Research Article
BibTex RIS Cite
Year 2024, Volume: 52 Issue: 5, 217 - 223, 12.12.2024
https://doi.org/10.15671/hjbc.1572747

Abstract

Project Number

119F117

References

  • H.H. Maurer, T. Kraemer, O. Ledvinka, C.J. Schmitt, A.A. Weber, Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in toxicological analysis. Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of alpha- and beta-amanitin in urine by atmospheric pressure ionization electrospray LC-MS, J Chromatogr B Biomed Sci Appl., 689 (1997) 81-9.
  • Y. Hanai, K. Shimono, K. Matsumura, A. Vachani, A. Albelda, K. Yamazaki, K.G. Beauchamp, H. Oka, Urinary Volatile Compounds as Biomarkers for Lung Cancer, Bioscience Biotechnology and Biochemistry, 76 (2012) 679-684.
  • G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents, Anal. Methods., 8 (2016) 3570-3577.
  • S.K. Akagi, I.R. Burling, A. Mendoza, T.J. Johnson, M. Cameron, D.W.T. Griffith, C. Paton-Walsh, D.R. Weise, J. Reardon, R.J Yokelson, Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system, Atmos. Chem. Phys., 14 (2014) 199–215.
  • S.T. Navale, A.T. Mane, M.A. Chougule, R.D. Sakhare, S.R. Nalage, V.B. Pati, Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films, Synthetic Metals, 189 (2014) 94–99.
  • G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, H. Rohrer, Nanomechanical Membrane-type Surface Stress Sensor, Nano Lett., 11 ( 2011) 1044-1048.
  • S.Y. Yang, C. Wu, H. Tan, Y. Wu, S.Z. Liao, Z.Y. Wu, G. Shen, R.Q. Yu, Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions, Analytical Chemistry, 85 (2013) 14–18.
  • C.K. Chang, H.L. Kuo, K.T. Tang, S.W. Chiu, Optical detection of organic vapors using cholesteric liquid crystals, Applied Physics Letters, 99 (2011) 073504.
  • R. Nandi, S.K. Singh, H.K. Singh, B. Singh, R.K. Singh, Fabrication of liquid crystal based sensor for detection of hydrazine vapours, Chemical Physics Letters, 614 (2014) 62–66.
  • K.D. Cadwell, N.A. Lockwood, B.A. Nellis, M.E. Alf, C.R. Willis, N.L. Abbott, Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces, Sensors and Actuators, B: Chemical, 128 (2007) 91–98.
  • K. Chan, H. Lin, M. Zhang, Y. Lin, S. Hwang, High Sensitive Cholesteric Liquid Crystal Vapor Sensor by Using Graphene Oxide, IEEE Photonics Conference, (2016 ) 777–778.
  • Y. Han, K. Pacheco, C.W.M. Bastiaansen, D.J. Broer, R.P. Sijbesma, Optical monitoring of gases with cholesteric liquid crystals, Journal of the American Chemical Society, 132 (2010) 2961–2967.
  • A. Mujahid, H. Stathopulos, P.A. Lieberzeit, F.L. Dickert, Organic vapour sensing using thin films of a co-ordination polymer: comparison of electrical and optical techniques, Sensors, 10 (2010) 4887-4897.
  • N. Herzer, H. Guneysu, D.J.D. Davies, D. Yildirim, A.R. Vaccaro, D.J. Broer, C.W.M. Bastiaansen, A.P.H.J. Schenning, Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks, J. Am. Chem. Soc., 134 (2012) 7608−7611.
  • F. Dickert, A. Haunschild, P. Hofmann, Cholesteric liquid crystals for solvent vapour detection—elimination of cross sensitivity by band shape analysis and pattern recognition, Fresenius J. Anal. Chem, 350 (1994) 577–581.
  • N. Kirchner, L. Zedler, T.G. Mayerhöfer, G.J. Mohr, Functional liquid crystal films selectively recognize amine vapours and simultaneously change their colour, Chemical Communications, 14 (2006) 1512–1514.
  • D.A. Winterbottom, R. Narayanaswamy, I.M. Raimundo, Cholesteric liquid crystals for detection of organic vapours, Sensors and Actuators, B: Chemical, 90 (2003) 52–57.
  • S.E. Robinson, B.A. Grinwald, T.G. Burland, Low power liquid crystal sensors for rapid, sensitive detection of toxic gases, (2015) (internet adresi: https://www.platypustech.com/wp-content/uploads/2015/11/Pittcon-2015-Poster.pdf, Son Erişim Tarihi: 28 Ağustos 2018).
  • E. Kemiklioglu, B. Gurboga, and E. B. Tuncgovde, Development an optical sensor using lyotropic cholesteric liquid crystals for the detection of toxic gases, Optık, 248 (2021) 168110.
  • S. I. Baek, S. J. Kim, J. H. Kim, Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode, AIP Advances, 5 (2015) 097170.

The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System

Year 2024, Volume: 52 Issue: 5, 217 - 223, 12.12.2024
https://doi.org/10.15671/hjbc.1572747

Abstract

In this study, the aim was to develop an innovative and user-friendly sensor capable of quickly detecting the gases phenol, toluene, and 1,2-dichloropropane, which negatively affect brain functions when inhaled over extended periods. To achieve this, the thermotropic phase of liquid crystals, which possess thermotropic and lyotropic phases, was used, and a thermotropic cholesteric liquid crystal(CHLC) sample was formulized. The changes occurring in the presence of these gases were examined optically. In this context, the thermotropic ChLC sample, composed of E7 thermotropic liquid crystal and a chiral mixture made from chiral dopants CB15, R1011, and R811, was placed into a cell created using the sandwich method with glass surfaces modified with lecithin. The mentioned gases, evaporated at different temperatures, were introduced into the cells containing the liquid crystal sample over varying durations, and the resulting changes in the wavelength of the liquid crystal were analyzed. Thus, it was demonstrated that these gases, which have a detrimental impact on human health, can be detected at the lowest concentration levels using a sensor containing thermotropic liquid crystal.

Supporting Institution

Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 1001

Project Number

119F117

References

  • H.H. Maurer, T. Kraemer, O. Ledvinka, C.J. Schmitt, A.A. Weber, Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in toxicological analysis. Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of alpha- and beta-amanitin in urine by atmospheric pressure ionization electrospray LC-MS, J Chromatogr B Biomed Sci Appl., 689 (1997) 81-9.
  • Y. Hanai, K. Shimono, K. Matsumura, A. Vachani, A. Albelda, K. Yamazaki, K.G. Beauchamp, H. Oka, Urinary Volatile Compounds as Biomarkers for Lung Cancer, Bioscience Biotechnology and Biochemistry, 76 (2012) 679-684.
  • G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents, Anal. Methods., 8 (2016) 3570-3577.
  • S.K. Akagi, I.R. Burling, A. Mendoza, T.J. Johnson, M. Cameron, D.W.T. Griffith, C. Paton-Walsh, D.R. Weise, J. Reardon, R.J Yokelson, Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system, Atmos. Chem. Phys., 14 (2014) 199–215.
  • S.T. Navale, A.T. Mane, M.A. Chougule, R.D. Sakhare, S.R. Nalage, V.B. Pati, Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films, Synthetic Metals, 189 (2014) 94–99.
  • G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, H. Rohrer, Nanomechanical Membrane-type Surface Stress Sensor, Nano Lett., 11 ( 2011) 1044-1048.
  • S.Y. Yang, C. Wu, H. Tan, Y. Wu, S.Z. Liao, Z.Y. Wu, G. Shen, R.Q. Yu, Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions, Analytical Chemistry, 85 (2013) 14–18.
  • C.K. Chang, H.L. Kuo, K.T. Tang, S.W. Chiu, Optical detection of organic vapors using cholesteric liquid crystals, Applied Physics Letters, 99 (2011) 073504.
  • R. Nandi, S.K. Singh, H.K. Singh, B. Singh, R.K. Singh, Fabrication of liquid crystal based sensor for detection of hydrazine vapours, Chemical Physics Letters, 614 (2014) 62–66.
  • K.D. Cadwell, N.A. Lockwood, B.A. Nellis, M.E. Alf, C.R. Willis, N.L. Abbott, Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces, Sensors and Actuators, B: Chemical, 128 (2007) 91–98.
  • K. Chan, H. Lin, M. Zhang, Y. Lin, S. Hwang, High Sensitive Cholesteric Liquid Crystal Vapor Sensor by Using Graphene Oxide, IEEE Photonics Conference, (2016 ) 777–778.
  • Y. Han, K. Pacheco, C.W.M. Bastiaansen, D.J. Broer, R.P. Sijbesma, Optical monitoring of gases with cholesteric liquid crystals, Journal of the American Chemical Society, 132 (2010) 2961–2967.
  • A. Mujahid, H. Stathopulos, P.A. Lieberzeit, F.L. Dickert, Organic vapour sensing using thin films of a co-ordination polymer: comparison of electrical and optical techniques, Sensors, 10 (2010) 4887-4897.
  • N. Herzer, H. Guneysu, D.J.D. Davies, D. Yildirim, A.R. Vaccaro, D.J. Broer, C.W.M. Bastiaansen, A.P.H.J. Schenning, Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks, J. Am. Chem. Soc., 134 (2012) 7608−7611.
  • F. Dickert, A. Haunschild, P. Hofmann, Cholesteric liquid crystals for solvent vapour detection—elimination of cross sensitivity by band shape analysis and pattern recognition, Fresenius J. Anal. Chem, 350 (1994) 577–581.
  • N. Kirchner, L. Zedler, T.G. Mayerhöfer, G.J. Mohr, Functional liquid crystal films selectively recognize amine vapours and simultaneously change their colour, Chemical Communications, 14 (2006) 1512–1514.
  • D.A. Winterbottom, R. Narayanaswamy, I.M. Raimundo, Cholesteric liquid crystals for detection of organic vapours, Sensors and Actuators, B: Chemical, 90 (2003) 52–57.
  • S.E. Robinson, B.A. Grinwald, T.G. Burland, Low power liquid crystal sensors for rapid, sensitive detection of toxic gases, (2015) (internet adresi: https://www.platypustech.com/wp-content/uploads/2015/11/Pittcon-2015-Poster.pdf, Son Erişim Tarihi: 28 Ağustos 2018).
  • E. Kemiklioglu, B. Gurboga, and E. B. Tuncgovde, Development an optical sensor using lyotropic cholesteric liquid crystals for the detection of toxic gases, Optık, 248 (2021) 168110.
  • S. I. Baek, S. J. Kim, J. H. Kim, Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode, AIP Advances, 5 (2015) 097170.
There are 20 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Research Article
Authors

Emine Kemiklioglu 0000-0002-7827-2423

Berfin Gürboğa 0000-0001-5069-0212

Project Number 119F117
Publication Date December 12, 2024
Submission Date October 23, 2024
Acceptance Date November 27, 2024
Published in Issue Year 2024 Volume: 52 Issue: 5

Cite

APA Kemiklioglu, E., & Gürboğa, B. (2024). The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System. Hacettepe Journal of Biology and Chemistry, 52(5), 217-223. https://doi.org/10.15671/hjbc.1572747
AMA Kemiklioglu E, Gürboğa B. The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System. HJBC. December 2024;52(5):217-223. doi:10.15671/hjbc.1572747
Chicago Kemiklioglu, Emine, and Berfin Gürboğa. “The Role of Thermotropic Liquid Crystals in the Detection of Gases That Adversely Affect the Nervous System”. Hacettepe Journal of Biology and Chemistry 52, no. 5 (December 2024): 217-23. https://doi.org/10.15671/hjbc.1572747.
EndNote Kemiklioglu E, Gürboğa B (December 1, 2024) The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System. Hacettepe Journal of Biology and Chemistry 52 5 217–223.
IEEE E. Kemiklioglu and B. Gürboğa, “The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System”, HJBC, vol. 52, no. 5, pp. 217–223, 2024, doi: 10.15671/hjbc.1572747.
ISNAD Kemiklioglu, Emine - Gürboğa, Berfin. “The Role of Thermotropic Liquid Crystals in the Detection of Gases That Adversely Affect the Nervous System”. Hacettepe Journal of Biology and Chemistry 52/5 (December 2024), 217-223. https://doi.org/10.15671/hjbc.1572747.
JAMA Kemiklioglu E, Gürboğa B. The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System. HJBC. 2024;52:217–223.
MLA Kemiklioglu, Emine and Berfin Gürboğa. “The Role of Thermotropic Liquid Crystals in the Detection of Gases That Adversely Affect the Nervous System”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 5, 2024, pp. 217-23, doi:10.15671/hjbc.1572747.
Vancouver Kemiklioglu E, Gürboğa B. The Role of Thermotropic Liquid Crystals in the Detection of Gases that Adversely Affect the Nervous System. HJBC. 2024;52(5):217-23.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc