Research Article
BibTex RIS Cite

Çörek Otu Posasından Aktif Karbon Eldesi: Sentez, Karakterizasyon ve Farmasötik Sabun Formülasyonu

Year 2025, Volume: 53 Issue: 1, 65 - 75, 01.01.2025
https://doi.org/10.15671/hjbc.1471731

Abstract

References

  • Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan , I. Ali, M. Sillanpää, Methods for preparation and activation of activated carbon: a review, Environ. Chem. Lett., 18 (2020) 393-415.
  • P. González-García, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew. Sustain. Energy Rev., 82 (2018) 1393-1414.
  • S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review, J. Clean. Prod., 175 (2018) 361-375.
  • P.S. Abdullah, J.Y. Lim, N.A., Abdullah, Synthesis and characterization of active biocarbon material for use in cosmetics and personal care products, KEM, 841 (2020) 266-272.
  • M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renew. Sustain. Energy Rev., 87 (2018) 1-21.
  • J. Saleem, U.B. Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775-802.
  • A.N. Prusov, S.M. Prusova, M.V. Radugin, A.V. Bazanov, Flax shive as a source of activated carbon for adsorption of methylene blue, Fuller. Nanotub. Carbon Nanostructures, 29 (2021) 685-694.
  • P.M. Thabede, N.D. Shooto, E.B. Naidoo, Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds, S. Afr. J. Chem. Eng., 33 (2020) 39-50.
  • M.T. Islam, B. Guha, S. Hosen, T.A. Riaz, S. Shahadat, L.D.R. Sousa, J.V. Santos, J.J. Junior, R.M. Lima, A.L. Braga, A.C. Reis, Nigellalogy: a review on Nigella sativa, MOJ Bioequiv. Availab., 3 (2017) 56.
  • N. Manoharan, D. Jayamurali, R. Parasuraman, S.N. Govindarajulu, Phytochemical composition, therapeutical and pharmacological potential of Nigella sativa: A review, Tradit. Med. Res., 6 (2021) 32.
  • W. Kooti, Z. Hasanzadeh-Noohi, N. Sharafi-Ahvazi, M. Asadi-Samani, D. Ashtary-Larky, Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa), CJNM, 14 (2016) 732-745.
  • M.F. Hassanien, A.M. Assiri, A.M. Alzohairy, H.F. Oraby, Health-promoting value and food applications of black cumin essential oil: an overview, JFST, 52 (2015) 6136-6142.
  • M. Kiani, I. Alahdadi, E. Soltani, B. Boelt, F. Benakashani, Variation of seed oil content, oil yield, and fatty acids profile in Iranian Nigella sativa L. landraces, Ind. Crops Prod., 149 (2020) 112367.
  • S. Sismanoglu, M.K. Akalin, G.O. Akalin, F. Topak, Effective removal of cationic dyes from aqueous solutions by using black cumin (Nigella sativa) seed pulp and biochar, Bioresources, 18 (2023) 3414.
  • I.H. Aljundi, N. Jarrah, A study of characteristics of activated carbon produced from Jordanian olive cake, JAAP, 81 (2008) 33-36.
  • Z.E. Sayın, C. Kumaş, B. Ergül, Fındık kabuğundan aktif karbon üretimi, AKUFEMUBID, 16 (2016) 409-419.
  • Z. Hu, M.P. Srinivasan, Y. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon, 39 (2001) 877-886.
  • I.I. Laskar, Z. Hashisho, J.H. Phillips, J.E. Anderson, M. Nichols, Modeling the effect of relative humidity on adsorption dynamics of volatile organic compound onto activated carbo,. Environ. Sci. Tech., 53 (2019) 2647-2659.
  • Y. Khabzina, D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater, 265 (2018) 143-148.
  • A. Mohammed, A. Abdullah, Scanning electron microscopy (SEM): A review, HERVEX, (2018) 7-9.
  • J.T. Pham, L. Xue, A. Del-Campo, M. Salierno, Guiding cell migration with microscale stiffness patterns and undulated surfaces, Acta Biomater., 38 (2016) 106-115.
  • G.V. Spivak, G.V.E. Saparin, M.K. Antoshin, Color contrast in scanning electron microscopy, Soviet Physics Uspekhi, 17 (1975) 593.
  • P.M. Thabede, N.D. Shooto, T. Xaba, E.B. Naidoo, Sulfuric activated carbon of black cumin (Nigella sativa L.) seeds for the removal of cadmium (II) and methylene blue dye, Asian J. Chem., 32 (2020) 1361-1369.
  • Y.A. Teymur, F. Güzel, İ.I.G. İnal, High surface area mesoporous carbon from black cumin (Nigella sativa) processing industry solid residues via single-stage K2CO3 assisted carbonization method: Production optimization, characterization and its some water pollutants removal and supercapacitor performance, DRM, 135 (2023) 109815.
  • M. Nuspl, W. Wegscheide, J. Angeli, W. Posch, M. Mayr, Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis, ABC, 379 (2004) 640-645.
  • M.F. Gazulla, M. Rodrigo, E. Blasco, M. Orduña, Nitrogen determination by SEM‐EDS and elemental analysis, X‐Ray Spectrometry, 42 (2013) 394-401.
  • S. Aslan, Çörek otu posasının aktif karbon üretiminde değerlendirilmesi, FUMBD, 33 (2021) 193-201.
  • M.I. Yusufu, C.C. Ariahu, B.D. Igbabul, Production and characterization of activated carbon from selected local raw materials, AJPAC, 6 (2012) 123-131.
  • M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev., 46 (2015) 218-235.
  • J. Fang, L. Zhang, D. Sutton, X. Wang, T. Lin, Needleless melt‐electrospinning of polypropylene nanofibres, J. Nanomater., 2012 (2012) 382639.
  • T.T.T. Tran, T.T.H. Vu, T.H. Nguyen, Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extract and their antimicrobial activity, Mater. Lett., 105 (2013) 220-223.
  • V.R. Netala, V.S. Kotakadi, V. Nagam, P. Bobbu, S.B. Ghosh, V. Tartte, First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity, Appl. Nanosci., 5 (2015) 801-807.
  • X.N. He, J. Allen, P.N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y.F. Lu, Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletio,. Biomed. Opt. Express, 3 (2012) 2896-2906.
  • S. Katz, A. Pevzner, V. Shepelev, S. Marx, H. Rotter, T. Amitay-Rosen, I. Nir, Activated carbon aging processes characterization by Raman spectroscopy, MRS Advances, 7 (2022) 1-4.
  • E. Proksch, pH in nature, humans and skin, J. Dermatol., 45 (2018) 1044-1052.
  • S.M. Ali, G. Yosipovitch, Skin pH: from basic science to basic skin care, ActaDV, 93(2013).
  • J. Tarun, J. Susan, J. Suria, V.J. Susan, S. Criton, Evaluation of pH of bathing soaps and shampoos for skin and hair care, Indian J. Dermatol., 59 (2014) 442-444.
  • L. Champougny, J. Miguet, R. Henaff, F. Restagno, F. Boulogne, E. Rio, Influence of evaporation on soap film rupture, Langmuir, 34 (2018) 3221-3227.
  • N. Goad, D.J. Gawkrodger, Ambient humidity and the skin: the impact of air humidity in healthy and diseased states, JEADV, 30 (2016) 1285-1294.

Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation

Year 2025, Volume: 53 Issue: 1, 65 - 75, 01.01.2025
https://doi.org/10.15671/hjbc.1471731

Abstract

In this study, we explore the utilization of black cumin pulps for the synthesis of activated carbon and its subsequent application in pharmaceutical soap formulation. Activated carbon was produced from black cumin pulps using a carbonization process followed by activation with a suitable activating agent. The synthesized activated carbon was characterized using various analytical techniques including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Raman analysis. The results revealed the successful production of activated carbon with desirable properties for pharmaceutical applications. Subsequently, the activated carbon was integrated into soap formulations, and the resulting pharmaceutical soaps were evaluated for their antimicrobial efficacy and chemical properties. The soap formulations exhibited effective antimicrobial activity against various microorganisms, including Candida albicans, while maintaining high skin compatibility. Moreover, the incorporation of activated carbon led to enhanced cleansing properties and biotherapeutic effects. Overall, this study highlights the potential of utilizing black cumin pulps for sustainable activated carbon production and their application in pharmaceutical soap development, contributing to both environmental and healthcare sectors

Ethical Statement

No experimentation on human or animal subjects was involved in this study.

Thanks

The authors would like to thank Ankara Yıldırım Beyazıt University, Central Research Laboratory Application, and Research Center staff M. Enes YELKOVAN and Dr. Abdullah ATILGAN for their assistance in SEM/EDX, FTIR, and RAMAN analyses.

References

  • Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan , I. Ali, M. Sillanpää, Methods for preparation and activation of activated carbon: a review, Environ. Chem. Lett., 18 (2020) 393-415.
  • P. González-García, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew. Sustain. Energy Rev., 82 (2018) 1393-1414.
  • S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review, J. Clean. Prod., 175 (2018) 361-375.
  • P.S. Abdullah, J.Y. Lim, N.A., Abdullah, Synthesis and characterization of active biocarbon material for use in cosmetics and personal care products, KEM, 841 (2020) 266-272.
  • M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renew. Sustain. Energy Rev., 87 (2018) 1-21.
  • J. Saleem, U.B. Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775-802.
  • A.N. Prusov, S.M. Prusova, M.V. Radugin, A.V. Bazanov, Flax shive as a source of activated carbon for adsorption of methylene blue, Fuller. Nanotub. Carbon Nanostructures, 29 (2021) 685-694.
  • P.M. Thabede, N.D. Shooto, E.B. Naidoo, Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds, S. Afr. J. Chem. Eng., 33 (2020) 39-50.
  • M.T. Islam, B. Guha, S. Hosen, T.A. Riaz, S. Shahadat, L.D.R. Sousa, J.V. Santos, J.J. Junior, R.M. Lima, A.L. Braga, A.C. Reis, Nigellalogy: a review on Nigella sativa, MOJ Bioequiv. Availab., 3 (2017) 56.
  • N. Manoharan, D. Jayamurali, R. Parasuraman, S.N. Govindarajulu, Phytochemical composition, therapeutical and pharmacological potential of Nigella sativa: A review, Tradit. Med. Res., 6 (2021) 32.
  • W. Kooti, Z. Hasanzadeh-Noohi, N. Sharafi-Ahvazi, M. Asadi-Samani, D. Ashtary-Larky, Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa), CJNM, 14 (2016) 732-745.
  • M.F. Hassanien, A.M. Assiri, A.M. Alzohairy, H.F. Oraby, Health-promoting value and food applications of black cumin essential oil: an overview, JFST, 52 (2015) 6136-6142.
  • M. Kiani, I. Alahdadi, E. Soltani, B. Boelt, F. Benakashani, Variation of seed oil content, oil yield, and fatty acids profile in Iranian Nigella sativa L. landraces, Ind. Crops Prod., 149 (2020) 112367.
  • S. Sismanoglu, M.K. Akalin, G.O. Akalin, F. Topak, Effective removal of cationic dyes from aqueous solutions by using black cumin (Nigella sativa) seed pulp and biochar, Bioresources, 18 (2023) 3414.
  • I.H. Aljundi, N. Jarrah, A study of characteristics of activated carbon produced from Jordanian olive cake, JAAP, 81 (2008) 33-36.
  • Z.E. Sayın, C. Kumaş, B. Ergül, Fındık kabuğundan aktif karbon üretimi, AKUFEMUBID, 16 (2016) 409-419.
  • Z. Hu, M.P. Srinivasan, Y. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon, 39 (2001) 877-886.
  • I.I. Laskar, Z. Hashisho, J.H. Phillips, J.E. Anderson, M. Nichols, Modeling the effect of relative humidity on adsorption dynamics of volatile organic compound onto activated carbo,. Environ. Sci. Tech., 53 (2019) 2647-2659.
  • Y. Khabzina, D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater, 265 (2018) 143-148.
  • A. Mohammed, A. Abdullah, Scanning electron microscopy (SEM): A review, HERVEX, (2018) 7-9.
  • J.T. Pham, L. Xue, A. Del-Campo, M. Salierno, Guiding cell migration with microscale stiffness patterns and undulated surfaces, Acta Biomater., 38 (2016) 106-115.
  • G.V. Spivak, G.V.E. Saparin, M.K. Antoshin, Color contrast in scanning electron microscopy, Soviet Physics Uspekhi, 17 (1975) 593.
  • P.M. Thabede, N.D. Shooto, T. Xaba, E.B. Naidoo, Sulfuric activated carbon of black cumin (Nigella sativa L.) seeds for the removal of cadmium (II) and methylene blue dye, Asian J. Chem., 32 (2020) 1361-1369.
  • Y.A. Teymur, F. Güzel, İ.I.G. İnal, High surface area mesoporous carbon from black cumin (Nigella sativa) processing industry solid residues via single-stage K2CO3 assisted carbonization method: Production optimization, characterization and its some water pollutants removal and supercapacitor performance, DRM, 135 (2023) 109815.
  • M. Nuspl, W. Wegscheide, J. Angeli, W. Posch, M. Mayr, Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis, ABC, 379 (2004) 640-645.
  • M.F. Gazulla, M. Rodrigo, E. Blasco, M. Orduña, Nitrogen determination by SEM‐EDS and elemental analysis, X‐Ray Spectrometry, 42 (2013) 394-401.
  • S. Aslan, Çörek otu posasının aktif karbon üretiminde değerlendirilmesi, FUMBD, 33 (2021) 193-201.
  • M.I. Yusufu, C.C. Ariahu, B.D. Igbabul, Production and characterization of activated carbon from selected local raw materials, AJPAC, 6 (2012) 123-131.
  • M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev., 46 (2015) 218-235.
  • J. Fang, L. Zhang, D. Sutton, X. Wang, T. Lin, Needleless melt‐electrospinning of polypropylene nanofibres, J. Nanomater., 2012 (2012) 382639.
  • T.T.T. Tran, T.T.H. Vu, T.H. Nguyen, Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extract and their antimicrobial activity, Mater. Lett., 105 (2013) 220-223.
  • V.R. Netala, V.S. Kotakadi, V. Nagam, P. Bobbu, S.B. Ghosh, V. Tartte, First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity, Appl. Nanosci., 5 (2015) 801-807.
  • X.N. He, J. Allen, P.N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y.F. Lu, Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletio,. Biomed. Opt. Express, 3 (2012) 2896-2906.
  • S. Katz, A. Pevzner, V. Shepelev, S. Marx, H. Rotter, T. Amitay-Rosen, I. Nir, Activated carbon aging processes characterization by Raman spectroscopy, MRS Advances, 7 (2022) 1-4.
  • E. Proksch, pH in nature, humans and skin, J. Dermatol., 45 (2018) 1044-1052.
  • S.M. Ali, G. Yosipovitch, Skin pH: from basic science to basic skin care, ActaDV, 93(2013).
  • J. Tarun, J. Susan, J. Suria, V.J. Susan, S. Criton, Evaluation of pH of bathing soaps and shampoos for skin and hair care, Indian J. Dermatol., 59 (2014) 442-444.
  • L. Champougny, J. Miguet, R. Henaff, F. Restagno, F. Boulogne, E. Rio, Influence of evaporation on soap film rupture, Langmuir, 34 (2018) 3221-3227.
  • N. Goad, D.J. Gawkrodger, Ambient humidity and the skin: the impact of air humidity in healthy and diseased states, JEADV, 30 (2016) 1285-1294.
There are 39 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Research Article
Authors

Basti Shahbazova 0000-0003-0260-6586

Sibel Kaymak 0000-0002-6523-7637

Betül Aydın 0000-0002-9092-1350

Nilüfer Vural 0000-0003-3047-3004

Publication Date January 1, 2025
Submission Date April 21, 2024
Acceptance Date August 26, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Shahbazova, B., Kaymak, S., Aydın, B., Vural, N. (2025). Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation. Hacettepe Journal of Biology and Chemistry, 53(1), 65-75. https://doi.org/10.15671/hjbc.1471731
AMA Shahbazova B, Kaymak S, Aydın B, Vural N. Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation. HJBC. January 2025;53(1):65-75. doi:10.15671/hjbc.1471731
Chicago Shahbazova, Basti, Sibel Kaymak, Betül Aydın, and Nilüfer Vural. “Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 65-75. https://doi.org/10.15671/hjbc.1471731.
EndNote Shahbazova B, Kaymak S, Aydın B, Vural N (January 1, 2025) Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation. Hacettepe Journal of Biology and Chemistry 53 1 65–75.
IEEE B. Shahbazova, S. Kaymak, B. Aydın, and N. Vural, “Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation”, HJBC, vol. 53, no. 1, pp. 65–75, 2025, doi: 10.15671/hjbc.1471731.
ISNAD Shahbazova, Basti et al. “Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 65-75. https://doi.org/10.15671/hjbc.1471731.
JAMA Shahbazova B, Kaymak S, Aydın B, Vural N. Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation. HJBC. 2025;53:65–75.
MLA Shahbazova, Basti et al. “Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 65-75, doi:10.15671/hjbc.1471731.
Vancouver Shahbazova B, Kaymak S, Aydın B, Vural N. Black Cumin Pulp-Derived Activated Carbon: Synthesis, Characterization, and Pharmaceutical Soap Formulation. HJBC. 2025;53(1):65-7.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc