Molecular Docking and in silico ADMET Analysis. HJBC. 2024;52(2):129-38.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc