Research Article
BibTex RIS Cite
Year 2025, Volume: 53 Issue: 1, 13 - 18, 01.01.2025
https://doi.org/10.15671/hjbc.1477580

Abstract

References

  • H.P. Chen, C.H. Chang, J.K. Liu, S.F. Chuang, J.Y. Yang, Effect of fluoride containing bleaching agents on enamel surface properties, Journal of Dentistry, 36 (2008) 718 – 725.
  • N. Pandey, S. Dutta, P. Biswas, Cyanide Mitigation at Steel Metallurgical Process’s Effluent, Water, Air, Soil Pollut., 234 (2023) 682 – 713.
  • B.R. Jali, A. K. Barick, P. Mohapatra, S. K. Sahoo, A comprehensive review on quinones based fluoride selective colorimetric and fluorescence chemosensors, J. Fluorine Chem., 244 (2021) 109744 – 109759.
  • H. Tong, L. Wang, X. Jing, F. Wang, “Turn-On” Conjugated Polymer Fluorescent Chemosensor for Fluoride Ion, Macromolecules, 36 (2003) 2584 – 2586.
  • S. Madhu, M. Ravikanth, Boron-Dipyrromethene Based Reversible and Reusable Selective Chemosensor for Fluoride Detection, Inorganic Chem., 53 (2014) 1646 – 1653.
  • S. Chakraborty, The Advent of Bodipy-based Chemosensors for Sensing Fluoride Ions: A Literature Review, J Fluoresc. (2024) https://doi.org/10.1007/s10895-024-03619-7.
  • R. D. Alharthy, S. Tariq, S. Naseem, M. Islam, N. Ahmed, A. R. Pasha, Z. Shafiq, Coumarin-based thiosemicarbazones as colorimetric and fluorescent “Turn on” chemosensors for fluoride ions and their applications in logic circuits, J. Mol. Struct., 1294 (2023) 136381 – 136388.
  • E. Yalçın, M. Alkış, N. Seferoğlu, Z. Seferoğlu, A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies, J. Mol. Struct., 1155 (2018) 573 – 581.
  • V. V. Kumar, D. Ramadevi, V. M. Ankathi, Development of porphyrin-based chemosensor for highly selective sensing of fluoride ion in aqueous media, Microchem. J., 157 (2020) 105028 – 105035.
  • S. Gond, P. Yadav, V. P. Singh, Design and development of a highly efficient hydrazone based sensing material for selective detection of F ions, Materials Lett., 351 (2023) 135003 – 135006.
  • W. Saiyasombat, U. Eiamprasert, T. Chantarojsiri, K. Chainok, S. Kiatisevi, Bis-BODIPY-based fluoride and cyanide sensor mediated by unconventional deprotonation of C-H proton, Dyes Pigments, 206 (2022) 110643 – 110650.
  • T. Samanta, N. Das, R. Shunmugam, Intramolecular Charge Transfer-Based Rapid Colorimetric In-Field Fluoride Ion Sensors, ACS Sustainable Chem. Eng., 9 (2021) 10176 – 10183.
  • S. Anand, A. Muthusamy, S. Dineshkumar, Synthesis, characterization, electrical and thermal properties of hydrazone polymers derived from 2,4–dinitro phenyl hydrazine, J. Mol. Struct., 1248 (2022) 131502 – 131510.
  • Y. Du, H. Wang, S. Zhao, J. Fan, S. Huang, Y. Hao, Design of an ICT-based fluorescent probe with excellent sensitivity for visualizing GSH levels in live cells, Chemical Papers, 76 (2022) 4571 – 4579.
  • M. Wei, P. Yin, Y. Shen, L. Zhang, J. Deng, S. Xue, H. Li, B. Guo, Y. Zhang, S. Yao, A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells, Chem. Commun., 49 (2013) 4640 – 4642.
  • Z. Yang, X. Wang, Y. Wu, X. Li, M. Chen, Two emission turn-on optical chemosensors for cysteine detection using up-conversion nanocrystals as excitation host: Synthesis, characterization and performance, Sens. Actuators B Chem., 255 (2018) 1587–1594.

Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization

Year 2025, Volume: 53 Issue: 1, 13 - 18, 01.01.2025
https://doi.org/10.15671/hjbc.1477580

Abstract

Hydrazone compounds are susceptible to nucleophilic attacks of anions such as fluoride or cyanide due to their tendency toward deprotonation of hydrogen bonded to nitrogen atom in the structure and found applications as ion sensors. In this work, from the condensation reaction of 4-hydroxybenzaldehyde and 2,4-dinitrophenylhydrazine, phenolic hydrazone compound was obtained and the following substitution reaction with 4-nitrobenzenesulfonyl chloride was studied to synthesize a new hydrazone compound with elongated conjugation. Structures of the synthesized compounds were accomplished with 1H NMR, 13C NMR an UV-Vis absorption spectroscopic techniques. According to the spectroscopic data, absorption maximum of the new hydrazone compound was found to shift bathochromically with ca. 120 nm in the presence of nucleophilic fluoride, cyanide, acetate and hydroxide anions.

References

  • H.P. Chen, C.H. Chang, J.K. Liu, S.F. Chuang, J.Y. Yang, Effect of fluoride containing bleaching agents on enamel surface properties, Journal of Dentistry, 36 (2008) 718 – 725.
  • N. Pandey, S. Dutta, P. Biswas, Cyanide Mitigation at Steel Metallurgical Process’s Effluent, Water, Air, Soil Pollut., 234 (2023) 682 – 713.
  • B.R. Jali, A. K. Barick, P. Mohapatra, S. K. Sahoo, A comprehensive review on quinones based fluoride selective colorimetric and fluorescence chemosensors, J. Fluorine Chem., 244 (2021) 109744 – 109759.
  • H. Tong, L. Wang, X. Jing, F. Wang, “Turn-On” Conjugated Polymer Fluorescent Chemosensor for Fluoride Ion, Macromolecules, 36 (2003) 2584 – 2586.
  • S. Madhu, M. Ravikanth, Boron-Dipyrromethene Based Reversible and Reusable Selective Chemosensor for Fluoride Detection, Inorganic Chem., 53 (2014) 1646 – 1653.
  • S. Chakraborty, The Advent of Bodipy-based Chemosensors for Sensing Fluoride Ions: A Literature Review, J Fluoresc. (2024) https://doi.org/10.1007/s10895-024-03619-7.
  • R. D. Alharthy, S. Tariq, S. Naseem, M. Islam, N. Ahmed, A. R. Pasha, Z. Shafiq, Coumarin-based thiosemicarbazones as colorimetric and fluorescent “Turn on” chemosensors for fluoride ions and their applications in logic circuits, J. Mol. Struct., 1294 (2023) 136381 – 136388.
  • E. Yalçın, M. Alkış, N. Seferoğlu, Z. Seferoğlu, A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies, J. Mol. Struct., 1155 (2018) 573 – 581.
  • V. V. Kumar, D. Ramadevi, V. M. Ankathi, Development of porphyrin-based chemosensor for highly selective sensing of fluoride ion in aqueous media, Microchem. J., 157 (2020) 105028 – 105035.
  • S. Gond, P. Yadav, V. P. Singh, Design and development of a highly efficient hydrazone based sensing material for selective detection of F ions, Materials Lett., 351 (2023) 135003 – 135006.
  • W. Saiyasombat, U. Eiamprasert, T. Chantarojsiri, K. Chainok, S. Kiatisevi, Bis-BODIPY-based fluoride and cyanide sensor mediated by unconventional deprotonation of C-H proton, Dyes Pigments, 206 (2022) 110643 – 110650.
  • T. Samanta, N. Das, R. Shunmugam, Intramolecular Charge Transfer-Based Rapid Colorimetric In-Field Fluoride Ion Sensors, ACS Sustainable Chem. Eng., 9 (2021) 10176 – 10183.
  • S. Anand, A. Muthusamy, S. Dineshkumar, Synthesis, characterization, electrical and thermal properties of hydrazone polymers derived from 2,4–dinitro phenyl hydrazine, J. Mol. Struct., 1248 (2022) 131502 – 131510.
  • Y. Du, H. Wang, S. Zhao, J. Fan, S. Huang, Y. Hao, Design of an ICT-based fluorescent probe with excellent sensitivity for visualizing GSH levels in live cells, Chemical Papers, 76 (2022) 4571 – 4579.
  • M. Wei, P. Yin, Y. Shen, L. Zhang, J. Deng, S. Xue, H. Li, B. Guo, Y. Zhang, S. Yao, A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells, Chem. Commun., 49 (2013) 4640 – 4642.
  • Z. Yang, X. Wang, Y. Wu, X. Li, M. Chen, Two emission turn-on optical chemosensors for cysteine detection using up-conversion nanocrystals as excitation host: Synthesis, characterization and performance, Sens. Actuators B Chem., 255 (2018) 1587–1594.
There are 16 citations in total.

Details

Primary Language English
Subjects Macromolecular and Materials Chemistry (Other)
Journal Section Research Article
Authors

Seda Çınar 0000-0001-6591-7141

Publication Date January 1, 2025
Submission Date May 7, 2024
Acceptance Date August 26, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Çınar, S. (2025). Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization. Hacettepe Journal of Biology and Chemistry, 53(1), 13-18. https://doi.org/10.15671/hjbc.1477580
AMA Çınar S. Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization. HJBC. January 2025;53(1):13-18. doi:10.15671/hjbc.1477580
Chicago Çınar, Seda. “Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 13-18. https://doi.org/10.15671/hjbc.1477580.
EndNote Çınar S (January 1, 2025) Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization. Hacettepe Journal of Biology and Chemistry 53 1 13–18.
IEEE S. Çınar, “Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization”, HJBC, vol. 53, no. 1, pp. 13–18, 2025, doi: 10.15671/hjbc.1477580.
ISNAD Çınar, Seda. “Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 13-18. https://doi.org/10.15671/hjbc.1477580.
JAMA Çınar S. Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization. HJBC. 2025;53:13–18.
MLA Çınar, Seda. “Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 13-18, doi:10.15671/hjbc.1477580.
Vancouver Çınar S. Synthesis of Hydrazone Based Ion Sensor and Photophysical Characterization. HJBC. 2025;53(1):13-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc