Review
BibTex RIS Cite
Year 2025, Volume: 53 Issue: 1, 127 - 158, 01.01.2025
https://doi.org/10.15671/hjbc.1419925

Abstract

References

  • D. D. Do, Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs). Vol. 2. 1998: World Scientific.
  • M. El-Naas and M. A. Alhaija. Modelling of adsorption processes، Mathematical Modelling, Ed. Christopher R. Brennan, Nova Publishers, Inc, (2011).
  • W. Stumm, J. J. Morgan, and J. J. Morgan, Aquatic Chemistry. A Wiley-Interscience Publication. (1981) John Wiley and Sons, New York.
  • Mhemeed. A General Overview on the Adsorption، Indian Journal of Natural Sciences, 9 (2018) 16127-16131.
  • S. J. Gregg and K. S. W. Sing, The adsorption of gasses on porous solids. 1979: William Clowes & Sons.
  • Z. G. Szabó and D. Kalló, Contact catalysis. Vol. 1. 1976: Elsevier Science & Technology.
  • J. Wang and X. Guo. Adsorption isotherm models: Classification, physical meaning, application and solving method، Chemosphere, 258 (2020) 127279. DOI: https://doi.org/10.1016/j.chemosphere.2020.127279
  • Y. S. Ho and G. McKay. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents، Process Saf. Environ. Prot., 76 (1998) 332-340. DOI: https://doi.org/10.1205/095758298529696
  • G. Kalyani, et al. Equilibrium and kinetic studies on biosorption of zinc onto Gallus domesticus shell powder، ARPN Journal of Engineering and applied Sciences, 4 (2009) 39-49.
  • J. Febrianto, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies، J. Hazard. Mater., 162 (2009) 616-645. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.042
  • E. S. Z. El-Ashtoukhy, N. K. Amin, and O. Abdelwahab. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent، Desalination, 223 (2008) 162-173. DOI: https://doi.org/10.1016/j.desal.2007.01.206
  • K. L. Tan and B. H. Hameed. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions، Journal of the Taiwan Institute of Chemical Engineers, 74 (2017) 25-48. DOI: https://doi.org/10.1016/j.jtice.2017.01.024
  • H. N. Tran, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review، Water Res, 120 (2017) 88-116. DOI: https://doi.org/10.1016/j.watres.2017.04.014
  • B. M. J. Z. J. o. P. Ibrahim and A. Sciences. Heavy metal ions removal from wastewater using various low-cost agricultural wastes as adsorbents: a survey، Zanco Journal of Pure and Applied Sciences, 33 (2021) 76-91.
  • S. Azizian. Kinetic models of sorption: a theoretical analysis، J. Colloid Interface Sci., 276 (2004) 47-52. DOI: https://doi.org/10.1016/j.jcis.2004.03.048
  • J. J. A. p. U. Zeldowitsch. Über den mechanismus der katalytischen oxydation von CO an MnO2، Acta physicochim. URSS, 1 (1934) 364-449.
  • C. W. Cheung, J. F. Porter, and G. McKay. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char، J. Chem. Technol. Biotechnol., 75 (2000) 963-970. DOI: https://doi.org/10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z
  • G. L. Dotto and L. A. A. Pinto. Adsorption of food dyes onto chitosan: Optimization process and kinetic، Carbohydr. Polym., 84 (2011) 231-238. DOI: https://doi.org/10.1016/j.carbpol.2010.11.028
  • H. Y. Sharef, et al. New ion-imprinted polymer for selective removal of Cu2+ ion in aqueous solution using extracted Aloe vera leaves as a monomer، Int. J. Biol. Macromol., 239 (2023) 124318. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124318
  • W. Al-Madhoun, et al. Cu and Zn removal by adsorption using ash from palm oil factory. in Proceeding of the international conference on water: rights and values, Ramllah, Palestine. 2005.
  • J. Nwabanne and P. Igbokwe. Kinetics and equilibrium modeling of nickel adsorption by cassava peel، J. Eng. Applied Sci, 3 (2008) 829-834.
  • J. Otun, et al. Adsorption isotherms of Pb (II), Ni (II) and Cd (II) ions onto PES، J Appl Sci, 6 (2006) 2368-2376.
  • J. Perić, M. Trgo, and N. V. Medvidović. Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms، Water research, 38 (2004) 1893-1899.
  • W. A. Al-Madhoun, et al., in International Conference-Water: Values & Rights, Palestine Academy for Science and Technology and Palestinian Water Authority. (2005). p. 1-11.
  • J. Perić, M. Trgo, and N. Vukojević Medvidović. Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms، Water Res, 38 (2004) 1893-1899. DOI: https://doi.org/10.1016/j.watres.2003.12.035
  • R. H. Worden and P. C. Smalley. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi، Chem. Geol., 133 (1996) 157-171. DOI: https://doi.org/10.1016/S0009-2541(96)00074-5
  • H. Y. Huang, et al. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas، Ind. Eng. Chem. Res., 42 (2003) 2427-2433. DOI: 10.1021/ie020440u
  • S. Hokkanen, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose، Environ Technol, 35 (2014) 2334-2346. DOI: 10.1080/09593330.2014.903300
  • E. Repo, et al. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling، Chem. Eng. J., 161 (2010) 73-82. DOI: https://doi.org/10.1016/j.cej.2010.04.030
  • M. E. Argun, et al. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics، J. Hazard. Mater., 141 (2007) 77-85. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.095
  • N. Ayawei, A. N. Ebelegi, and D. Wankasi. Modelling and Interpretation of Adsorption Isotherms، Journal of Chemistry, 2017 (2017) 3039817. DOI: https://doi.org/10.1155/2017/3039817
  • J. M. Saleh, Surface Chemistry and Assistive Factors. 1980, College of Science Press: University of Baghdad
  • H. Katsumata, et al. Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials، J Environ Manage, 69 (2003) 187-191. DOI: https://doi.org/10.1016/S0301-4797(03)00145-2
  • A. Özcan, et al. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum، J. Hazard. Mater., 124 (2005) 200-208. DOI: https://doi.org/10.1016/j.jhazmat.2005.05.007
  • S. Chakravarty, et al. Removal of copper from aqueous solution using newspaper pulp as an adsorbent، J. Hazard. Mater., 159 (2008) 396-403. DOI: https://doi.org/10.1016/j.jhazmat.2008.02.030
  • S. Ghazy, A. El-Asmy, and A. El-Nokrashy. Separation of chromium (III) and chromium (VI) from environmental water samples using eggshell sorbent، Indian Journal of Science and Technology, 1 (2008) 1-7.
  • S. Qaiser, A. R. Saleemi, and M. Mahmood Ahmad. Heavy metal uptake by agro based waste materials، Electron. J. Biotechnol., 10 (2007) 409-416.
  • M. H. Jnr and A. I. Spiff. Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass، Electron. J. Biotechnol., 8 (2005) 162-169.
  • M. Abd El-Latif, A. M. Ibrahim, and M. El-Kady. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite، J Am Sci, 6 (2010) 267-283.
  • J. Igwe and A. Abia. Studies on the effects of temperature and particle size on bioremediation of AS (III) from aqueous solution using modified and unmodified coconut fiber، Global Journal of Environmental Research, 1 (2007) 22-26.
  • S. Karimi, M. Tavakkoli Yaraki, and R. R. Karri. A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration، Renewable and Sustainable Energy Reviews, 107 (2019) 535-553. DOI: https://doi.org/10.1016/j.rser.2019.03.025
  • N. Islam, et al. Removal of Copper from Aqueous Solution Using Orange Peel, Sawdust and Bagasse، 2007, 8 (2007).
  • V. C. Srivastava, I. D. Mall, and I. M. Mishra. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA، J. Hazard. Mater., 134 (2006) 257-267. DOI: https://doi.org/10.1016/j.jhazmat.2005.11.052
  • O. Moradi, et al. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution، J. Hazard. Mater., 170 (2009) 673-679. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.012
  • R. W. Rousseau, Handbook of separation process technology. 1987: John Wiley & Sons.
  • R. T. Yang, Gas Separation by Adsorption Processes. 1997, London: Imperial College Press.
  • S. Haukka, E. Lakomaa, and T. Suntola. Adsorption and its applications in industry and environmental protection، Stud. Surf. Sci. Catal. A, 120 (1999) 715.
  • A. Dąbrowski, Adsorption and its Applications in Industry and Environmental Protection. Vol. 2. 1999, Amsterdam: Elsevier.
  • A. Dąbrowski. Adsorption — from theory to practice، Adv. Colloid Interface Sci., 93 (2001) 135-224. DOI: https://doi.org/10.1016/S0001-8686(00)00082-8
  • B. A. Bolto, et al., Chemistry for Protection of the Environment. 1984, Amsterdam: Elsevier.
  • M. Suzuki, Fundamentals of Adsorption. 1 ed, ed. M. Douglas LeVan. 1996: Springer US.
  • S.-P. Tsai. Emerging Separation and Separative Reaction Technologies for Process Waste Reduction: Adsorption and Membrane Systems، Environ. Prog. Sustain. Energy, 19 (2000) S10.
  • S. Faust and O. Aly. Adsorption processes for water Treatment Butterwort Publishers، Boston, MA, (1987).
  • C. Fletcher and T. Burt. Treatment of contaminated dredged material: is it sustainable. in Proceedings of the Cats 4 Congress on Characterisation and Treatment of Sediments. 1999.
  • E. Robens. Adsorption and its applications in industry and environmental protection. A. Dabrowski (ed.). Studies in surface science and catalysis 120 A + B, Elsevier, Amsterdam 1999, ISBN: 0-444-82828.1,
  • 2 Bde., zus. 2132 S. Dfl. 1200، Vakuum in Forschung und Praxis, 11 (1999) 191-191. DOI: https://doi.org/10.1002/vipr.19990110318
  • K. E. Noll, Adsorption technology for air and water pollution control. 1991: CRC Press.
  • P. Wieland. Designing for human presence in space: An introduction to environmental control and life support systems, NASA RP 1324، National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Huntsville, Alabama, (1994).
  • M. D. LeVan, Fundamentals of Adsorption. 1 ed. 1996, University of VirginiaUSA: Springer, Boston, MA.
  • M. Dubinin. Porous structure and adsorption properties of active carbons، CPCar, 9 (1966) 51-119.
  • G. Crini. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment، Prog. Polym. Sci., 30 (2005) 38-70. DOI: https://doi.org/10.1016/j.progpolymsci.2004.11.002
  • G. Crini. Non-conventional low-cost adsorbents for dye removal: A review، Bioresour Technol, 97 (2006) 1061-1085. DOI: https://doi.org/10.1016/j.biortech.2005.05.001
  • R. T. Yang, Adsorbents: fundamentals and applications. 2003: John Wiley & Sons.
  • N. Kannan and M. M. Sundaram. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study، Dyes and Pigments, 51 (2001) 25-40. DOI: https://doi.org/10.1016/S0143-7208(01)00056-0
  • A. Dąbrowski, et al. Adsorption of phenolic compounds by activated carbon—a critical review، Chemosphere, 58 (2005) 1049-1070. DOI: https://doi.org/10.1016/j.chemosphere.2004.09.067
  • L. R. Radovic, C. Moreno-Castilla, and J. Rivera-Utrilla. Carbon materials as adsorbents in aqueous solutions، CPCar, (2001) 227-406.
  • E. L. K. Mui, D. C. K. Ko, and G. McKay. Production of active carbons from waste tyres––a review، Carbon, 42 (2004) 2789-2805. DOI: https://doi.org/10.1016/j.carbon.2004.06.023
  • G. Crini, et al. Conventional and non-conventional adsorbents for wastewater treatment، Environ. Chem. Lett., 17 (2019) 195-213. DOI: 10.1007/s10311-018-0786-8
  • S. Allen and B. Koumanova. Decolourisation of water/wastewater using adsorption، Journal of the University of Chemical Technology and Metallurgy, 40 (2005) 175-192.
  • M. Streat, J. W. Patrick, and M. J. C. Perez. Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons، Water Res, 29 (1995) 467-472. DOI: https://doi.org/10.1016/0043-1354(94)00187-C
  • G. M. Gadd. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment، J. Chem. Technol. Biotechnol., 84 (2009) 13-28. DOI: https://doi.org/10.1002/jctb.1999
  • S. Veli and T. Ozturk. Kinetic modeling of adsorption of reactive azo dye on powdered activated carbon and pumice، Fresenius Environ Bull, 14 (2005) 212-218.
  • R. Sanghi and P. Verma. Decolorisation of aqueous dye solutions by low-cost adsorbents: a review، Coloration Technology, 129 (2013) 85-108. DOI: https://doi.org/10.1111/cote.12019
  • S. Babel and T. A. Kurniawan. Low-cost adsorbents for heavy metals uptake from contaminated water: a review، J. Hazard. Mater., 97 (2003) 219-243. DOI: https://doi.org/10.1016/S0304-3894(02)00263-7
  • A. Z. M. Badruddoza, et al. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater، Carbohydr. Polym., 91 (2013) 322-332. DOI: https://doi.org/10.1016/j.carbpol.2012.08.030
  • S. Deng, et al. Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu(II) and Hg(II)، Chem. Eng. J., 276 (2015) 349-357. DOI: https://doi.org/10.1016/j.cej.2015.04.043
  • J. Rebek Jr. Molecular behavior in small spaces، Acc. Chem. Res., 42 (2009) 1660-1668.
  • M. Henriksson and L. A. Berglund. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde، J. Appl. Polym. Sci., 106 (2007) 2817-2824. DOI: https://doi.org/10.1002/app.26946
  • D. W. O’Connell, C. Birkinshaw, and T. F. O’Dwyer. Heavy metal adsorbents prepared from the modification of cellulose: A review، Bioresour Technol, 99 (2008) 6709-6724. DOI: https://doi.org/10.1016/j.biortech.2008.01.036
  • D. W. O'Connell, C. Birkinshaw, and T. F. O'Dwyer. A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions، J. Appl. Polym. Sci., 99 (2006) 2888-2897. DOI: https://doi.org/10.1002/app.22568
  • D. W. O'Connell, C. Birkinshaw, and T. F. O'Dwyer. Removal of Lead(II) Ions from Aqueous Solutions Using a Modified Cellulose Adsorbent، Adsorption Science & Technology, 24 (2006) 337-348. DOI: 10.1260/026361706779319670
  • D. W. O'Connell, C. Birkinshaw, and T. F. O'Dwyer. A modified cellulose adsorbent for the removal of nickel (II) from aqueous solutions، Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81 (2006) 1820-1828.
  • T. S. Anirudhan, J. Nima, and P. L. Divya. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups، ApSS, 279 (2013) 441-449. DOI: https://doi.org/10.1016/j.apsusc.2013.04.134
  • S. Çavuş, et al. The competitive heavy metal removal by hydroxyethyl cellulose-g-poly(acrylic acid) copolymer and its sodium salt: The effect of copper content on the adsorption capacity، Polym. Bull., 57 (2006) 445-456. DOI: 10.1007/s00289-006-0583-6
  • T. Hajeeth, et al. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer، Int J Biol Macromol, 62 (2013) 59-65. DOI: https://doi.org/10.1016/j.ijbiomac.2013.08.029
  • L. Zheng, et al. Preparation of cellulose derived from corn stalk and its application for cadmium ion adsorption from aqueous solution، Carbohydr. Polym., 90 (2012) 1008-1015. DOI: https://doi.org/10.1016/j.carbpol.2012.06.035
  • N. Biçak, D. C. Sherrington, and B. F. Senkal. Graft copolymer of acrylamide onto cellulose as mercury selective sorbent، React. Funct. Polym., 41 (1999) 69-76. DOI: https://doi.org/10.1016/S1381-5148(99)00021-8
  • M. Liu, et al. Adsorption and desorption of copper(II) from solutions on new spherical cellulose adsorbent، J. Appl. Polym. Sci., 84 (2002) 478-485. DOI: https://doi.org/10.1002/app.10114
  • Z. Bao-Xiu, et al. Preparation and adsorption performance of a cellulosic-adsorbent resin for copper(II)، J. Appl. Polym. Sci., 99 (2006) 2951-2956. DOI: https://doi.org/10.1002/app.22986
  • R. R. Navarro, K. Sumi, and M. Matsumura. Improved metal affinity of chelating adsorbents through graft polymerization، Water Res, 33 (1999) 2037-2044. DOI: https://doi.org/10.1016/S0043-1354(98)00421-7
  • H. Kubota and Y. Shigehisa. Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions، J. Appl. Polym. Sci., 56 (1995) 147-151. DOI: https://doi.org/10.1002/app.1995.070560204
  • H. Kubota and S. Suzuki. Comparative examinations of reactivity of grafted celluloses prepared by u.v.- and ceric salt-initiated graftings، Eur. Polym. J., 31 (1995) 701-704. DOI: https://doi.org/10.1016/0014-3057(95)00037-2
  • L. V. Gurgel, et al. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride، Bioresour Technol, 99 (2008) 3077-83. DOI: 10.1016/j.biortech.2007.05.072
  • L. V. A. Gurgel, et al. Adsorption of chromium (VI) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups، Bioresour Technol, 100 (2009) 3214-3220. DOI: https://doi.org/10.1016/j.biortech.2009.01.068
  • L. V. A. Gurgel and L. F. Gil. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine، Carbohydr. Polym., 77 (2009) 142-149. DOI: https://doi.org/10.1016/j.carbpol.2008.12.014
  • Y. Zhou, et al. Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride، JMatS, 47 (2012) 5019-5029. DOI: 10.1007/s10853-012-6378-2
  • B. Belhalfaoui, et al. Succinate-bonded cellulose: A regenerable and powerful sorbent for cadmium-removal from spiked high-hardness groundwater، J. Hazard. Mater., 169 (2009) 831-837. DOI: https://doi.org/10.1016/j.jhazmat.2009.04.021
  • Y. Zhou, et al. Separation of chromium (VI) from aqueous solutions by cellulose modified with D-glucose and quaternary ammonium groups، Cellul. Chem. Technol., 46 (2012) 319.
  • W.-C. Chan and J.-Y. Wu. Dynamic adsorption behaviors between Cu2+ ion and water-insoluble amphoteric starch in aqueous solutions، J. Appl. Polym. Sci., 81 (2001) 2849-2855. DOI: https://doi.org/10.1002/app.1734
  • M. Haroon, et al. Chemical modification of starch and its application as an adsorbent material، RSC Advances, 6 (2016) 78264-78285. DOI: 10.1039/C6RA16795K
  • A. O. Ashogbon and E. T. Akintayo. Recent trend in the physical and chemical modification of starches from different botanical sources: A review، Starch - Stärke, 66 (2014) 41-57. DOI: https://doi.org/10.1002/star.201300106
  • Q. Chen, et al. Chemical modification of starch microcrystals and their application as an adsorbent for metals in aqueous solutions، BioResources, 14 (2019) 302-312.
  • D. K. Kweon, et al. Adsorption of divalent metal ions by succinylated and oxidized corn starches، Carbohydr. Polym., 46 (2001) 171-177. DOI: https://doi.org/10.1016/S0144-8617(00)00300-3
  • B. M. Ibrahim and N. A. Fakhre. Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater، Int J Biol Macromol, 123 (2019) 70-80. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.058
  • K. Feng and G. Wen. Absorbed Pb<sup>2+</sup> and Cd<sup>2+</sup> Ions in Water by Cross-Linked Starch Xanthate، International Journal of Polymer Science, 2017 (2017) 6470306. DOI: 10.1155/2017/6470306
  • L. Ekebafe, D. Ogbeifun, and F. Okieimen. Removal of heavy metals from aqueous media using native cassava starch hydrogel، African Journal of Environmental Science and Technology, 6 (2012) 275-282.
  • A.-R. M. Abdul-Raheim, et al. Modified starch iron oxide nanocomposites as low cost absorbents for selective removal of some heavy metals from aqueous solutions، Research Journal of Pharmaceutical Biological and Chemical Sciences, 6 (2015) 1197-1212.
  • A. Dong, et al. A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI)، J. Hazard. Mater., 181 (2010) 448-454. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.031
  • J. Hu, T. Tian, and Z. Xiao. Preparation of cross-linked porous starch and its adsorption for chromium (VI) in tannery wastewater، Polym. Adv. Technol., 26 (2015) 1259-1266. DOI: https://doi.org/10.1002/pat.3561
  • Y. Chen, et al. A novel polyamine-type starch/glycidyl methacrylate copolymer for adsorption of Pb (II), Cu (II), Cd (II) and Cr (III) ions from aqueous solutions، Royal Society open science, 5 (2018) 180281. DOI: 10.1098/rsos.180281
  • Z. Sekhavat Pour and M. Ghaemy. Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly(vinyl alcohol)/carboxymethyl starch-g-poly(vinyl imidazole)، RSC Advances, 5 (2015) 64106-64118. DOI: 10.1039/C5RA08025H
  • X. Cheng, et al. Synthesis and adsorption performance of dithiocarbamate-modified glycidyl methacrylate starch، Carbohydr. Polym., 96 (2013) 320-325. DOI: https://doi.org/10.1016/j.carbpol.2013.04.001
  • W. Ding, P. Zhao, and R. Li. Removal of Zn (II) ions by dialdehyde 8-aminoquinoline starch from aqueous solution، Carbohydr. Polym., 83 (2011) 802-807. DOI: https://doi.org/10.1016/j.carbpol.2010.08.057
  • J.-T. Liu, et al. Adsorption Behavior of Cd (II) from Aqueous Solution using Dialdehyde 5-Aminophenanthroline Starch، SS&T, 48 (2013) 766-774. DOI: 10.1080/01496395.2012.707730
  • M. Irani, et al. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions، JEnvS, 27 (2015) 9-20. DOI: https://doi.org/10.1016/j.jes.2014.05.049
  • B. W. Zhang, et al. Synthesis of amidoxime-containing modified starch and application for the removal of heavy metals، Reactive Polymers, 20 (1993) 207-216. DOI: https://doi.org/10.1016/0923-1137(93)90094-V
  • X. Ma, et al. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution، Food Chem., 181 (2015) 133-139. DOI: https://doi.org/10.1016/j.foodchem.2015.02.089
  • S. Keleş and G. Güçlü. Competitive Removal of Heavy Metal Ions by Starch-Graft-Acrylic Acid Copolymers، PPTEn, 45 (2006) 365-371. DOI: 10.1080/03602550600553291
  • E. Guibal. Interactions of metal ions with chitosan-based sorbents: a review، Sep. Purif. Technol., 38 (2004) 43-74. DOI: https://doi.org/10.1016/j.seppur.2003.10.004
  • A. Findon, G. McKay, and H. S. Blair. Transport studies for the sorption of copper ions by chitosan، Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 28 (1993) 173-185. DOI: 10.1080/10934529309375870
  • M. Vakili, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review، Carbohydr. Polym., 113 (2014) 115-130. DOI: https://doi.org/10.1016/j.carbpol.2014.07.007
  • L. Zhang, Y. Zeng, and Z. Cheng. Removal of heavy metal ions using chitosan and modified chitosan: A review، J. Mol. Liq., 214 (2016) 175-191. DOI: https://doi.org/10.1016/j.molliq.2015.12.013
  • A. Jaiswal, S. S. Ghsoh, and A. Chattopadhyay. Quantum Dot Impregnated-Chitosan Film for Heavy Metal Ion Sensing and Removal، Langmuir, 28 (2012) 15687-15696. DOI: 10.1021/la3027573
  • M. Arvand and M. A. Pakseresht. Cadmium adsorption on modified chitosan-coated bentonite: batch experimental studies، J. Chem. Technol. Biotechnol., 88 (2013) 572-578. DOI: https://doi.org/10.1002/jctb.3863
  • A. A. Radwan, F. K. Alanazi, and I. A. Alsarra. Microwave Irradiation-Assisted Synthesis of a Novel Crown Ether Crosslinked Chitosan as a Chelating Agent for Heavy Metal Ions (M+n)، Molecules, 15 (2010) 6257-6268.
  • P. D. Chethan and B. Vishalakshi. Synthesis of ethylenediamine modified chitosan and evaluation for removal of divalent metal ions، Carbohydr. Polym., 97 (2013) 530-536. DOI: https://doi.org/10.1016/j.carbpol.2013.04.102
  • A. Eser, et al. Removal of nickel(II) ions by histidine modified chitosan beads، Chem. Eng. J., 210 (2012) 590-596. DOI: https://doi.org/10.1016/j.cej.2012.09.020
  • N. G. Kandile and A. S. Nasr. New hydrogels based on modified chitosan as metal biosorbent agents، Int J Biol Macromol, 64 (2014) 328-333. DOI: https://doi.org/10.1016/j.ijbiomac.2013.12.022
  • R. B. Rabelo, et al. Adsorption of Copper(II) and Mercury(II) Ions onto Chemically-Modified Chitosan Membranes: Equilibrium and Kinetic Properties، Adsorption Science & Technology, 30 (2012) 1-21. DOI: 10.1260/0263-6174.30.1.1
  • E. Repo, et al. Effect of EDTA and some other interfering species on the adsorption of Co(II) by EDTA-modified chitosan، Desalination, 321 (2013) 93-102. DOI: https://doi.org/10.1016/j.desal.2013.02.028
  • A. Santhana Krishna Kumar, et al. Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption، Int J Biol Macromol, 66 (2014) 135-143. DOI: https://doi.org/10.1016/j.ijbiomac.2014.02.007
  • Q. Song, et al. Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan، SS&T, 49 (2014) 1235-1243. DOI: 10.1080/01496395.2013.872656
  • N. V. Suc and H. T. Y. Ly. Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde، J. Chem. Technol. Biotechnol., 88 (2013) 1641-1649. DOI: https://doi.org/10.1002/jctb.4013
  • H. Wang, et al. Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite، JEnvS, 26 (2014) 1879-1884. DOI: https://doi.org/10.1016/j.jes.2014.06.021
  • G. Yang, et al. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan، ApSS, 292 (2014) 710-716. DOI: https://doi.org/10.1016/j.apsusc.2013.12.038
  • G. Z. Kyzas, et al. Poly(itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake، Langmuir, 30 (2014) 120-131. DOI: 10.1021/la402778x
  • R. Karthik and S. Meenakshi. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan، Chem. Eng. J., 263 (2015) 168-177. DOI: https://doi.org/10.1016/j.cej.2014.11.015
  • A. Chen, et al. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol، Chem. Eng. J., 191 (2012) 85-94. DOI: https://doi.org/10.1016/j.cej.2012.02.071
  • L. Vitali, et al. Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions، Int J Biol Macromol, 42 (2008) 152-157. DOI: https://doi.org/10.1016/j.ijbiomac.2007.10.020
  • H. L. Vasconcelos, et al. Competitive adsorption of Cu(II) and Cd(II) ions on spray-dried chitosan loaded with Reactive Orange 16، Materials Science and Engineering: C, 29 (2009) 613-618. DOI: https://doi.org/10.1016/j.msec.2008.10.022
  • D. Chauhan and N. Sankararamakrishnan. Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate، Bioresour Technol, 99 (2008) 9021-9024. DOI: https://doi.org/10.1016/j.biortech.2008.04.024
  • R. Laus, et al. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent، J. Hazard. Mater., 183 (2010) 233-241. DOI: https://doi.org/10.1016/j.jhazmat.2010.07.016
  • S.-P. Kuang, et al. Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions، J. Hazard. Mater., 260 (2013) 210-219. DOI: https://doi.org/10.1016/j.jhazmat.2013.05.019
  • M. Kumar, B. P. Tripathi, and V. K. Shahi. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater، J. Hazard. Mater., 172 (2009) 1041-1048. DOI: https://doi.org/10.1016/j.jhazmat.2009.07.108
  • H. V. Tran, L. D. Tran, and T. N. Nguyen. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution، Materials Science and Engineering: C, 30 (2010) 304-310. DOI: https://doi.org/10.1016/j.msec.2009.11.008
  • S. Hasan, et al. Adsorption of Divalent Cadmium (Cd(II)) from Aqueous Solutions onto Chitosan-Coated Perlite Beads، Ind. Eng. Chem. Res., 45 (2006) 5066-5077. DOI: 10.1021/ie0402620
  • H. L. Vasconcelos, et al. Chitosan modified with Reactive Blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions، React. Funct. Polym., 67 (2007) 1052-1060. DOI: https://doi.org/10.1016/j.reactfunctpolym.2007.06.009
  • T. C. Coelho, et al. Effect of heparin coating on epichlorohydrin cross-linked chitosan microspheres on the adsorption of copper (II) ions، React. Funct. Polym., 67 (2007) 468-475. DOI: https://doi.org/10.1016/j.reactfunctpolym.2007.02.009
  • K. C. Justi, et al. Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol، J. Colloid Interface Sci., 291 (2005) 369-374. DOI: https://doi.org/10.1016/j.jcis.2005.05.017
  • Y. Vijaya, et al. Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption، Carbohydr. Polym., 72 (2008) 261-271. DOI: https://doi.org/10.1016/j.carbpol.2007.08.010
  • H. H. dos Santos, et al. Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe)، Chemosphere, 82 (2011) 278-283. DOI: https://doi.org/10.1016/j.chemosphere.2010.09.033
  • W. Jiang, et al. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal، J. Hazard. Mater., 276 (2014) 295-301. DOI: https://doi.org/10.1016/j.jhazmat.2014.05.032
  • M. T. Sikder, et al. Preparation and characterization of chitosan–caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater، Chem. Eng. J., 236 (2014) 378-387. DOI: https://doi.org/10.1016/j.cej.2013.09.093
  • Y. Meng, et al. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method، ApSS, 324 (2015) 745-750. DOI: https://doi.org/10.1016/j.apsusc.2014.11.028
  • M. Monier, D. M. Ayad, and D. A. Abdel-Latif. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base، Colloids Surf. B. Biointerfaces, 94 (2012) 250-258. DOI: https://doi.org/10.1016/j.colsurfb.2012.01.051
  • H. Ge, H. Chen, and S. Huang. Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb2+ and Cu2+، J. Appl. Polym. Sci., 125 (2012) 2716-2723. DOI: https://doi.org/10.1002/app.36588
  • M. V. Dinu and E. S. Dragan. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms، Chem. Eng. J., 160 (2010) 157-163. DOI: https://doi.org/10.1016/j.cej.2010.03.029
  • B. Kannamba, K. L. Reddy, and B. V. AppaRao. Removal of Cu(II) from aqueous solutions using chemically modified chitosan، J. Hazard. Mater., 175 (2010) 939-948. DOI: https://doi.org/10.1016/j.jhazmat.2009.10.098
  • X. Li, et al. Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites، J. Colloid Interface Sci., 448 (2015) 389-397. DOI: https://doi.org/10.1016/j.jcis.2015.02.039
  • X.-j. Hu, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics، J. Hazard. Mater., 185 (2011) 306-314. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.034
  • A. C. Zimmermann, et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe)، J. Hazard. Mater., 179 (2010) 192-196. DOI: https://doi.org/10.1016/j.jhazmat.2010.02.078
  • Q. Liu, et al. Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite، Korean J. Chem. Eng., 32 (2015) 1314-1322. DOI: 10.1007/s11814-014-0339-1
  • Z. Wu, et al. Cr(VI) adsorption on an improved synthesised cross-linked chitosan resin، J. Mol. Liq., 170 (2012) 25-29. DOI: https://doi.org/10.1016/j.molliq.2012.03.016
  • S. Pandey and S. B. Mishra. Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake، J. Colloid Interface Sci., 361 (2011) 509-520. DOI: https://doi.org/10.1016/j.jcis.2011.05.031
  • M. Rajiv Gandhi and S. Meenakshi. Preparation of amino terminated polyamidoamine functionalized chitosan beads and its Cr(VI) uptake studies، Carbohydr. Polym., 91 (2013) 631-637. DOI: https://doi.org/10.1016/j.carbpol.2012.08.028
  • D. Chauhan, M. Jaiswal, and N. Sankararamakrishnan. Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan، Carbohydr. Polym., 88 (2012) 670-675. DOI: https://doi.org/10.1016/j.carbpol.2012.01.014
  • S. Hydari, et al. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium، Chem. Eng. J., 193-194 (2012) 276-282. DOI: https://doi.org/10.1016/j.cej.2012.04.057
  • F. Zhao, et al. Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms، J. Colloid Interface Sci., 409 (2013) 174-182. DOI: https://doi.org/10.1016/j.jcis.2013.07.062
  • A. Maleki, E. Pajootan, and B. Hayati. Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies، Journal of the Taiwan Institute of Chemical Engineers, 51 (2015) 127-134. DOI: https://doi.org/10.1016/j.jtice.2015.01.004
  • S. Madala, et al. Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent، Arabian Journal of Chemistry, 10 (2017) S1883-S1893. DOI: https://doi.org/10.1016/j.arabjc.2013.07.017
  • N. B. Milosavljević, et al. Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution، Chem. Eng. J., 165 (2010) 554-562. DOI: https://doi.org/10.1016/j.cej.2010.09.072
  • A. K. Mishra and A. K. Sharma. Synthesis of γ-cyclodextrin/chitosan composites for the efficient removal of Cd(II) from aqueous solution، Int J Biol Macromol, 49 (2011) 504-512. DOI: https://doi.org/10.1016/j.ijbiomac.2011.06.002
  • L. Zhou, et al. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres، Desalination, 258 (2010) 41-47. DOI: https://doi.org/10.1016/j.desal.2010.03.051
  • M. Monier and D. A. Abdel-Latif. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions، J. Hazard. Mater., 209-210 (2012) 240-249. DOI: https://doi.org/10.1016/j.jhazmat.2012.01.015
  • M. Aliabadi, et al. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution، Chem. Eng. J., 220 (2013) 237-243. DOI: https://doi.org/10.1016/j.cej.2013.01.021
  • F. G. L. Medeiros Borsagli, et al. O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions، React. Funct. Polym., 97 (2015) 37-47. DOI: https://doi.org/10.1016/j.reactfunctpolym.2015.10.005
  • B. Yu, et al. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel، Journal of Environmental Chemical Engineering, 1 (2013) 1044-1050. DOI: https://doi.org/10.1016/j.jece.2013.08.017
  • B. Liu, et al. Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions، Chem. Eng. J., 220 (2013) 412-419. DOI: https://doi.org/10.1016/j.cej.2013.01.071
  • L. Zhou, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres، J. Hazard. Mater., 161 (2009) 995-1002. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.078
  • E. Repo, et al. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials، J. Colloid Interface Sci., 358 (2011) 261-267. DOI: https://doi.org/10.1016/j.jcis.2011.02.059
  • Y. Zhu, J. Hu, and J. Wang. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan، J. Hazard. Mater., 221-222 (2012) 155-161. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.026
  • G. Huang, et al. Adsorption of Chromium(VI) from Aqueous Solutions Using Cross-Linked Magnetic Chitosan Beads، Ind. Eng. Chem. Res., 48 (2009) 2646-2651. DOI: 10.1021/ie800814h
  • W. S. Wan Ngah, C. S. Endud, and R. Mayanar. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads، React. Funct. Polym., 50 (2002) 181-190. DOI: https://doi.org/10.1016/S1381-5148(01)00113-4
  • S.-T. Lee, et al. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin، Poly, 42 (2001) 1879-1892. DOI: https://doi.org/10.1016/S0032-3861(00)00402-X
  • M. Monier. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff's base، Int J Biol Macromol, 50 (2012) 773-781. DOI: https://doi.org/10.1016/j.ijbiomac.2011.11.026
  • M. A. Badawi, et al. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism، Int J Biol Macromol, 99 (2017) 465-476. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.003
  • W. S. Wan Ngah, A. Kamari, and Y. J. Koay. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads، Int J Biol Macromol, 34 (2004) 155-161. DOI: https://doi.org/10.1016/j.ijbiomac.2004.03.001
  • S. Sun and A. Wang. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan، J. Hazard. Mater., 131 (2006) 103-111. DOI: https://doi.org/10.1016/j.jhazmat.2005.09.012
  • L. Fan, et al. Preparation of magnetic modified chitosan and adsorption of Zn2+ from aqueous solutions، Colloids Surf. B. Biointerfaces, 88 (2011) 574-581. DOI: https://doi.org/10.1016/j.colsurfb.2011.07.038
  • A. Kamari and W. S. W. Ngah. Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan، Colloids Surf. B. Biointerfaces, 73 (2009) 257-266. DOI: https://doi.org/10.1016/j.colsurfb.2009.05.024
  • W.-L. Du, et al. Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper (II) from aqueous solution، J. Appl. Polym. Sci., 111 (2009) 2881-2885. DOI: https://doi.org/10.1002/app.29247
  • I. Anastopoulos, et al. Chitin Adsorbents for Toxic Metals: A Review، International Journal of Molecular Sciences, 18 (2017) 114.
  • A. Bhatnagar and M. Sillanpää. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater — A short review، Adv. Colloid Interface Sci., 152 (2009) 26-38. DOI: https://doi.org/10.1016/j.cis.2009.09.003
  • J. L. Barriada, et al. Waste spider crab shell and derived chitin as low-cost materials for cadmium and lead removal، J. Chem. Technol. Biotechnol., 82 (2007) 39-46. DOI: https://doi.org/10.1002/jctb.1633
  • G. N. Kousalya, et al. Preparation and metal uptake studies of modified forms of chitin، Int J Biol Macromol, 47 (2010) 583-589. DOI: https://doi.org/10.1016/j.ijbiomac.2010.07.014
  • W. Boulaiche, B. Hamdi, and M. Trari. Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies، Applied Water Science, 9 (2019) 39. DOI: 10.1007/s13201-019-0926-8
  • N. Jaafarzadeh, et al. Biosorption of heavy metals from aqueous solutions onto chitin، International Journal of Environmental Health Engineering, 4 (2015) 7.
  • S.-H. Kim, et al. Adsorption of lead (II) ions using surface-modified chitins، Journal of Industrial and Engineering Chemistry, 12 (2006) 469-475.
  • R. Karthik and S. Meenakshi. Chemical modification of chitin with polypyrrole for the uptake of Pb(II) and Cd(II) ions، Int J Biol Macromol, 78 (2015) 157-164. DOI: https://doi.org/10.1016/j.ijbiomac.2015.03.041
  • X. Sun, et al. Surface-modified chitin by TEMPO-mediated oxidation and adsorption of Cd(II)، Colloids Surf. Physicochem. Eng. Aspects, 555 (2018) 103-110. DOI: https://doi.org/10.1016/j.colsurfa.2018.06.041
  • M. Wysokowski, et al. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nickel(II) Ions، Mar. Drugs, 12 (2014) 2245-2268.
  • T. T. Hanh, H. T. Huy, and N. Q. Hien. Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water، RaPC, 106 (2015) 235-241. DOI: https://doi.org/10.1016/j.radphyschem.2014.08.004
  • B. Benguella and H. Benaissa. Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies، Water Res, 36 (2002) 2463-2474. DOI: https://doi.org/10.1016/S0043-1354(01)00459-6
  • R. Karthik and S. Meenakshi. Synthesis, characterization and Cr(VI) uptake studies of polypyrrole functionalized chitin، SynMe, 198 (2014) 181-187. DOI: https://doi.org/10.1016/j.synthmet.2014.10.012
  • J. Shao, Y. Yang, and C. Shi. Preparation and adsorption properties for metal ions of chitin modified by L-cysteine، J. Appl. Polym. Sci., 88 (2003) 2575-2579. DOI: https://doi.org/10.1002/app.12098
  • A. Labidi, et al. Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies، Journal of the Taiwan Institute of Chemical Engineers, 65 (2016) 140-148. DOI: https://doi.org/10.1016/j.jtice.2016.04.030
  • R. Forutan, et al. Kinetic and equilibrium studies on the adsorption of lead by the chitin of pink shrimp (Solenocera melantho)، Entomol. Appl. Sci. Lett, 3 (2016) 20-26.
  • C. Xiong. Adsorption of cadmium (II) by chitin، J. Chem. Soc. Pak., 32 (2010) 429.
  • N. N. Kocer, G. Uslu, and Y. Cuci. The Adsorption of Zn(II) Ions onto Chitin: Determination of Equilibrium, Kinetic and Thermodynamic Parameters، Adsorption Science & Technology, 26 (2008) 333-344. DOI: 10.1260/026361708787548774
  • R. Yang, et al. Thiol-functionalized chitin nanofibers for As (III) adsorption، Poly, 60 (2015) 9-17. DOI: https://doi.org/10.1016/j.polymer.2015.01.025
  • V. K. Thakur and M. K. Thakur. Recent advances in green hydrogels from lignin: a review، Int J Biol Macromol, 72 (2015) 834-847. DOI: https://doi.org/10.1016/j.ijbiomac.2014.09.044
  • V. K. Thakur, et al. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review، ACS Sustainable Chemistry & Engineering, 2 (2014) 1072-1092. DOI: 10.1021/sc500087z
  • Y. Ge, et al. Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers، Journal of Materials Chemistry A, 2 (2014) 2136-2145. DOI: 10.1039/C3TA14333C
  • Z. Li, J. Chen, and Y. Ge. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes، Chem. Eng. J., 308 (2017) 809-817. DOI: https://doi.org/10.1016/j.cej.2016.09.126
  • Y. Ge and Z. Li. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review، ACS Sustainable Chemistry & Engineering, 6 (2018) 7181-7192. DOI: 10.1021/acssuschemeng.8b01345
  • S. K. Srivastava, A. K. Singh, and A. Sharma. Studies on the uptake of lead and zinc by lignin obtained from black liquor – a paper industry waste material، Environ Technol, 15 (1994) 353-361. DOI: 10.1080/09593339409385438
  • Y. Wu, et al. Adsorption of chromium(III) on lignin، Bioresour Technol, 99 (2008) 7709-7715. DOI: https://doi.org/10.1016/j.biortech.2008.01.069
  • W. S. Peternele, A. A. Winkler-Hechenleitner, and E. A. Gómez Pineda. Adsorption of Cd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse، Bioresour Technol, 68 (1999) 95-100. DOI: https://doi.org/10.1016/S0960-8524(98)00083-2
  • B. Tesfaw, et al. Adsorption of Pb (II) ions from aqueous solution using lignin from Hagenia abyssinica، Bull. Chem. Soc. Ethiop., 30 (2016) 473-484.
  • Z. Song, et al. Novel magnetic lignin composite sorbent for chromium(vi) adsorption، RSC Advances, 5 (2015) 13028-13035. DOI: 10.1039/C4RA15546G
  • A. Celik and A. Demirbaş. Removal of Heavy Metal Ions from Aqueous Solutions via Adsorption onto Modified Lignin from Pulping Wastes، EnS, 27 (2005) 1167-1177. DOI: 10.1080/00908310490479583
  • A. Demirbas. Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication، J. Hazard. Mater., 109 (2004) 221-226. DOI: https://doi.org/10.1016/j.jhazmat.2004.04.002
  • J. Kim, J. D. Mann, and J. G. Spencer. Arsenic Removal from Water Using Lignocellulose Adsorption Medium (LAM)، Journal of Environmental Science and Health, Part A, 41 (2006) 1529-1542. DOI: 10.1080/10934520600754284
  • A. H. T. S. W. S. B. Lalvani. Chromium Adsorption by Lignin، EnS, 22 (2000) 45-56. DOI: 10.1080/00908310050014207
  • B. O. Ogunsile and M. O. Bamgboye. Biosorption of Lead (II) onto soda lignin gels extracted from Nypa fruiticans، Journal of Environmental Chemical Engineering, 5 (2017) 2708-2717. DOI: https://doi.org/10.1016/j.jece.2017.05.016
  • N. Pérez, L. Delgado, and J. González. Removal of Ni and V from aqueous solutions by lignins subjected to oxidative treatment with KMnO4، Latin American applied research, 42 (2012) 223-228.
  • K. V. R. Verma, T. Swaminathan, and P. V. R. Subrahmanyam. Heavy metal removal with lignin، Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 25 (1990) 243-265. DOI: 10.1080/10934529009375554
  • X. Guo, S. Zhang, and X.-q. Shan. Adsorption of metal ions on lignin، J. Hazard. Mater., 151 (2008) 134-142. DOI: https://doi.org/10.1016/j.jhazmat.2007.05.065
  • D. Mohan, C. U. Pittman, and P. H. Steele. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent، J. Colloid Interface Sci., 297 (2006) 489-504. DOI: https://doi.org/10.1016/j.jcis.2005.11.023
  • B. Acemioǧlu, et al. Copper(II) removal from aqueous solution by organosolv lignin and its recovery، J. Appl. Polym. Sci., 89 (2003) 1537-1541. DOI: https://doi.org/10.1002/app.12251
  • H. Harmita, K. G. Karthikeyan, and X. Pan. Copper and cadmium sorption onto kraft and organosolv lignins، Bioresour Technol, 100 (2009) 6183-6191. DOI: https://doi.org/10.1016/j.biortech.2009.06.093
  • Z. Li, Y. Ge, and L. Wan. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media، J. Hazard. Mater., 285 (2015) 77-83. DOI: https://doi.org/10.1016/j.jhazmat.2014.11.033
  • A. B. Albadarin, et al. Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts، Chem. Eng. J., 169 (2011) 20-30. DOI: https://doi.org/10.1016/j.cej.2011.02.044
  • T. Todorciuc, L. Bulgariu, and V. Popa. Adsorption of Cu(ii) from Aqueous Solution on Wheat Straw Lignin: Equilibrium and Kinetic Studies، Cellul. Chem. Technol., 49 (2015) 5-6.
  • P. Merdy, et al. Copper Sorption on a Straw Lignin: Experiments and EPR Characterization، J. Colloid Interface Sci., 245 (2002) 24-31. DOI: https://doi.org/10.1006/jcis.2001.7972
  • D. Parajuli, et al. Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel، React. Funct. Polym., 62 (2005) 129-139. DOI: https://doi.org/10.1016/j.reactfunctpolym.2004.11.003
  • F.-B. Liang, et al. Adsorption of hexavalent chromium on a lignin-based resin: Equilibrium, thermodynamics, and kinetics، Journal of Environmental Chemical Engineering, 1 (2013) 1301-1308. DOI: https://doi.org/10.1016/j.jece.2013.09.025
  • J. Tian, et al. Preparation and performance of dimethyl-acetoxy-(2-carboxymethyl ether)-lignin ammonium chloride amphoteric surfactant، BioResources, 9 (2014) 6290-6303.
  • T. Dizhbite, et al. Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery، Holz, 67 (2013) 539-547. DOI: doi:10.1515/hf-2012-0193
  • Q. Yao, et al. Adsorption of lead ions using a modified lignin hydrogel، Journal of Polymer Research, 21 (2014) 465. DOI: 10.1007/s10965-014-0465-9
  • Y. Ge, Q. Song, and Z. Li. A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution، Journal of Industrial and Engineering Chemistry, 23 (2015) 228-234. DOI: https://doi.org/10.1016/j.jiec.2014.08.021
  • F. Xu, et al. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal، JEnvS, 53 (2017) 132-140. DOI: https://doi.org/10.1016/j.jes.2016.03.026
  • Y. Ge, et al. Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms، Journal of Industrial and Engineering Chemistry, 20 (2014) 4429-4436. DOI: https://doi.org/10.1016/j.jiec.2014.02.011
  • C. Jin, et al. Clickable Synthesis of 1,2,4-Triazole Modified Lignin-Based Adsorbent for the Selective Removal of Cd(II)، ACS Sustainable Chemistry & Engineering, 5 (2017) 4086-4093. DOI: 10.1021/acssuschemeng.7b00072
  • X. Liu, et al. Adsorption of heavy metal ion from aqueous single metal solution by aminated epoxy-lignin، BioResources, 8 (2013) 2257-2269.
  • Y. Ge, L. Qin, and Z. Li. Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal، Materials & Design, 95 (2016) 141-147. DOI: https://doi.org/10.1016/j.matdes.2016.01.102
  • Z. Li, Y. Kong, and Y. Ge. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution، Chem. Eng. J., 270 (2015) 229-234. DOI: https://doi.org/10.1016/j.cej.2015.01.123
  • Z. Li, et al. Surface-Functionalized Porous Lignin for Fast and Efficient Lead Removal from Aqueous Solution، ACS Applied Materials & Interfaces, 7 (2015) 15000-15009. DOI: 10.1021/acsami.5b03994
  • Ł. Klapiszewski, et al. Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal، Chem. Eng. J., 260 (2015) 684-693. DOI: https://doi.org/10.1016/j.cej.2014.09.054
  • Ł. Klapiszewski, K. Siwińska-Stefańska, and D. Kołodyńska. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II)، Chem. Eng. J., 314 (2017) 169-181. DOI: https://doi.org/10.1016/j.cej.2016.12.114
  • F. Ciesielczyk, et al. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent، J. Hazard. Mater., 328 (2017) 150-159. DOI: https://doi.org/10.1016/j.jhazmat.2017.01.009
  • L. Qin, et al. Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water، Journal of the Taiwan Institute of Chemical Engineers, 71 (2017) 84-90. DOI: https://doi.org/10.1016/j.jtice.2016.11.012
  • A. Naseer, et al. Lignin/alginate/hydroxyapatite composite beads for the efficient removal of copper and nickel ions from aqueous solutions، Desalination and Water Treatment, 184 (2020) 199.
  • Y. Jin, et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin، Int J Biol Macromol, 123 (2019) 50-58. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.213
  • C. Liu, Y. Li, and Y. Hou. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead، Molecules, 24 (2019) 2704.
  • Q.-F. Lü, et al. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids، Bioresour Technol, 104 (2012) 111-118. DOI: https://doi.org/10.1016/j.biortech.2011.10.055
  • P. Bartczak, et al. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent، J Environ Manage, 204 (2017) 300-310. DOI: https://doi.org/10.1016/j.jenvman.2017.08.059
  • F. Checkol, et al. Highly Stable and Efficient Lignin-PEDOT/PSS Composites for Removal of Toxic Metals، Advanced Sustainable Systems, 2 (2018) 1700114. DOI: https://doi.org/10.1002/adsu.201700114
  • B. Wang, et al. Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II)، Industrial Crops and Products, 108 (2017) 72-80. DOI: https://doi.org/10.1016/j.indcrop.2017.06.013
  • X.-F. Sun, et al. Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution، Int J Biol Macromol, 127 (2019) 511-519. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.058
  • C. Jin, et al. Thiol–Ene Synthesis of Cysteine-Functionalized Lignin for the Enhanced Adsorption of Cu(II) and Pb(II)، Ind. Eng. Chem. Res., 57 (2018) 7872-7880. DOI: 10.1021/acs.iecr.8b00823
  • M. Liu, et al. Simultaneous removal of Pb2+, Cu2+ and Cd2+ ions from wastewater using hierarchical porous polyacrylic acid grafted with lignin، J. Hazard. Mater., 392 (2020) 122208. DOI: https://doi.org/10.1016/j.jhazmat.2020.122208
  • H. Qian, J. Wang, and L. Yan. Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal، Journal of Bioresources and Bioproducts, 5 (2020) 204-210. DOI: https://doi.org/10.1016/j.jobab.2020.07.006
  • X. Zhang, Y. Li, and Y. Hou. Preparation of magnetic polyethylenimine lignin and its adsorption of Pb(II)، Int J Biol Macromol, 141 (2019) 1102-1110. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.061
  • Ł. Klapiszewski, K. Siwińska-Stefańska, and D. Kołodyńska. Development of lignin based multifunctional hybrid materials for Cu(II) and Cd(II) removal from the aqueous system، Chem. Eng. J., 330 (2017) 518-530. DOI: https://doi.org/10.1016/j.cej.2017.07.177
  • A. E. Okoronkwo and S. J. Olusegun. Biosorption of nickel using unmodified and modified lignin extracted from agricultural waste، Desalination and Water Treatment, 51 (2013) 1989-1997. DOI: 10.1080/19443994.2012.714896
  • Ł. Klapiszewski, et al. Removal of lead (II) ions by an adsorption process with the use of an advanced SiO2/lignin biosorbent، Polish Journal of Chemical Technology, 19 (2017).
  • Q. Wang, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2 +  ions from water، Chem. Eng. J., 359 (2019) 265-274. DOI: https://doi.org/10.1016/j.cej.2018.11.130
  • M. Luo, et al. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water، Bioresour Technol, 259 (2018) 312-318. DOI: https://doi.org/10.1016/j.biortech.2018.03.075
  • V. Nair, A. Panigrahy, and R. Vinu. Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater، Chem. Eng. J., 254 (2014) 491-502. DOI: https://doi.org/10.1016/j.cej.2014.05.045
  • Q. Wang, et al. Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin، Chem. Eng. J., 391 (2020) 123581. DOI: https://doi.org/10.1016/j.cej.2019.123581

Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article

Year 2025, Volume: 53 Issue: 1, 127 - 158, 01.01.2025
https://doi.org/10.15671/hjbc.1419925

Abstract

Contaminant removal from sewage is a serious difficulty on the subject of water contamination. Adsorption is a direct and efficient technique for eliminating contaminants that involves the use of solid materials known as adsorbents. Mineral, organic, or biological adsorbent materials can be utilized. At the industrial scale, activated carbon is the favored traditional material. Activated carbon is widely used to remove contaminants from wastewater streams and to absorb them from groundwater, rivers, lakes, and reservoirs, which are all sources of potable water. However, because of its expensive cost, activated carbon is not widely used. Several ways of utilizing non-conventional adsorbents have been investigated over the last three decades to generate cheaper and more effective adsorbents to remove contaminants at trace levels. This article provides an overview of liquid-solid adsorption techniques for pollution removal that use low-cost polymer adsorbents. The paper discusses the fundamentals of adsorption and provides a classification for adsorbent materials as well as numerous low-cost biological macromolecule adsorbents, includes cellulose, starch, chitin, chitosan, lignin, and their heavy metal removal capability.

References

  • D. D. Do, Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs). Vol. 2. 1998: World Scientific.
  • M. El-Naas and M. A. Alhaija. Modelling of adsorption processes، Mathematical Modelling, Ed. Christopher R. Brennan, Nova Publishers, Inc, (2011).
  • W. Stumm, J. J. Morgan, and J. J. Morgan, Aquatic Chemistry. A Wiley-Interscience Publication. (1981) John Wiley and Sons, New York.
  • Mhemeed. A General Overview on the Adsorption، Indian Journal of Natural Sciences, 9 (2018) 16127-16131.
  • S. J. Gregg and K. S. W. Sing, The adsorption of gasses on porous solids. 1979: William Clowes & Sons.
  • Z. G. Szabó and D. Kalló, Contact catalysis. Vol. 1. 1976: Elsevier Science & Technology.
  • J. Wang and X. Guo. Adsorption isotherm models: Classification, physical meaning, application and solving method، Chemosphere, 258 (2020) 127279. DOI: https://doi.org/10.1016/j.chemosphere.2020.127279
  • Y. S. Ho and G. McKay. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents، Process Saf. Environ. Prot., 76 (1998) 332-340. DOI: https://doi.org/10.1205/095758298529696
  • G. Kalyani, et al. Equilibrium and kinetic studies on biosorption of zinc onto Gallus domesticus shell powder، ARPN Journal of Engineering and applied Sciences, 4 (2009) 39-49.
  • J. Febrianto, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies، J. Hazard. Mater., 162 (2009) 616-645. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.042
  • E. S. Z. El-Ashtoukhy, N. K. Amin, and O. Abdelwahab. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent، Desalination, 223 (2008) 162-173. DOI: https://doi.org/10.1016/j.desal.2007.01.206
  • K. L. Tan and B. H. Hameed. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions، Journal of the Taiwan Institute of Chemical Engineers, 74 (2017) 25-48. DOI: https://doi.org/10.1016/j.jtice.2017.01.024
  • H. N. Tran, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review، Water Res, 120 (2017) 88-116. DOI: https://doi.org/10.1016/j.watres.2017.04.014
  • B. M. J. Z. J. o. P. Ibrahim and A. Sciences. Heavy metal ions removal from wastewater using various low-cost agricultural wastes as adsorbents: a survey، Zanco Journal of Pure and Applied Sciences, 33 (2021) 76-91.
  • S. Azizian. Kinetic models of sorption: a theoretical analysis، J. Colloid Interface Sci., 276 (2004) 47-52. DOI: https://doi.org/10.1016/j.jcis.2004.03.048
  • J. J. A. p. U. Zeldowitsch. Über den mechanismus der katalytischen oxydation von CO an MnO2، Acta physicochim. URSS, 1 (1934) 364-449.
  • C. W. Cheung, J. F. Porter, and G. McKay. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char، J. Chem. Technol. Biotechnol., 75 (2000) 963-970. DOI: https://doi.org/10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z
  • G. L. Dotto and L. A. A. Pinto. Adsorption of food dyes onto chitosan: Optimization process and kinetic، Carbohydr. Polym., 84 (2011) 231-238. DOI: https://doi.org/10.1016/j.carbpol.2010.11.028
  • H. Y. Sharef, et al. New ion-imprinted polymer for selective removal of Cu2+ ion in aqueous solution using extracted Aloe vera leaves as a monomer، Int. J. Biol. Macromol., 239 (2023) 124318. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124318
  • W. Al-Madhoun, et al. Cu and Zn removal by adsorption using ash from palm oil factory. in Proceeding of the international conference on water: rights and values, Ramllah, Palestine. 2005.
  • J. Nwabanne and P. Igbokwe. Kinetics and equilibrium modeling of nickel adsorption by cassava peel، J. Eng. Applied Sci, 3 (2008) 829-834.
  • J. Otun, et al. Adsorption isotherms of Pb (II), Ni (II) and Cd (II) ions onto PES، J Appl Sci, 6 (2006) 2368-2376.
  • J. Perić, M. Trgo, and N. V. Medvidović. Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms، Water research, 38 (2004) 1893-1899.
  • W. A. Al-Madhoun, et al., in International Conference-Water: Values & Rights, Palestine Academy for Science and Technology and Palestinian Water Authority. (2005). p. 1-11.
  • J. Perić, M. Trgo, and N. Vukojević Medvidović. Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms، Water Res, 38 (2004) 1893-1899. DOI: https://doi.org/10.1016/j.watres.2003.12.035
  • R. H. Worden and P. C. Smalley. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi، Chem. Geol., 133 (1996) 157-171. DOI: https://doi.org/10.1016/S0009-2541(96)00074-5
  • H. Y. Huang, et al. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas، Ind. Eng. Chem. Res., 42 (2003) 2427-2433. DOI: 10.1021/ie020440u
  • S. Hokkanen, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose، Environ Technol, 35 (2014) 2334-2346. DOI: 10.1080/09593330.2014.903300
  • E. Repo, et al. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling، Chem. Eng. J., 161 (2010) 73-82. DOI: https://doi.org/10.1016/j.cej.2010.04.030
  • M. E. Argun, et al. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics، J. Hazard. Mater., 141 (2007) 77-85. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.095
  • N. Ayawei, A. N. Ebelegi, and D. Wankasi. Modelling and Interpretation of Adsorption Isotherms، Journal of Chemistry, 2017 (2017) 3039817. DOI: https://doi.org/10.1155/2017/3039817
  • J. M. Saleh, Surface Chemistry and Assistive Factors. 1980, College of Science Press: University of Baghdad
  • H. Katsumata, et al. Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials، J Environ Manage, 69 (2003) 187-191. DOI: https://doi.org/10.1016/S0301-4797(03)00145-2
  • A. Özcan, et al. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum، J. Hazard. Mater., 124 (2005) 200-208. DOI: https://doi.org/10.1016/j.jhazmat.2005.05.007
  • S. Chakravarty, et al. Removal of copper from aqueous solution using newspaper pulp as an adsorbent، J. Hazard. Mater., 159 (2008) 396-403. DOI: https://doi.org/10.1016/j.jhazmat.2008.02.030
  • S. Ghazy, A. El-Asmy, and A. El-Nokrashy. Separation of chromium (III) and chromium (VI) from environmental water samples using eggshell sorbent، Indian Journal of Science and Technology, 1 (2008) 1-7.
  • S. Qaiser, A. R. Saleemi, and M. Mahmood Ahmad. Heavy metal uptake by agro based waste materials، Electron. J. Biotechnol., 10 (2007) 409-416.
  • M. H. Jnr and A. I. Spiff. Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass، Electron. J. Biotechnol., 8 (2005) 162-169.
  • M. Abd El-Latif, A. M. Ibrahim, and M. El-Kady. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite، J Am Sci, 6 (2010) 267-283.
  • J. Igwe and A. Abia. Studies on the effects of temperature and particle size on bioremediation of AS (III) from aqueous solution using modified and unmodified coconut fiber، Global Journal of Environmental Research, 1 (2007) 22-26.
  • S. Karimi, M. Tavakkoli Yaraki, and R. R. Karri. A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration، Renewable and Sustainable Energy Reviews, 107 (2019) 535-553. DOI: https://doi.org/10.1016/j.rser.2019.03.025
  • N. Islam, et al. Removal of Copper from Aqueous Solution Using Orange Peel, Sawdust and Bagasse، 2007, 8 (2007).
  • V. C. Srivastava, I. D. Mall, and I. M. Mishra. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA، J. Hazard. Mater., 134 (2006) 257-267. DOI: https://doi.org/10.1016/j.jhazmat.2005.11.052
  • O. Moradi, et al. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution، J. Hazard. Mater., 170 (2009) 673-679. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.012
  • R. W. Rousseau, Handbook of separation process technology. 1987: John Wiley & Sons.
  • R. T. Yang, Gas Separation by Adsorption Processes. 1997, London: Imperial College Press.
  • S. Haukka, E. Lakomaa, and T. Suntola. Adsorption and its applications in industry and environmental protection، Stud. Surf. Sci. Catal. A, 120 (1999) 715.
  • A. Dąbrowski, Adsorption and its Applications in Industry and Environmental Protection. Vol. 2. 1999, Amsterdam: Elsevier.
  • A. Dąbrowski. Adsorption — from theory to practice، Adv. Colloid Interface Sci., 93 (2001) 135-224. DOI: https://doi.org/10.1016/S0001-8686(00)00082-8
  • B. A. Bolto, et al., Chemistry for Protection of the Environment. 1984, Amsterdam: Elsevier.
  • M. Suzuki, Fundamentals of Adsorption. 1 ed, ed. M. Douglas LeVan. 1996: Springer US.
  • S.-P. Tsai. Emerging Separation and Separative Reaction Technologies for Process Waste Reduction: Adsorption and Membrane Systems، Environ. Prog. Sustain. Energy, 19 (2000) S10.
  • S. Faust and O. Aly. Adsorption processes for water Treatment Butterwort Publishers، Boston, MA, (1987).
  • C. Fletcher and T. Burt. Treatment of contaminated dredged material: is it sustainable. in Proceedings of the Cats 4 Congress on Characterisation and Treatment of Sediments. 1999.
  • E. Robens. Adsorption and its applications in industry and environmental protection. A. Dabrowski (ed.). Studies in surface science and catalysis 120 A + B, Elsevier, Amsterdam 1999, ISBN: 0-444-82828.1,
  • 2 Bde., zus. 2132 S. Dfl. 1200، Vakuum in Forschung und Praxis, 11 (1999) 191-191. DOI: https://doi.org/10.1002/vipr.19990110318
  • K. E. Noll, Adsorption technology for air and water pollution control. 1991: CRC Press.
  • P. Wieland. Designing for human presence in space: An introduction to environmental control and life support systems, NASA RP 1324، National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Huntsville, Alabama, (1994).
  • M. D. LeVan, Fundamentals of Adsorption. 1 ed. 1996, University of VirginiaUSA: Springer, Boston, MA.
  • M. Dubinin. Porous structure and adsorption properties of active carbons، CPCar, 9 (1966) 51-119.
  • G. Crini. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment، Prog. Polym. Sci., 30 (2005) 38-70. DOI: https://doi.org/10.1016/j.progpolymsci.2004.11.002
  • G. Crini. Non-conventional low-cost adsorbents for dye removal: A review، Bioresour Technol, 97 (2006) 1061-1085. DOI: https://doi.org/10.1016/j.biortech.2005.05.001
  • R. T. Yang, Adsorbents: fundamentals and applications. 2003: John Wiley & Sons.
  • N. Kannan and M. M. Sundaram. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study، Dyes and Pigments, 51 (2001) 25-40. DOI: https://doi.org/10.1016/S0143-7208(01)00056-0
  • A. Dąbrowski, et al. Adsorption of phenolic compounds by activated carbon—a critical review، Chemosphere, 58 (2005) 1049-1070. DOI: https://doi.org/10.1016/j.chemosphere.2004.09.067
  • L. R. Radovic, C. Moreno-Castilla, and J. Rivera-Utrilla. Carbon materials as adsorbents in aqueous solutions، CPCar, (2001) 227-406.
  • E. L. K. Mui, D. C. K. Ko, and G. McKay. Production of active carbons from waste tyres––a review، Carbon, 42 (2004) 2789-2805. DOI: https://doi.org/10.1016/j.carbon.2004.06.023
  • G. Crini, et al. Conventional and non-conventional adsorbents for wastewater treatment، Environ. Chem. Lett., 17 (2019) 195-213. DOI: 10.1007/s10311-018-0786-8
  • S. Allen and B. Koumanova. Decolourisation of water/wastewater using adsorption، Journal of the University of Chemical Technology and Metallurgy, 40 (2005) 175-192.
  • M. Streat, J. W. Patrick, and M. J. C. Perez. Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons، Water Res, 29 (1995) 467-472. DOI: https://doi.org/10.1016/0043-1354(94)00187-C
  • G. M. Gadd. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment، J. Chem. Technol. Biotechnol., 84 (2009) 13-28. DOI: https://doi.org/10.1002/jctb.1999
  • S. Veli and T. Ozturk. Kinetic modeling of adsorption of reactive azo dye on powdered activated carbon and pumice، Fresenius Environ Bull, 14 (2005) 212-218.
  • R. Sanghi and P. Verma. Decolorisation of aqueous dye solutions by low-cost adsorbents: a review، Coloration Technology, 129 (2013) 85-108. DOI: https://doi.org/10.1111/cote.12019
  • S. Babel and T. A. Kurniawan. Low-cost adsorbents for heavy metals uptake from contaminated water: a review، J. Hazard. Mater., 97 (2003) 219-243. DOI: https://doi.org/10.1016/S0304-3894(02)00263-7
  • A. Z. M. Badruddoza, et al. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater، Carbohydr. Polym., 91 (2013) 322-332. DOI: https://doi.org/10.1016/j.carbpol.2012.08.030
  • S. Deng, et al. Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu(II) and Hg(II)، Chem. Eng. J., 276 (2015) 349-357. DOI: https://doi.org/10.1016/j.cej.2015.04.043
  • J. Rebek Jr. Molecular behavior in small spaces، Acc. Chem. Res., 42 (2009) 1660-1668.
  • M. Henriksson and L. A. Berglund. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde، J. Appl. Polym. Sci., 106 (2007) 2817-2824. DOI: https://doi.org/10.1002/app.26946
  • D. W. O’Connell, C. Birkinshaw, and T. F. O’Dwyer. Heavy metal adsorbents prepared from the modification of cellulose: A review، Bioresour Technol, 99 (2008) 6709-6724. DOI: https://doi.org/10.1016/j.biortech.2008.01.036
  • D. W. O'Connell, C. Birkinshaw, and T. F. O'Dwyer. A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions، J. Appl. Polym. Sci., 99 (2006) 2888-2897. DOI: https://doi.org/10.1002/app.22568
  • D. W. O'Connell, C. Birkinshaw, and T. F. O'Dwyer. Removal of Lead(II) Ions from Aqueous Solutions Using a Modified Cellulose Adsorbent، Adsorption Science & Technology, 24 (2006) 337-348. DOI: 10.1260/026361706779319670
  • D. W. O'Connell, C. Birkinshaw, and T. F. O'Dwyer. A modified cellulose adsorbent for the removal of nickel (II) from aqueous solutions، Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81 (2006) 1820-1828.
  • T. S. Anirudhan, J. Nima, and P. L. Divya. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups، ApSS, 279 (2013) 441-449. DOI: https://doi.org/10.1016/j.apsusc.2013.04.134
  • S. Çavuş, et al. The competitive heavy metal removal by hydroxyethyl cellulose-g-poly(acrylic acid) copolymer and its sodium salt: The effect of copper content on the adsorption capacity، Polym. Bull., 57 (2006) 445-456. DOI: 10.1007/s00289-006-0583-6
  • T. Hajeeth, et al. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer، Int J Biol Macromol, 62 (2013) 59-65. DOI: https://doi.org/10.1016/j.ijbiomac.2013.08.029
  • L. Zheng, et al. Preparation of cellulose derived from corn stalk and its application for cadmium ion adsorption from aqueous solution، Carbohydr. Polym., 90 (2012) 1008-1015. DOI: https://doi.org/10.1016/j.carbpol.2012.06.035
  • N. Biçak, D. C. Sherrington, and B. F. Senkal. Graft copolymer of acrylamide onto cellulose as mercury selective sorbent، React. Funct. Polym., 41 (1999) 69-76. DOI: https://doi.org/10.1016/S1381-5148(99)00021-8
  • M. Liu, et al. Adsorption and desorption of copper(II) from solutions on new spherical cellulose adsorbent، J. Appl. Polym. Sci., 84 (2002) 478-485. DOI: https://doi.org/10.1002/app.10114
  • Z. Bao-Xiu, et al. Preparation and adsorption performance of a cellulosic-adsorbent resin for copper(II)، J. Appl. Polym. Sci., 99 (2006) 2951-2956. DOI: https://doi.org/10.1002/app.22986
  • R. R. Navarro, K. Sumi, and M. Matsumura. Improved metal affinity of chelating adsorbents through graft polymerization، Water Res, 33 (1999) 2037-2044. DOI: https://doi.org/10.1016/S0043-1354(98)00421-7
  • H. Kubota and Y. Shigehisa. Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions، J. Appl. Polym. Sci., 56 (1995) 147-151. DOI: https://doi.org/10.1002/app.1995.070560204
  • H. Kubota and S. Suzuki. Comparative examinations of reactivity of grafted celluloses prepared by u.v.- and ceric salt-initiated graftings، Eur. Polym. J., 31 (1995) 701-704. DOI: https://doi.org/10.1016/0014-3057(95)00037-2
  • L. V. Gurgel, et al. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride، Bioresour Technol, 99 (2008) 3077-83. DOI: 10.1016/j.biortech.2007.05.072
  • L. V. A. Gurgel, et al. Adsorption of chromium (VI) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups، Bioresour Technol, 100 (2009) 3214-3220. DOI: https://doi.org/10.1016/j.biortech.2009.01.068
  • L. V. A. Gurgel and L. F. Gil. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine، Carbohydr. Polym., 77 (2009) 142-149. DOI: https://doi.org/10.1016/j.carbpol.2008.12.014
  • Y. Zhou, et al. Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride، JMatS, 47 (2012) 5019-5029. DOI: 10.1007/s10853-012-6378-2
  • B. Belhalfaoui, et al. Succinate-bonded cellulose: A regenerable and powerful sorbent for cadmium-removal from spiked high-hardness groundwater، J. Hazard. Mater., 169 (2009) 831-837. DOI: https://doi.org/10.1016/j.jhazmat.2009.04.021
  • Y. Zhou, et al. Separation of chromium (VI) from aqueous solutions by cellulose modified with D-glucose and quaternary ammonium groups، Cellul. Chem. Technol., 46 (2012) 319.
  • W.-C. Chan and J.-Y. Wu. Dynamic adsorption behaviors between Cu2+ ion and water-insoluble amphoteric starch in aqueous solutions، J. Appl. Polym. Sci., 81 (2001) 2849-2855. DOI: https://doi.org/10.1002/app.1734
  • M. Haroon, et al. Chemical modification of starch and its application as an adsorbent material، RSC Advances, 6 (2016) 78264-78285. DOI: 10.1039/C6RA16795K
  • A. O. Ashogbon and E. T. Akintayo. Recent trend in the physical and chemical modification of starches from different botanical sources: A review، Starch - Stärke, 66 (2014) 41-57. DOI: https://doi.org/10.1002/star.201300106
  • Q. Chen, et al. Chemical modification of starch microcrystals and their application as an adsorbent for metals in aqueous solutions، BioResources, 14 (2019) 302-312.
  • D. K. Kweon, et al. Adsorption of divalent metal ions by succinylated and oxidized corn starches، Carbohydr. Polym., 46 (2001) 171-177. DOI: https://doi.org/10.1016/S0144-8617(00)00300-3
  • B. M. Ibrahim and N. A. Fakhre. Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater، Int J Biol Macromol, 123 (2019) 70-80. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.058
  • K. Feng and G. Wen. Absorbed Pb<sup>2+</sup> and Cd<sup>2+</sup> Ions in Water by Cross-Linked Starch Xanthate، International Journal of Polymer Science, 2017 (2017) 6470306. DOI: 10.1155/2017/6470306
  • L. Ekebafe, D. Ogbeifun, and F. Okieimen. Removal of heavy metals from aqueous media using native cassava starch hydrogel، African Journal of Environmental Science and Technology, 6 (2012) 275-282.
  • A.-R. M. Abdul-Raheim, et al. Modified starch iron oxide nanocomposites as low cost absorbents for selective removal of some heavy metals from aqueous solutions، Research Journal of Pharmaceutical Biological and Chemical Sciences, 6 (2015) 1197-1212.
  • A. Dong, et al. A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI)، J. Hazard. Mater., 181 (2010) 448-454. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.031
  • J. Hu, T. Tian, and Z. Xiao. Preparation of cross-linked porous starch and its adsorption for chromium (VI) in tannery wastewater، Polym. Adv. Technol., 26 (2015) 1259-1266. DOI: https://doi.org/10.1002/pat.3561
  • Y. Chen, et al. A novel polyamine-type starch/glycidyl methacrylate copolymer for adsorption of Pb (II), Cu (II), Cd (II) and Cr (III) ions from aqueous solutions، Royal Society open science, 5 (2018) 180281. DOI: 10.1098/rsos.180281
  • Z. Sekhavat Pour and M. Ghaemy. Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly(vinyl alcohol)/carboxymethyl starch-g-poly(vinyl imidazole)، RSC Advances, 5 (2015) 64106-64118. DOI: 10.1039/C5RA08025H
  • X. Cheng, et al. Synthesis and adsorption performance of dithiocarbamate-modified glycidyl methacrylate starch، Carbohydr. Polym., 96 (2013) 320-325. DOI: https://doi.org/10.1016/j.carbpol.2013.04.001
  • W. Ding, P. Zhao, and R. Li. Removal of Zn (II) ions by dialdehyde 8-aminoquinoline starch from aqueous solution، Carbohydr. Polym., 83 (2011) 802-807. DOI: https://doi.org/10.1016/j.carbpol.2010.08.057
  • J.-T. Liu, et al. Adsorption Behavior of Cd (II) from Aqueous Solution using Dialdehyde 5-Aminophenanthroline Starch، SS&T, 48 (2013) 766-774. DOI: 10.1080/01496395.2012.707730
  • M. Irani, et al. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions، JEnvS, 27 (2015) 9-20. DOI: https://doi.org/10.1016/j.jes.2014.05.049
  • B. W. Zhang, et al. Synthesis of amidoxime-containing modified starch and application for the removal of heavy metals، Reactive Polymers, 20 (1993) 207-216. DOI: https://doi.org/10.1016/0923-1137(93)90094-V
  • X. Ma, et al. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution، Food Chem., 181 (2015) 133-139. DOI: https://doi.org/10.1016/j.foodchem.2015.02.089
  • S. Keleş and G. Güçlü. Competitive Removal of Heavy Metal Ions by Starch-Graft-Acrylic Acid Copolymers، PPTEn, 45 (2006) 365-371. DOI: 10.1080/03602550600553291
  • E. Guibal. Interactions of metal ions with chitosan-based sorbents: a review، Sep. Purif. Technol., 38 (2004) 43-74. DOI: https://doi.org/10.1016/j.seppur.2003.10.004
  • A. Findon, G. McKay, and H. S. Blair. Transport studies for the sorption of copper ions by chitosan، Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 28 (1993) 173-185. DOI: 10.1080/10934529309375870
  • M. Vakili, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review، Carbohydr. Polym., 113 (2014) 115-130. DOI: https://doi.org/10.1016/j.carbpol.2014.07.007
  • L. Zhang, Y. Zeng, and Z. Cheng. Removal of heavy metal ions using chitosan and modified chitosan: A review، J. Mol. Liq., 214 (2016) 175-191. DOI: https://doi.org/10.1016/j.molliq.2015.12.013
  • A. Jaiswal, S. S. Ghsoh, and A. Chattopadhyay. Quantum Dot Impregnated-Chitosan Film for Heavy Metal Ion Sensing and Removal، Langmuir, 28 (2012) 15687-15696. DOI: 10.1021/la3027573
  • M. Arvand and M. A. Pakseresht. Cadmium adsorption on modified chitosan-coated bentonite: batch experimental studies، J. Chem. Technol. Biotechnol., 88 (2013) 572-578. DOI: https://doi.org/10.1002/jctb.3863
  • A. A. Radwan, F. K. Alanazi, and I. A. Alsarra. Microwave Irradiation-Assisted Synthesis of a Novel Crown Ether Crosslinked Chitosan as a Chelating Agent for Heavy Metal Ions (M+n)، Molecules, 15 (2010) 6257-6268.
  • P. D. Chethan and B. Vishalakshi. Synthesis of ethylenediamine modified chitosan and evaluation for removal of divalent metal ions، Carbohydr. Polym., 97 (2013) 530-536. DOI: https://doi.org/10.1016/j.carbpol.2013.04.102
  • A. Eser, et al. Removal of nickel(II) ions by histidine modified chitosan beads، Chem. Eng. J., 210 (2012) 590-596. DOI: https://doi.org/10.1016/j.cej.2012.09.020
  • N. G. Kandile and A. S. Nasr. New hydrogels based on modified chitosan as metal biosorbent agents، Int J Biol Macromol, 64 (2014) 328-333. DOI: https://doi.org/10.1016/j.ijbiomac.2013.12.022
  • R. B. Rabelo, et al. Adsorption of Copper(II) and Mercury(II) Ions onto Chemically-Modified Chitosan Membranes: Equilibrium and Kinetic Properties، Adsorption Science & Technology, 30 (2012) 1-21. DOI: 10.1260/0263-6174.30.1.1
  • E. Repo, et al. Effect of EDTA and some other interfering species on the adsorption of Co(II) by EDTA-modified chitosan، Desalination, 321 (2013) 93-102. DOI: https://doi.org/10.1016/j.desal.2013.02.028
  • A. Santhana Krishna Kumar, et al. Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption، Int J Biol Macromol, 66 (2014) 135-143. DOI: https://doi.org/10.1016/j.ijbiomac.2014.02.007
  • Q. Song, et al. Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan، SS&T, 49 (2014) 1235-1243. DOI: 10.1080/01496395.2013.872656
  • N. V. Suc and H. T. Y. Ly. Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde، J. Chem. Technol. Biotechnol., 88 (2013) 1641-1649. DOI: https://doi.org/10.1002/jctb.4013
  • H. Wang, et al. Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite، JEnvS, 26 (2014) 1879-1884. DOI: https://doi.org/10.1016/j.jes.2014.06.021
  • G. Yang, et al. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan، ApSS, 292 (2014) 710-716. DOI: https://doi.org/10.1016/j.apsusc.2013.12.038
  • G. Z. Kyzas, et al. Poly(itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake، Langmuir, 30 (2014) 120-131. DOI: 10.1021/la402778x
  • R. Karthik and S. Meenakshi. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan، Chem. Eng. J., 263 (2015) 168-177. DOI: https://doi.org/10.1016/j.cej.2014.11.015
  • A. Chen, et al. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol، Chem. Eng. J., 191 (2012) 85-94. DOI: https://doi.org/10.1016/j.cej.2012.02.071
  • L. Vitali, et al. Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions، Int J Biol Macromol, 42 (2008) 152-157. DOI: https://doi.org/10.1016/j.ijbiomac.2007.10.020
  • H. L. Vasconcelos, et al. Competitive adsorption of Cu(II) and Cd(II) ions on spray-dried chitosan loaded with Reactive Orange 16، Materials Science and Engineering: C, 29 (2009) 613-618. DOI: https://doi.org/10.1016/j.msec.2008.10.022
  • D. Chauhan and N. Sankararamakrishnan. Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate، Bioresour Technol, 99 (2008) 9021-9024. DOI: https://doi.org/10.1016/j.biortech.2008.04.024
  • R. Laus, et al. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent، J. Hazard. Mater., 183 (2010) 233-241. DOI: https://doi.org/10.1016/j.jhazmat.2010.07.016
  • S.-P. Kuang, et al. Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions، J. Hazard. Mater., 260 (2013) 210-219. DOI: https://doi.org/10.1016/j.jhazmat.2013.05.019
  • M. Kumar, B. P. Tripathi, and V. K. Shahi. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater، J. Hazard. Mater., 172 (2009) 1041-1048. DOI: https://doi.org/10.1016/j.jhazmat.2009.07.108
  • H. V. Tran, L. D. Tran, and T. N. Nguyen. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution، Materials Science and Engineering: C, 30 (2010) 304-310. DOI: https://doi.org/10.1016/j.msec.2009.11.008
  • S. Hasan, et al. Adsorption of Divalent Cadmium (Cd(II)) from Aqueous Solutions onto Chitosan-Coated Perlite Beads، Ind. Eng. Chem. Res., 45 (2006) 5066-5077. DOI: 10.1021/ie0402620
  • H. L. Vasconcelos, et al. Chitosan modified with Reactive Blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions، React. Funct. Polym., 67 (2007) 1052-1060. DOI: https://doi.org/10.1016/j.reactfunctpolym.2007.06.009
  • T. C. Coelho, et al. Effect of heparin coating on epichlorohydrin cross-linked chitosan microspheres on the adsorption of copper (II) ions، React. Funct. Polym., 67 (2007) 468-475. DOI: https://doi.org/10.1016/j.reactfunctpolym.2007.02.009
  • K. C. Justi, et al. Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol، J. Colloid Interface Sci., 291 (2005) 369-374. DOI: https://doi.org/10.1016/j.jcis.2005.05.017
  • Y. Vijaya, et al. Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption، Carbohydr. Polym., 72 (2008) 261-271. DOI: https://doi.org/10.1016/j.carbpol.2007.08.010
  • H. H. dos Santos, et al. Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe)، Chemosphere, 82 (2011) 278-283. DOI: https://doi.org/10.1016/j.chemosphere.2010.09.033
  • W. Jiang, et al. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal، J. Hazard. Mater., 276 (2014) 295-301. DOI: https://doi.org/10.1016/j.jhazmat.2014.05.032
  • M. T. Sikder, et al. Preparation and characterization of chitosan–caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater، Chem. Eng. J., 236 (2014) 378-387. DOI: https://doi.org/10.1016/j.cej.2013.09.093
  • Y. Meng, et al. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method، ApSS, 324 (2015) 745-750. DOI: https://doi.org/10.1016/j.apsusc.2014.11.028
  • M. Monier, D. M. Ayad, and D. A. Abdel-Latif. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base، Colloids Surf. B. Biointerfaces, 94 (2012) 250-258. DOI: https://doi.org/10.1016/j.colsurfb.2012.01.051
  • H. Ge, H. Chen, and S. Huang. Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb2+ and Cu2+، J. Appl. Polym. Sci., 125 (2012) 2716-2723. DOI: https://doi.org/10.1002/app.36588
  • M. V. Dinu and E. S. Dragan. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms، Chem. Eng. J., 160 (2010) 157-163. DOI: https://doi.org/10.1016/j.cej.2010.03.029
  • B. Kannamba, K. L. Reddy, and B. V. AppaRao. Removal of Cu(II) from aqueous solutions using chemically modified chitosan، J. Hazard. Mater., 175 (2010) 939-948. DOI: https://doi.org/10.1016/j.jhazmat.2009.10.098
  • X. Li, et al. Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites، J. Colloid Interface Sci., 448 (2015) 389-397. DOI: https://doi.org/10.1016/j.jcis.2015.02.039
  • X.-j. Hu, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics، J. Hazard. Mater., 185 (2011) 306-314. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.034
  • A. C. Zimmermann, et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe)، J. Hazard. Mater., 179 (2010) 192-196. DOI: https://doi.org/10.1016/j.jhazmat.2010.02.078
  • Q. Liu, et al. Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite، Korean J. Chem. Eng., 32 (2015) 1314-1322. DOI: 10.1007/s11814-014-0339-1
  • Z. Wu, et al. Cr(VI) adsorption on an improved synthesised cross-linked chitosan resin، J. Mol. Liq., 170 (2012) 25-29. DOI: https://doi.org/10.1016/j.molliq.2012.03.016
  • S. Pandey and S. B. Mishra. Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake، J. Colloid Interface Sci., 361 (2011) 509-520. DOI: https://doi.org/10.1016/j.jcis.2011.05.031
  • M. Rajiv Gandhi and S. Meenakshi. Preparation of amino terminated polyamidoamine functionalized chitosan beads and its Cr(VI) uptake studies، Carbohydr. Polym., 91 (2013) 631-637. DOI: https://doi.org/10.1016/j.carbpol.2012.08.028
  • D. Chauhan, M. Jaiswal, and N. Sankararamakrishnan. Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan، Carbohydr. Polym., 88 (2012) 670-675. DOI: https://doi.org/10.1016/j.carbpol.2012.01.014
  • S. Hydari, et al. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium، Chem. Eng. J., 193-194 (2012) 276-282. DOI: https://doi.org/10.1016/j.cej.2012.04.057
  • F. Zhao, et al. Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms، J. Colloid Interface Sci., 409 (2013) 174-182. DOI: https://doi.org/10.1016/j.jcis.2013.07.062
  • A. Maleki, E. Pajootan, and B. Hayati. Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies، Journal of the Taiwan Institute of Chemical Engineers, 51 (2015) 127-134. DOI: https://doi.org/10.1016/j.jtice.2015.01.004
  • S. Madala, et al. Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent، Arabian Journal of Chemistry, 10 (2017) S1883-S1893. DOI: https://doi.org/10.1016/j.arabjc.2013.07.017
  • N. B. Milosavljević, et al. Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution، Chem. Eng. J., 165 (2010) 554-562. DOI: https://doi.org/10.1016/j.cej.2010.09.072
  • A. K. Mishra and A. K. Sharma. Synthesis of γ-cyclodextrin/chitosan composites for the efficient removal of Cd(II) from aqueous solution، Int J Biol Macromol, 49 (2011) 504-512. DOI: https://doi.org/10.1016/j.ijbiomac.2011.06.002
  • L. Zhou, et al. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres، Desalination, 258 (2010) 41-47. DOI: https://doi.org/10.1016/j.desal.2010.03.051
  • M. Monier and D. A. Abdel-Latif. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions، J. Hazard. Mater., 209-210 (2012) 240-249. DOI: https://doi.org/10.1016/j.jhazmat.2012.01.015
  • M. Aliabadi, et al. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution، Chem. Eng. J., 220 (2013) 237-243. DOI: https://doi.org/10.1016/j.cej.2013.01.021
  • F. G. L. Medeiros Borsagli, et al. O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions، React. Funct. Polym., 97 (2015) 37-47. DOI: https://doi.org/10.1016/j.reactfunctpolym.2015.10.005
  • B. Yu, et al. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel، Journal of Environmental Chemical Engineering, 1 (2013) 1044-1050. DOI: https://doi.org/10.1016/j.jece.2013.08.017
  • B. Liu, et al. Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions، Chem. Eng. J., 220 (2013) 412-419. DOI: https://doi.org/10.1016/j.cej.2013.01.071
  • L. Zhou, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres، J. Hazard. Mater., 161 (2009) 995-1002. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.078
  • E. Repo, et al. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials، J. Colloid Interface Sci., 358 (2011) 261-267. DOI: https://doi.org/10.1016/j.jcis.2011.02.059
  • Y. Zhu, J. Hu, and J. Wang. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan، J. Hazard. Mater., 221-222 (2012) 155-161. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.026
  • G. Huang, et al. Adsorption of Chromium(VI) from Aqueous Solutions Using Cross-Linked Magnetic Chitosan Beads، Ind. Eng. Chem. Res., 48 (2009) 2646-2651. DOI: 10.1021/ie800814h
  • W. S. Wan Ngah, C. S. Endud, and R. Mayanar. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads، React. Funct. Polym., 50 (2002) 181-190. DOI: https://doi.org/10.1016/S1381-5148(01)00113-4
  • S.-T. Lee, et al. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin، Poly, 42 (2001) 1879-1892. DOI: https://doi.org/10.1016/S0032-3861(00)00402-X
  • M. Monier. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff's base، Int J Biol Macromol, 50 (2012) 773-781. DOI: https://doi.org/10.1016/j.ijbiomac.2011.11.026
  • M. A. Badawi, et al. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism، Int J Biol Macromol, 99 (2017) 465-476. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.003
  • W. S. Wan Ngah, A. Kamari, and Y. J. Koay. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads، Int J Biol Macromol, 34 (2004) 155-161. DOI: https://doi.org/10.1016/j.ijbiomac.2004.03.001
  • S. Sun and A. Wang. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan، J. Hazard. Mater., 131 (2006) 103-111. DOI: https://doi.org/10.1016/j.jhazmat.2005.09.012
  • L. Fan, et al. Preparation of magnetic modified chitosan and adsorption of Zn2+ from aqueous solutions، Colloids Surf. B. Biointerfaces, 88 (2011) 574-581. DOI: https://doi.org/10.1016/j.colsurfb.2011.07.038
  • A. Kamari and W. S. W. Ngah. Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan، Colloids Surf. B. Biointerfaces, 73 (2009) 257-266. DOI: https://doi.org/10.1016/j.colsurfb.2009.05.024
  • W.-L. Du, et al. Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper (II) from aqueous solution، J. Appl. Polym. Sci., 111 (2009) 2881-2885. DOI: https://doi.org/10.1002/app.29247
  • I. Anastopoulos, et al. Chitin Adsorbents for Toxic Metals: A Review، International Journal of Molecular Sciences, 18 (2017) 114.
  • A. Bhatnagar and M. Sillanpää. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater — A short review، Adv. Colloid Interface Sci., 152 (2009) 26-38. DOI: https://doi.org/10.1016/j.cis.2009.09.003
  • J. L. Barriada, et al. Waste spider crab shell and derived chitin as low-cost materials for cadmium and lead removal، J. Chem. Technol. Biotechnol., 82 (2007) 39-46. DOI: https://doi.org/10.1002/jctb.1633
  • G. N. Kousalya, et al. Preparation and metal uptake studies of modified forms of chitin، Int J Biol Macromol, 47 (2010) 583-589. DOI: https://doi.org/10.1016/j.ijbiomac.2010.07.014
  • W. Boulaiche, B. Hamdi, and M. Trari. Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies، Applied Water Science, 9 (2019) 39. DOI: 10.1007/s13201-019-0926-8
  • N. Jaafarzadeh, et al. Biosorption of heavy metals from aqueous solutions onto chitin، International Journal of Environmental Health Engineering, 4 (2015) 7.
  • S.-H. Kim, et al. Adsorption of lead (II) ions using surface-modified chitins، Journal of Industrial and Engineering Chemistry, 12 (2006) 469-475.
  • R. Karthik and S. Meenakshi. Chemical modification of chitin with polypyrrole for the uptake of Pb(II) and Cd(II) ions، Int J Biol Macromol, 78 (2015) 157-164. DOI: https://doi.org/10.1016/j.ijbiomac.2015.03.041
  • X. Sun, et al. Surface-modified chitin by TEMPO-mediated oxidation and adsorption of Cd(II)، Colloids Surf. Physicochem. Eng. Aspects, 555 (2018) 103-110. DOI: https://doi.org/10.1016/j.colsurfa.2018.06.041
  • M. Wysokowski, et al. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nickel(II) Ions، Mar. Drugs, 12 (2014) 2245-2268.
  • T. T. Hanh, H. T. Huy, and N. Q. Hien. Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water، RaPC, 106 (2015) 235-241. DOI: https://doi.org/10.1016/j.radphyschem.2014.08.004
  • B. Benguella and H. Benaissa. Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies، Water Res, 36 (2002) 2463-2474. DOI: https://doi.org/10.1016/S0043-1354(01)00459-6
  • R. Karthik and S. Meenakshi. Synthesis, characterization and Cr(VI) uptake studies of polypyrrole functionalized chitin، SynMe, 198 (2014) 181-187. DOI: https://doi.org/10.1016/j.synthmet.2014.10.012
  • J. Shao, Y. Yang, and C. Shi. Preparation and adsorption properties for metal ions of chitin modified by L-cysteine، J. Appl. Polym. Sci., 88 (2003) 2575-2579. DOI: https://doi.org/10.1002/app.12098
  • A. Labidi, et al. Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies، Journal of the Taiwan Institute of Chemical Engineers, 65 (2016) 140-148. DOI: https://doi.org/10.1016/j.jtice.2016.04.030
  • R. Forutan, et al. Kinetic and equilibrium studies on the adsorption of lead by the chitin of pink shrimp (Solenocera melantho)، Entomol. Appl. Sci. Lett, 3 (2016) 20-26.
  • C. Xiong. Adsorption of cadmium (II) by chitin، J. Chem. Soc. Pak., 32 (2010) 429.
  • N. N. Kocer, G. Uslu, and Y. Cuci. The Adsorption of Zn(II) Ions onto Chitin: Determination of Equilibrium, Kinetic and Thermodynamic Parameters، Adsorption Science & Technology, 26 (2008) 333-344. DOI: 10.1260/026361708787548774
  • R. Yang, et al. Thiol-functionalized chitin nanofibers for As (III) adsorption، Poly, 60 (2015) 9-17. DOI: https://doi.org/10.1016/j.polymer.2015.01.025
  • V. K. Thakur and M. K. Thakur. Recent advances in green hydrogels from lignin: a review، Int J Biol Macromol, 72 (2015) 834-847. DOI: https://doi.org/10.1016/j.ijbiomac.2014.09.044
  • V. K. Thakur, et al. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review، ACS Sustainable Chemistry & Engineering, 2 (2014) 1072-1092. DOI: 10.1021/sc500087z
  • Y. Ge, et al. Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers، Journal of Materials Chemistry A, 2 (2014) 2136-2145. DOI: 10.1039/C3TA14333C
  • Z. Li, J. Chen, and Y. Ge. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes، Chem. Eng. J., 308 (2017) 809-817. DOI: https://doi.org/10.1016/j.cej.2016.09.126
  • Y. Ge and Z. Li. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review، ACS Sustainable Chemistry & Engineering, 6 (2018) 7181-7192. DOI: 10.1021/acssuschemeng.8b01345
  • S. K. Srivastava, A. K. Singh, and A. Sharma. Studies on the uptake of lead and zinc by lignin obtained from black liquor – a paper industry waste material، Environ Technol, 15 (1994) 353-361. DOI: 10.1080/09593339409385438
  • Y. Wu, et al. Adsorption of chromium(III) on lignin، Bioresour Technol, 99 (2008) 7709-7715. DOI: https://doi.org/10.1016/j.biortech.2008.01.069
  • W. S. Peternele, A. A. Winkler-Hechenleitner, and E. A. Gómez Pineda. Adsorption of Cd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse، Bioresour Technol, 68 (1999) 95-100. DOI: https://doi.org/10.1016/S0960-8524(98)00083-2
  • B. Tesfaw, et al. Adsorption of Pb (II) ions from aqueous solution using lignin from Hagenia abyssinica، Bull. Chem. Soc. Ethiop., 30 (2016) 473-484.
  • Z. Song, et al. Novel magnetic lignin composite sorbent for chromium(vi) adsorption، RSC Advances, 5 (2015) 13028-13035. DOI: 10.1039/C4RA15546G
  • A. Celik and A. Demirbaş. Removal of Heavy Metal Ions from Aqueous Solutions via Adsorption onto Modified Lignin from Pulping Wastes، EnS, 27 (2005) 1167-1177. DOI: 10.1080/00908310490479583
  • A. Demirbas. Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication، J. Hazard. Mater., 109 (2004) 221-226. DOI: https://doi.org/10.1016/j.jhazmat.2004.04.002
  • J. Kim, J. D. Mann, and J. G. Spencer. Arsenic Removal from Water Using Lignocellulose Adsorption Medium (LAM)، Journal of Environmental Science and Health, Part A, 41 (2006) 1529-1542. DOI: 10.1080/10934520600754284
  • A. H. T. S. W. S. B. Lalvani. Chromium Adsorption by Lignin، EnS, 22 (2000) 45-56. DOI: 10.1080/00908310050014207
  • B. O. Ogunsile and M. O. Bamgboye. Biosorption of Lead (II) onto soda lignin gels extracted from Nypa fruiticans، Journal of Environmental Chemical Engineering, 5 (2017) 2708-2717. DOI: https://doi.org/10.1016/j.jece.2017.05.016
  • N. Pérez, L. Delgado, and J. González. Removal of Ni and V from aqueous solutions by lignins subjected to oxidative treatment with KMnO4، Latin American applied research, 42 (2012) 223-228.
  • K. V. R. Verma, T. Swaminathan, and P. V. R. Subrahmanyam. Heavy metal removal with lignin، Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 25 (1990) 243-265. DOI: 10.1080/10934529009375554
  • X. Guo, S. Zhang, and X.-q. Shan. Adsorption of metal ions on lignin، J. Hazard. Mater., 151 (2008) 134-142. DOI: https://doi.org/10.1016/j.jhazmat.2007.05.065
  • D. Mohan, C. U. Pittman, and P. H. Steele. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent، J. Colloid Interface Sci., 297 (2006) 489-504. DOI: https://doi.org/10.1016/j.jcis.2005.11.023
  • B. Acemioǧlu, et al. Copper(II) removal from aqueous solution by organosolv lignin and its recovery، J. Appl. Polym. Sci., 89 (2003) 1537-1541. DOI: https://doi.org/10.1002/app.12251
  • H. Harmita, K. G. Karthikeyan, and X. Pan. Copper and cadmium sorption onto kraft and organosolv lignins، Bioresour Technol, 100 (2009) 6183-6191. DOI: https://doi.org/10.1016/j.biortech.2009.06.093
  • Z. Li, Y. Ge, and L. Wan. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media، J. Hazard. Mater., 285 (2015) 77-83. DOI: https://doi.org/10.1016/j.jhazmat.2014.11.033
  • A. B. Albadarin, et al. Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts، Chem. Eng. J., 169 (2011) 20-30. DOI: https://doi.org/10.1016/j.cej.2011.02.044
  • T. Todorciuc, L. Bulgariu, and V. Popa. Adsorption of Cu(ii) from Aqueous Solution on Wheat Straw Lignin: Equilibrium and Kinetic Studies، Cellul. Chem. Technol., 49 (2015) 5-6.
  • P. Merdy, et al. Copper Sorption on a Straw Lignin: Experiments and EPR Characterization، J. Colloid Interface Sci., 245 (2002) 24-31. DOI: https://doi.org/10.1006/jcis.2001.7972
  • D. Parajuli, et al. Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel، React. Funct. Polym., 62 (2005) 129-139. DOI: https://doi.org/10.1016/j.reactfunctpolym.2004.11.003
  • F.-B. Liang, et al. Adsorption of hexavalent chromium on a lignin-based resin: Equilibrium, thermodynamics, and kinetics، Journal of Environmental Chemical Engineering, 1 (2013) 1301-1308. DOI: https://doi.org/10.1016/j.jece.2013.09.025
  • J. Tian, et al. Preparation and performance of dimethyl-acetoxy-(2-carboxymethyl ether)-lignin ammonium chloride amphoteric surfactant، BioResources, 9 (2014) 6290-6303.
  • T. Dizhbite, et al. Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery، Holz, 67 (2013) 539-547. DOI: doi:10.1515/hf-2012-0193
  • Q. Yao, et al. Adsorption of lead ions using a modified lignin hydrogel، Journal of Polymer Research, 21 (2014) 465. DOI: 10.1007/s10965-014-0465-9
  • Y. Ge, Q. Song, and Z. Li. A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution، Journal of Industrial and Engineering Chemistry, 23 (2015) 228-234. DOI: https://doi.org/10.1016/j.jiec.2014.08.021
  • F. Xu, et al. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal، JEnvS, 53 (2017) 132-140. DOI: https://doi.org/10.1016/j.jes.2016.03.026
  • Y. Ge, et al. Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms، Journal of Industrial and Engineering Chemistry, 20 (2014) 4429-4436. DOI: https://doi.org/10.1016/j.jiec.2014.02.011
  • C. Jin, et al. Clickable Synthesis of 1,2,4-Triazole Modified Lignin-Based Adsorbent for the Selective Removal of Cd(II)، ACS Sustainable Chemistry & Engineering, 5 (2017) 4086-4093. DOI: 10.1021/acssuschemeng.7b00072
  • X. Liu, et al. Adsorption of heavy metal ion from aqueous single metal solution by aminated epoxy-lignin، BioResources, 8 (2013) 2257-2269.
  • Y. Ge, L. Qin, and Z. Li. Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal، Materials & Design, 95 (2016) 141-147. DOI: https://doi.org/10.1016/j.matdes.2016.01.102
  • Z. Li, Y. Kong, and Y. Ge. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution، Chem. Eng. J., 270 (2015) 229-234. DOI: https://doi.org/10.1016/j.cej.2015.01.123
  • Z. Li, et al. Surface-Functionalized Porous Lignin for Fast and Efficient Lead Removal from Aqueous Solution، ACS Applied Materials & Interfaces, 7 (2015) 15000-15009. DOI: 10.1021/acsami.5b03994
  • Ł. Klapiszewski, et al. Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal، Chem. Eng. J., 260 (2015) 684-693. DOI: https://doi.org/10.1016/j.cej.2014.09.054
  • Ł. Klapiszewski, K. Siwińska-Stefańska, and D. Kołodyńska. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II)، Chem. Eng. J., 314 (2017) 169-181. DOI: https://doi.org/10.1016/j.cej.2016.12.114
  • F. Ciesielczyk, et al. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent، J. Hazard. Mater., 328 (2017) 150-159. DOI: https://doi.org/10.1016/j.jhazmat.2017.01.009
  • L. Qin, et al. Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water، Journal of the Taiwan Institute of Chemical Engineers, 71 (2017) 84-90. DOI: https://doi.org/10.1016/j.jtice.2016.11.012
  • A. Naseer, et al. Lignin/alginate/hydroxyapatite composite beads for the efficient removal of copper and nickel ions from aqueous solutions، Desalination and Water Treatment, 184 (2020) 199.
  • Y. Jin, et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin، Int J Biol Macromol, 123 (2019) 50-58. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.213
  • C. Liu, Y. Li, and Y. Hou. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead، Molecules, 24 (2019) 2704.
  • Q.-F. Lü, et al. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids، Bioresour Technol, 104 (2012) 111-118. DOI: https://doi.org/10.1016/j.biortech.2011.10.055
  • P. Bartczak, et al. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent، J Environ Manage, 204 (2017) 300-310. DOI: https://doi.org/10.1016/j.jenvman.2017.08.059
  • F. Checkol, et al. Highly Stable and Efficient Lignin-PEDOT/PSS Composites for Removal of Toxic Metals، Advanced Sustainable Systems, 2 (2018) 1700114. DOI: https://doi.org/10.1002/adsu.201700114
  • B. Wang, et al. Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II)، Industrial Crops and Products, 108 (2017) 72-80. DOI: https://doi.org/10.1016/j.indcrop.2017.06.013
  • X.-F. Sun, et al. Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution، Int J Biol Macromol, 127 (2019) 511-519. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.058
  • C. Jin, et al. Thiol–Ene Synthesis of Cysteine-Functionalized Lignin for the Enhanced Adsorption of Cu(II) and Pb(II)، Ind. Eng. Chem. Res., 57 (2018) 7872-7880. DOI: 10.1021/acs.iecr.8b00823
  • M. Liu, et al. Simultaneous removal of Pb2+, Cu2+ and Cd2+ ions from wastewater using hierarchical porous polyacrylic acid grafted with lignin، J. Hazard. Mater., 392 (2020) 122208. DOI: https://doi.org/10.1016/j.jhazmat.2020.122208
  • H. Qian, J. Wang, and L. Yan. Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal، Journal of Bioresources and Bioproducts, 5 (2020) 204-210. DOI: https://doi.org/10.1016/j.jobab.2020.07.006
  • X. Zhang, Y. Li, and Y. Hou. Preparation of magnetic polyethylenimine lignin and its adsorption of Pb(II)، Int J Biol Macromol, 141 (2019) 1102-1110. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.061
  • Ł. Klapiszewski, K. Siwińska-Stefańska, and D. Kołodyńska. Development of lignin based multifunctional hybrid materials for Cu(II) and Cd(II) removal from the aqueous system، Chem. Eng. J., 330 (2017) 518-530. DOI: https://doi.org/10.1016/j.cej.2017.07.177
  • A. E. Okoronkwo and S. J. Olusegun. Biosorption of nickel using unmodified and modified lignin extracted from agricultural waste، Desalination and Water Treatment, 51 (2013) 1989-1997. DOI: 10.1080/19443994.2012.714896
  • Ł. Klapiszewski, et al. Removal of lead (II) ions by an adsorption process with the use of an advanced SiO2/lignin biosorbent، Polish Journal of Chemical Technology, 19 (2017).
  • Q. Wang, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2 +  ions from water، Chem. Eng. J., 359 (2019) 265-274. DOI: https://doi.org/10.1016/j.cej.2018.11.130
  • M. Luo, et al. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water، Bioresour Technol, 259 (2018) 312-318. DOI: https://doi.org/10.1016/j.biortech.2018.03.075
  • V. Nair, A. Panigrahy, and R. Vinu. Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater، Chem. Eng. J., 254 (2014) 491-502. DOI: https://doi.org/10.1016/j.cej.2014.05.045
  • Q. Wang, et al. Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin، Chem. Eng. J., 391 (2020) 123581. DOI: https://doi.org/10.1016/j.cej.2019.123581
There are 271 citations in total.

Details

Primary Language English
Subjects Separation Science
Journal Section Collection
Authors

Bnar Mahmood Ibrahim This is me 0000-0002-9164-5212

Nabil Adil Fakhre This is me 0000-0001-6750-0518

Ibrahim Nazem Qader 0000-0003-1167-3799

Huda Y. Sharef This is me 0000-0003-3394-9485

Publication Date January 1, 2025
Submission Date July 26, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Ibrahim, B. M., Fakhre, N. A., Qader, I. N., Sharef, H. Y. (2025). Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article. Hacettepe Journal of Biology and Chemistry, 53(1), 127-158. https://doi.org/10.15671/hjbc.1419925
AMA Ibrahim BM, Fakhre NA, Qader IN, Sharef HY. Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article. HJBC. January 2025;53(1):127-158. doi:10.15671/hjbc.1419925
Chicago Ibrahim, Bnar Mahmood, Nabil Adil Fakhre, Ibrahim Nazem Qader, and Huda Y. Sharef. “Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 127-58. https://doi.org/10.15671/hjbc.1419925.
EndNote Ibrahim BM, Fakhre NA, Qader IN, Sharef HY (January 1, 2025) Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article. Hacettepe Journal of Biology and Chemistry 53 1 127–158.
IEEE B. M. Ibrahim, N. A. Fakhre, I. N. Qader, and H. Y. Sharef, “Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article”, HJBC, vol. 53, no. 1, pp. 127–158, 2025, doi: 10.15671/hjbc.1419925.
ISNAD Ibrahim, Bnar Mahmood et al. “Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 127-158. https://doi.org/10.15671/hjbc.1419925.
JAMA Ibrahim BM, Fakhre NA, Qader IN, Sharef HY. Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article. HJBC. 2025;53:127–158.
MLA Ibrahim, Bnar Mahmood et al. “Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 127-58, doi:10.15671/hjbc.1419925.
Vancouver Ibrahim BM, Fakhre NA, Qader IN, Sharef HY. Adsorption of Heavy Metals from Wastewater by Starch, Cellulose, Chitin, Chitosan and Lignin Biological Macro Molecule: Review Article. HJBC. 2025;53(1):127-58.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc