Research Article
BibTex RIS Cite
Year 2025, Volume: 53 Issue: 1, 109 - 125, 01.01.2025
https://doi.org/10.15671/hjbc.1492613

Abstract

References

  • D. Aebisher, P. Woźnicki, D. Bartusik-Aebisher, Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers, 16 (2024) 967.
  • L. Serpe, F. Giuntini, Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation, J. Photochem. Photobiol. B: Biol., 150 (2015) 44-49.
  • V. Choi, M.A. Rajora, G. Zheng, Activating Drugs with Sound: Mechanisms Behind Sonodynamic Therapy and the Role of Nanomedicine Bioconjugate Chem., 31 (2020) 967−989.
  • Y. Zheng, J. Ye, Z. Li, H. Chen, Y. Gao, Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies, Acta Pharmacol. Sin., 11 (2021) 2197-2219.
  • S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self Assembly, J. Am. Chem. Soc., 140 (2018) 10794–10802.
  • W. Wei, Z.X. Zhao, B.H. Xia, W. Li, Theoretical analysis of expanded porphyrins: Aromaticity, stability, and optoelectronic properties, Front. Chem., 10 (2022) 1-10.
  • P. Henke, J. Dolanský, P. Kubát, J. Mosinger, Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds, ACS Appl. Mater., 12 (2020) 18792-18802.
  • W. Yu, Z. Zhen, Q. Zhang, Y. Li, H. Luo, J. He, Y.M, Liu, Porphyrin-Based Metal-Organic Frameworks compounds as a promising nanomedicine in photodynamic therapy, ChemMedCHem., 15 (2020) 1766-1775.
  • P. Pallavi, K. Harini, V.A. Arumugam, P. Gowtham, K. Girigoswami, S. Muthukrishnan, A. Girigoswami, Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin, Evid.-Based Complementary Altern. Med., (2022) 1-12.
  • L. Shi, C. Nguyen, M. Daurat, N. Richy, C. Gauthier, E. Rebec, M. Gary-Bobo, S. Cammas-Marion, O. Mongin, C.O. Paul-Roth, F. Paul, Encapsulation of Hydrophobic Porphyrins into Biocompatible Nanoparticles: An Easy Way to Benefit of Their Two-Photon Phototherapeutic Effect without Hydrophilic Functionalization, Cancers, 14 (2022) 2358.
  • A. Garcia-Sampedro, A. Tabero, I. Mahamed, P. Acedo, Multimodal use of the porphyrin TMPyP: From cancer therapy to antimicrobial applications, Porphyrin Science by Women 3, (2021) 11-27.
  • N. Rabiee, M.T. Yaraki, S.M. Garakani, S. Ahmadi, A. Lajevardi, M. Bagherzadeh, M. Rabiee, L. Tayebi, M. Tahriri, M.R. Hamblin, Recent Advances in Porphyrin-Based Nanocomposites for Effective Targeted Imaging and Therapy, Biomaterials, 232 (2020) 119707.
  • H.B. Cheng, B. Qiao, H. Li, J. Cao, Y. Luo, K.M.K. Swamy, J. Zhao, Z. Wang, J.Y. Lee, X.J. Liang, J. Yoon. Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy. J. Am. Chem. Soc., 143 (2021) 2413−2422.
  • V.S. Tyurin, A.O. Shkirdova, O.I. Koifman, I.A. Zamilatskov, Meso-Formyl, Vinyl, and Ethynyl Porphyrins—Multipotent Synthons for Obtaining a Diverse Array of Functional Derivatives, Molecules, 28 (2023) 5782.
  • W.H. Yin, P.Y. Lİ, H.H. Huang, L. Feng, S.H. Liu, X. Liu, F.Q. Bai, Porphyrin photosensitizer molecules as effective medicine candidates for photodynamic therapy: electronic structure information aided design, RSC Adv., 14 (2024) 29368-29383.
  • E. Molnar, E. Gal, C. Cristea, L. Silaghi-Dumitrescu, Ethyne Functionalized Meso-Phenothiazinyl-Phenyl- Porphyrins: Synthesis and Optical Properties of Free Base Versus Protonated Species, Molecules, 225 (2020) 4546.
  • D.G. Kim, Y.I. Jeong, J.W. Nah, All-Trans Retinoic Acid Release from Polyion-Complex Micelles of Methoxy Poly(ethylene glycol) Grafted Chitosan, J. Appl. Polym. Sci., 105 (2007) 3246-3254.
  • J.P. Nam, C. Choi, M.K. Jang, Y.I. Jeong, J.W. Nah, S.H. Kim, Y. Park, Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation, Macromol. Res., 18 (2010) 630-635.
  • C.W. Chung, C.H. Kim, K.H. Choi, J.J. Yoo, D.H. Kim, K.D. Chung, Y.I. Jeong, D.H. Kang. Effect of surfactant on 5-aminolevulinic acid uptake and PpIX generation in human cholangiocarcinoma cell, Eur. J. Pharm. Biopharm, 80 (2012) 453-458.
  • K.D. Chunga, Y.I. Jeong, C.W. Chung, D.H. Kimb, D.H. Kang. Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against HuCC-T1 human cholangiocarcinoma cells, Int. J. Pharm., 422 (2012) 454-461.
  • G.M.F. Calixto, S.R. Annunzio, F.D. Victorelli, M.L. Frade, P.S. Ferreira, M. Chorilli, C.R. Fontana, Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy, AAPS PharmSciTech., 20 (2019) 253.
  • N. Maldonado-Carmonaa, T.S. Ouk, M.J.F. Calvete, M.M. Pereira, N. Villandier, S. Leroy-Lhez, Conjugating biomaterials with photosensitizers: advances and perspectives for Photodynamic Antimicrobial Chemotherapy, Photochem. Photobiol. Sci., 19 (2020) 445-461.
  • M.S. Hasanin, M. Abdelraof, M. Fikry, Y.M. Shaker, A.M.K. Sweed, M.O. Senge, Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis(m-Hydroxyphenyl) porphyrin, Molecules, 26 (2021) 3551.
  • L.B. Silva, K.A.D..F Castro, C.E.A. Botteon, C.L.P. Oliveira, R.S. Silva, P.D. Marcato, Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy, Front. bioeng. Biotechnol., 9 (2021) 1-15.
  • K.A.D.F. Castro, N.M.M. Moura, F. Figueira, R.I. Ferreira, M.M.Q. Simões, J.A.S. Cavaleiro, M.A.F. Faustino, A.J.D. Silvestre, C.S.R. Freire, J.P.C. Tomé, Nakagaki S, Almeida A, Neves MGPMS, New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy, Int. J. Mol. Sci., 20 (2019) 2522.
  • K. Li, P. Berton, S.P. Kelley, R.D. Rogers, Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Cross-Linked Films, Biomacromolecules, 19 (2018) 3291.
  • S. Belali, A.R. Karimi, M. Hadizadeh, Cell-specific and pH-sensitive nanostructure hydrogel based onchitosan as a photosensitizer carrier for selective photodynamictherapy, Int. J. Biol. Macromol., 110 (2018) 437–448.
  • E. Önal, S.Z. Topal, I. Fidan, S. Berber, F. Dumoulin, C. Hirel, Structure-Photoproperties Relationship Investigation of the Singlet Oxygen Formation in Porphyrin-Fullerene Dyads, J. Fluoresc., 27 (2017) 1855–1869.
  • A.R. Karimi, A. Khodadadi, M. Hadizadeh, A nanoporous photosensitizing hydrogel based onchitosan cross-linked by zinc phthalocyanine: an injectable and pH-stimuli responsive system for effective cancer therapy, RSC Adv., 6 (2016) 91445.
  • P. Mandal, J.S. Manna, D. Dasb, M.K. Mitra, Excitonic dynamics of Chlorophyll-a molecules in chitosan hydrogel scaffold, Photochem. Photobiol. Sci., 14 (2015) 786.
  • K. Strokov, A. Galstyan, Chitosan-Silicon Phthalocyanine Conjugate as Effective Photo-Functional Hydrogel for Tracking and Killing of Bacteria, Eur. J. Org. Chem., 47 (2020) 7327–7332.
  • Y. Zhong, L. Zhang, S. Sun, S. Zhou, Y. Ma, H. Hong, D. Yang, Sequential drug delivery by injectable macroporous hydrogels for combined photodynamic‑chemotherapy, J. Nanobiotechnol., 19 (2021) 333.
  • N. Gandra, A.T. Frank, O.L. Gendre, N. Sawwan, D. Aebisher, J.F. Liebman, K.N. Houk, A. Greer, R. Gao, Possible singlet oxygen generation from the photolysis of indigo dyes in methanol, DMSO, water, and ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, Tetrahedron, 62 (2006) 10771–10776.
  • M. Korınek, R. Dedic, A. Molnar, A. Svoboda, J. Hala, A comparison ofphotosensitizing properties of meso-tetraphenylporphin in acetone and in dimethylsulfoxide, J. Mol. Struct., 3 (2005) 727-731.
  • E. Göransson, J. Boixel, C. Monnereau, E. Blart, Y. Pellegrin, H.C. Becker, Hammarström L, Odobel F, Photoinduced Electron Transfer in Zn(II)porphyrin-Bridge- Pt(II)acetylide complexes: Variation in Rate with Anchoring Group and Position of the Bridge, Inorg. Chem., 49 (2010) 9823–9832.
  • A. Lembo, P. Tagliatesta, D.M. Gulri, M. Wielopolski, M. Nuccetelli, Porphyrin-β-Oligo-Ethynylenephenylene-[60]Fullerene Triads: Synthesis and Electrochemical and Photophysical Characterization of the New Porphyrin-Oligo-PPE-[60]Fullerene Systems, J. Phys. Chem. A, 113 (2009) 1779–1793.
  • C.W. Craven, K.R. Reissmann, H.I. Chinn, Infrared Absorption Spectra of Porphyrins, Anal. Chem., 24 (1952) 1214-1215.
  • N.B. Colthup, Spectra-Structure Correlations in the Infra-Red Region, J. Opt. Soc. Am., 40 (1950) 397.
  • P.Y. Zhuang, Y.L. Li, L. Fan, J. Lin, Q.L. Hu, Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation, Int. J. Biol. Macromol., 50 (2012) 658-663.
  • H. Staroszczyk, K. Sztuka, J. Wolska, A. Wojtasz-Pająk, I. Kołodziejska, Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study, Spectrochim. Acta A Mol Biomol. Spectrosc., 117 (2014) 707-712.
  • L. Wei, Y. Chen, W. Tan, Q. Li, G. Gu, F. Dong, Z. Guo, Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives, Molecules, 23 (2018) 2604.
  • E. Kolanthai, P.A. Sindu, D.K. Khajuria, S.C. Veerla, D. Kuppuswamy, L.H. Catalani, D.R. Mahapatra, Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate–Chitosan–Collagen Scaffolds for Bone Tissue Engineering, ACS Appl. Mater. Interfaces., 10 (2018) 12441–12452.
  • D.F. Marsh, M.L. Mink, Microscale Synthesis and Electronic Absorption Spectroscopy of Tetraphenylporphyrin H2(TPP) and Metalloporphyrins ZnII(TPP) and Ni II (TPP), J. Chem. Ed., 73 (1996) 1181.
  • J.W. Buchler, W. Kokisch, P.D. Smith, Cis, trans, and metal effects in transition metal porphyrins. In: Novel Aspects. Structure and Bonding, Springer, Berlin, Heidelberg. 1978.
  • M. Gouterman, The Porphyrins Phys. Chem. Part A., Academic Press, New York, U.S.A, 1978.
  • N.C.M. Magdaong, M. Taniguchi, J.R. Diers, D.M. Niedzwiedzki, C. Kirmaier, J.S. Lindsey, D.F. Bocian, D. Holten, Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 meso-Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP), J. Phys. Chem. A, 124 (2020) 7776-7794.
  • Y. Wang, Y. Lin, S. He, S. Wu, C. Yang, Singlet oxygen: Properties, generation, detection, and environmental applications, J. Hazard. Mater., 461 (2024) 132538.
  • A.A. Gorman, I. Hamblett, C. Lambert, A.L. Prescott, M.A.J. Rodgers, H.M. Spence, Aromatic ketone-naphthalene systems as absolute standards for the triplet-sensitized formation of singlet oxygen, (1O2), in organic and aqueous media. A time-resolved luminescence study, J. Am. Chem. Soc., 109 (1987) 3091-3097.
  • M. Niedre, M.S. Patterson, B.C. Wilson, Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo, Photochem. Photobiol., 75 (2002) 382-391.
  • R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization, J. Photochem. Photobiol. A Chem., 79 (1994) 11-17.
  • W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Röder, G. Schnurpfeil, Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions, J. Porphyr. Phthalocyanines, 2 (1998) 145-158.
  • I. Kraljić, S.E. Mohsni, A New Method For The Detection of Singlet Oxygen in Aqueous Solutions, J. Photochem. Photobiol., 28 (1978) 577-581.
  • A.C. Williams, B.W. Barry, Penetration enhancers, Adv. Drug Deliv. Rev., 56 (2004) 603 – 618.
  • D.P. Ferreira, D.S. Conceição, R.C. Calhelha, T. Sousa, R. Socoteanu, I.C.F.R. Ferreira, L.F.V. Ferreira, Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer, Carbohydr. Polym., 151 (2016) 160-171.
  • Y. Li, X. Zheng, X. Zhang, S. Liu, Q. Pei, M. Zheng, Z. Xie, Porphyrin-Based Carbon Dots for Photodynamic Therapy of Hepatoma, Adv. Healthcare Mater., 6 (2016) 1600924.
  • Y. Zhang, J. Ma, D. Wang, C. Xu, S. Shang, J. Cheng, C. Bau, Y. Li, H. Tian, Fe-TCPP@CS Nanoparticles as Photodynamic and Photothermal Agent for Efficient Antimicrobial Therapy, Biomater. Sci., 8 (2020) 6526-6532.
  • P. Sen, R. Soy, S. Mgidlana, J. Mack, T. Nyokong, Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties, Dyes Pigments, 2023 (2022) 110313.
  • 58. R. Zhang, Y. Li, M. Zhou, C. Wang, P. Feng, W. Miao, H. Huang, Photodynamic Chitosan Nano-Assembly as a Potent Alternative Candidate for Combating Antibiotic-Resistant Bacteria, ACS Appl. Mater. Interfaces., 11 (2019) 26711−26721.
  • G.Y. Atmaca, Investigation of singlet oxygen efficiency of di-axially substituted silicon phthalocyanine with sono-photochemical and photochemical studies, Polyhedron, 193 (2021) 114894.
  • Y. Liu, P. Wang, Q. Liu, X. Wang, Sinoporphyrin sodium triggered sono- photodynamic effects on breast cancer both in vitro and in vivo, Ultrason. Sonochem., 32 (2016) 437-448.
  • H. Chen, X. Zhou, Y. Gao, B. Zheng, F. Tang, Recent progress in development of new sonosensitizers for sonodynamic cancer therapy, Drug. Discov. Today.,19 (2014) 502-509.
  • N. Farajzadeh, G. Yaşa Atmaca, A. Erdoğmuş, M. Burkut Koçak, Comparatively singlet oxygen efficiency by sono-photochemical and photochemical studies of new lutetium (III) phthalocyanines, Dyes Pigments., 190 (2021) 109325.
  • N. Farajzadeh, S. Özdemir, S. Gonca, G. Yaşa Atmaca, A. Erdoğmuş, Z. Altuntaş Bayır, M. Burkut Koçak, Photophysicochemical and Biological Properties of New Phthalocyanines Bearing 4-(trifluoromethoxy)phenoxy and 2-(4-methylthiazol-5-yl)ethoxy Groups on Peripheral Positions, J. Photochem. Photobiol., 98 (2022) 894–906.
  • A. Günsel, N. Mutlu, G. Yaşa Atmaca, H. Günsel, A.T. Bilgiçli, A. Erdoğmuş, M. Nilüfer Yarasir, Novel Graphene Oxide/Zinc Phthalocyanine Composites Bearing 3-Chloro-4-Fluorophenoxy: Potential Usage for Sono/Photochemical Applications, ChemistrySelect, 8 (2023) 1-7.
  • K. Granados-Tavera, M. Zambrano-Angulo, N. Montenegro-Pohlhammer, G. Yaşa Atmaca, L. Sobotta, E. Güzel, G. Cardenas-Jiron, A. Erdoğmuş ¸ A.G. Gürek, Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes, Dyes Pigments., 210 (2023) 110986.
  • A. Günsel, M.C. Küçük, H. Günsel, G. Yaşa Atmaca, A.T. Bilgiçli, A. Erdoğmuş, M. Nilüfer Yarasir, 3‑Chloro‑4‑fluorophenoxy substituted zinc phthalocyanine/graphene oxide composites: exploring of their sono‑photochemical properties, Chem. Pap., 77 (2023) 5721–5731.
  • G. Yaşa Atmaca, K. Celep, A. Erdoğmuş, Application of comparative sonochemical, photochemical, and sono-photochemical methods to obtain new silicon phthalocyanine with high singlet oxygen efficiency, J. Organomet. Chem., 1004 (2024) 122952.
  • Y. Yang, J. Tu, D. Yang, J.L. Raymond, R.A. Roy, D. Zhang, Photo- and Sono-dynamic therapy: A review of mechanisms and considerations for pharmacological agents used in therapy incorporating light and sound, Curr. Pharm. Des., 25 (2019) 401-412.
  • K.A. Sadalana, P. Chaturvedi, Y.M. Seo, J.K. Kim, Y.S. Jo, Y.K. Lee, W.C. Ahn, Sono-Photodynamic Combination Therapy: A Review on Sensitizers, Anticancer Res., 34 (2014) 457-4664.
  • M. Wysocki, B. Czarczynska-Goslinska, D. Ziental, M. Michalak, E. Güzel, L. Sobotta, Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono- Photodynamic Therapy, ChemMedChem, 17 (2022) 1-21.
  • S. Liao, M. Cai, R. Zhu, T. Fu, Y. Du, J. Kong, Y. Zhang, C. Qu, X. Dong, J. Ni, X. Yin, Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/ Sono-Photodynamic Therapy of Chlorin e6 and Other Applications, Mol. Pharmaceutics., 20 (2023) 875−885.
  • M. Das, V. Pandey, K. Jajoria, D. Bhatia, I. Gupta, H. Shekhar, Glycosylated Porphyrin Derivatives for Sonodynamic Therapy: ROS Generation and Cytotoxicity Studies in Breast Cancer Cells. ACS Omega, 9 (2024) 1196−1205.
  • M. Durmus, Photochemical and photophysical characterization, Photosensitizers in medicine, environment, and security, Springer Dordrecht, 2011.
  • B. Golec, J. Buczyńska, K. Nawara, A. Gorski, J. Waluk, Photodegradation of free base and zinc porphyrins in the presence and absence of oxygen, Photochem. Photobiol. Sci., 22 (2023) 2725–2734.
  • T. Zhou, Y. Yin, W. Cai, H. Wang, L. Fan, G. He, J. Zhang, M. Jiang, J. Liu, A new antibacterial nano-system based on hematoporphyrin-carboxymethyl chitosan conjugate for enhanced photostability and photodynamic activity, Carbohydr. Polym., 269 (2021) 118242.
  • M. Taniguchia, J.S. Lindsey, D.F. Bocianb, D. Holten, Comprehensive review of photophysical parameters (ɛ, ɸf, s) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP)-Critical benchmark molecules in photochemistry and photosynthesis, J. Photochem. Photobiol. C: Photochem. Rev., 46 (2021) 100401.

Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation

Year 2025, Volume: 53 Issue: 1, 109 - 125, 01.01.2025
https://doi.org/10.15671/hjbc.1492613

Abstract

This study explores the synthesis, characterization, photochemical, and sono-photochemical properties of covalently conjugated porphyrin-chitosan hydrogels for potential application in photodynamic therapy (PDT) and sono-photodynamic therapy (SPDT). The efficient production of singlet oxygen, a crucial reactive oxygen species (ROS) in these therapies, was investigated. Zinc(II) porphyrins 1 and 2 were synthesized by metal insertion to free based porphyrins and covalently linked to chitosan via Schiff-base reaction to produce chitosan hydrogel CS-1 and CS-2 (conjugation via phenylacetylene spacer). The synthesized compounds were characterized using standard spectroscopic techniques, confirming successful conjugation. Scanning electron microscopy (SEM) analysis demonstrating the homogeneous distribution of porphyrins within the hydrogel matrix. Photophysical and photochemical properties, including ground state absorption and singlet oxygen generation, were evaluated for both porphyrin complexes and chitosan-conjugated hydrogels in DMSO. The porphyrin-hydrogel structures showed superior singlet oxygen generation efficiency. Sono-photochemical studies showed further enhanced singlet oxygen generation, with the highest quantum yield (ΦΔ= 0.81) observed for the chitosan hydrogel CS-2. The results demonstrated enhanced singlet oxygen generation in the hydrogel structures, particularly under simultaneous ultrasound and light irradiation, indicating their potential efficacy in PDT and SPDT applications. Additionally, photo degradation studies revealed the stability of the synthesized compounds under light irradiation. These findings highlight the potential of porphyrin-conjugated chitosan hydrogels as effective photosensitizers for PDT and SPDT applications.

References

  • D. Aebisher, P. Woźnicki, D. Bartusik-Aebisher, Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers, 16 (2024) 967.
  • L. Serpe, F. Giuntini, Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation, J. Photochem. Photobiol. B: Biol., 150 (2015) 44-49.
  • V. Choi, M.A. Rajora, G. Zheng, Activating Drugs with Sound: Mechanisms Behind Sonodynamic Therapy and the Role of Nanomedicine Bioconjugate Chem., 31 (2020) 967−989.
  • Y. Zheng, J. Ye, Z. Li, H. Chen, Y. Gao, Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies, Acta Pharmacol. Sin., 11 (2021) 2197-2219.
  • S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self Assembly, J. Am. Chem. Soc., 140 (2018) 10794–10802.
  • W. Wei, Z.X. Zhao, B.H. Xia, W. Li, Theoretical analysis of expanded porphyrins: Aromaticity, stability, and optoelectronic properties, Front. Chem., 10 (2022) 1-10.
  • P. Henke, J. Dolanský, P. Kubát, J. Mosinger, Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds, ACS Appl. Mater., 12 (2020) 18792-18802.
  • W. Yu, Z. Zhen, Q. Zhang, Y. Li, H. Luo, J. He, Y.M, Liu, Porphyrin-Based Metal-Organic Frameworks compounds as a promising nanomedicine in photodynamic therapy, ChemMedCHem., 15 (2020) 1766-1775.
  • P. Pallavi, K. Harini, V.A. Arumugam, P. Gowtham, K. Girigoswami, S. Muthukrishnan, A. Girigoswami, Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin, Evid.-Based Complementary Altern. Med., (2022) 1-12.
  • L. Shi, C. Nguyen, M. Daurat, N. Richy, C. Gauthier, E. Rebec, M. Gary-Bobo, S. Cammas-Marion, O. Mongin, C.O. Paul-Roth, F. Paul, Encapsulation of Hydrophobic Porphyrins into Biocompatible Nanoparticles: An Easy Way to Benefit of Their Two-Photon Phototherapeutic Effect without Hydrophilic Functionalization, Cancers, 14 (2022) 2358.
  • A. Garcia-Sampedro, A. Tabero, I. Mahamed, P. Acedo, Multimodal use of the porphyrin TMPyP: From cancer therapy to antimicrobial applications, Porphyrin Science by Women 3, (2021) 11-27.
  • N. Rabiee, M.T. Yaraki, S.M. Garakani, S. Ahmadi, A. Lajevardi, M. Bagherzadeh, M. Rabiee, L. Tayebi, M. Tahriri, M.R. Hamblin, Recent Advances in Porphyrin-Based Nanocomposites for Effective Targeted Imaging and Therapy, Biomaterials, 232 (2020) 119707.
  • H.B. Cheng, B. Qiao, H. Li, J. Cao, Y. Luo, K.M.K. Swamy, J. Zhao, Z. Wang, J.Y. Lee, X.J. Liang, J. Yoon. Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy. J. Am. Chem. Soc., 143 (2021) 2413−2422.
  • V.S. Tyurin, A.O. Shkirdova, O.I. Koifman, I.A. Zamilatskov, Meso-Formyl, Vinyl, and Ethynyl Porphyrins—Multipotent Synthons for Obtaining a Diverse Array of Functional Derivatives, Molecules, 28 (2023) 5782.
  • W.H. Yin, P.Y. Lİ, H.H. Huang, L. Feng, S.H. Liu, X. Liu, F.Q. Bai, Porphyrin photosensitizer molecules as effective medicine candidates for photodynamic therapy: electronic structure information aided design, RSC Adv., 14 (2024) 29368-29383.
  • E. Molnar, E. Gal, C. Cristea, L. Silaghi-Dumitrescu, Ethyne Functionalized Meso-Phenothiazinyl-Phenyl- Porphyrins: Synthesis and Optical Properties of Free Base Versus Protonated Species, Molecules, 225 (2020) 4546.
  • D.G. Kim, Y.I. Jeong, J.W. Nah, All-Trans Retinoic Acid Release from Polyion-Complex Micelles of Methoxy Poly(ethylene glycol) Grafted Chitosan, J. Appl. Polym. Sci., 105 (2007) 3246-3254.
  • J.P. Nam, C. Choi, M.K. Jang, Y.I. Jeong, J.W. Nah, S.H. Kim, Y. Park, Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation, Macromol. Res., 18 (2010) 630-635.
  • C.W. Chung, C.H. Kim, K.H. Choi, J.J. Yoo, D.H. Kim, K.D. Chung, Y.I. Jeong, D.H. Kang. Effect of surfactant on 5-aminolevulinic acid uptake and PpIX generation in human cholangiocarcinoma cell, Eur. J. Pharm. Biopharm, 80 (2012) 453-458.
  • K.D. Chunga, Y.I. Jeong, C.W. Chung, D.H. Kimb, D.H. Kang. Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against HuCC-T1 human cholangiocarcinoma cells, Int. J. Pharm., 422 (2012) 454-461.
  • G.M.F. Calixto, S.R. Annunzio, F.D. Victorelli, M.L. Frade, P.S. Ferreira, M. Chorilli, C.R. Fontana, Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy, AAPS PharmSciTech., 20 (2019) 253.
  • N. Maldonado-Carmonaa, T.S. Ouk, M.J.F. Calvete, M.M. Pereira, N. Villandier, S. Leroy-Lhez, Conjugating biomaterials with photosensitizers: advances and perspectives for Photodynamic Antimicrobial Chemotherapy, Photochem. Photobiol. Sci., 19 (2020) 445-461.
  • M.S. Hasanin, M. Abdelraof, M. Fikry, Y.M. Shaker, A.M.K. Sweed, M.O. Senge, Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis(m-Hydroxyphenyl) porphyrin, Molecules, 26 (2021) 3551.
  • L.B. Silva, K.A.D..F Castro, C.E.A. Botteon, C.L.P. Oliveira, R.S. Silva, P.D. Marcato, Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy, Front. bioeng. Biotechnol., 9 (2021) 1-15.
  • K.A.D.F. Castro, N.M.M. Moura, F. Figueira, R.I. Ferreira, M.M.Q. Simões, J.A.S. Cavaleiro, M.A.F. Faustino, A.J.D. Silvestre, C.S.R. Freire, J.P.C. Tomé, Nakagaki S, Almeida A, Neves MGPMS, New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy, Int. J. Mol. Sci., 20 (2019) 2522.
  • K. Li, P. Berton, S.P. Kelley, R.D. Rogers, Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Cross-Linked Films, Biomacromolecules, 19 (2018) 3291.
  • S. Belali, A.R. Karimi, M. Hadizadeh, Cell-specific and pH-sensitive nanostructure hydrogel based onchitosan as a photosensitizer carrier for selective photodynamictherapy, Int. J. Biol. Macromol., 110 (2018) 437–448.
  • E. Önal, S.Z. Topal, I. Fidan, S. Berber, F. Dumoulin, C. Hirel, Structure-Photoproperties Relationship Investigation of the Singlet Oxygen Formation in Porphyrin-Fullerene Dyads, J. Fluoresc., 27 (2017) 1855–1869.
  • A.R. Karimi, A. Khodadadi, M. Hadizadeh, A nanoporous photosensitizing hydrogel based onchitosan cross-linked by zinc phthalocyanine: an injectable and pH-stimuli responsive system for effective cancer therapy, RSC Adv., 6 (2016) 91445.
  • P. Mandal, J.S. Manna, D. Dasb, M.K. Mitra, Excitonic dynamics of Chlorophyll-a molecules in chitosan hydrogel scaffold, Photochem. Photobiol. Sci., 14 (2015) 786.
  • K. Strokov, A. Galstyan, Chitosan-Silicon Phthalocyanine Conjugate as Effective Photo-Functional Hydrogel for Tracking and Killing of Bacteria, Eur. J. Org. Chem., 47 (2020) 7327–7332.
  • Y. Zhong, L. Zhang, S. Sun, S. Zhou, Y. Ma, H. Hong, D. Yang, Sequential drug delivery by injectable macroporous hydrogels for combined photodynamic‑chemotherapy, J. Nanobiotechnol., 19 (2021) 333.
  • N. Gandra, A.T. Frank, O.L. Gendre, N. Sawwan, D. Aebisher, J.F. Liebman, K.N. Houk, A. Greer, R. Gao, Possible singlet oxygen generation from the photolysis of indigo dyes in methanol, DMSO, water, and ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, Tetrahedron, 62 (2006) 10771–10776.
  • M. Korınek, R. Dedic, A. Molnar, A. Svoboda, J. Hala, A comparison ofphotosensitizing properties of meso-tetraphenylporphin in acetone and in dimethylsulfoxide, J. Mol. Struct., 3 (2005) 727-731.
  • E. Göransson, J. Boixel, C. Monnereau, E. Blart, Y. Pellegrin, H.C. Becker, Hammarström L, Odobel F, Photoinduced Electron Transfer in Zn(II)porphyrin-Bridge- Pt(II)acetylide complexes: Variation in Rate with Anchoring Group and Position of the Bridge, Inorg. Chem., 49 (2010) 9823–9832.
  • A. Lembo, P. Tagliatesta, D.M. Gulri, M. Wielopolski, M. Nuccetelli, Porphyrin-β-Oligo-Ethynylenephenylene-[60]Fullerene Triads: Synthesis and Electrochemical and Photophysical Characterization of the New Porphyrin-Oligo-PPE-[60]Fullerene Systems, J. Phys. Chem. A, 113 (2009) 1779–1793.
  • C.W. Craven, K.R. Reissmann, H.I. Chinn, Infrared Absorption Spectra of Porphyrins, Anal. Chem., 24 (1952) 1214-1215.
  • N.B. Colthup, Spectra-Structure Correlations in the Infra-Red Region, J. Opt. Soc. Am., 40 (1950) 397.
  • P.Y. Zhuang, Y.L. Li, L. Fan, J. Lin, Q.L. Hu, Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation, Int. J. Biol. Macromol., 50 (2012) 658-663.
  • H. Staroszczyk, K. Sztuka, J. Wolska, A. Wojtasz-Pająk, I. Kołodziejska, Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study, Spectrochim. Acta A Mol Biomol. Spectrosc., 117 (2014) 707-712.
  • L. Wei, Y. Chen, W. Tan, Q. Li, G. Gu, F. Dong, Z. Guo, Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives, Molecules, 23 (2018) 2604.
  • E. Kolanthai, P.A. Sindu, D.K. Khajuria, S.C. Veerla, D. Kuppuswamy, L.H. Catalani, D.R. Mahapatra, Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate–Chitosan–Collagen Scaffolds for Bone Tissue Engineering, ACS Appl. Mater. Interfaces., 10 (2018) 12441–12452.
  • D.F. Marsh, M.L. Mink, Microscale Synthesis and Electronic Absorption Spectroscopy of Tetraphenylporphyrin H2(TPP) and Metalloporphyrins ZnII(TPP) and Ni II (TPP), J. Chem. Ed., 73 (1996) 1181.
  • J.W. Buchler, W. Kokisch, P.D. Smith, Cis, trans, and metal effects in transition metal porphyrins. In: Novel Aspects. Structure and Bonding, Springer, Berlin, Heidelberg. 1978.
  • M. Gouterman, The Porphyrins Phys. Chem. Part A., Academic Press, New York, U.S.A, 1978.
  • N.C.M. Magdaong, M. Taniguchi, J.R. Diers, D.M. Niedzwiedzki, C. Kirmaier, J.S. Lindsey, D.F. Bocian, D. Holten, Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 meso-Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP), J. Phys. Chem. A, 124 (2020) 7776-7794.
  • Y. Wang, Y. Lin, S. He, S. Wu, C. Yang, Singlet oxygen: Properties, generation, detection, and environmental applications, J. Hazard. Mater., 461 (2024) 132538.
  • A.A. Gorman, I. Hamblett, C. Lambert, A.L. Prescott, M.A.J. Rodgers, H.M. Spence, Aromatic ketone-naphthalene systems as absolute standards for the triplet-sensitized formation of singlet oxygen, (1O2), in organic and aqueous media. A time-resolved luminescence study, J. Am. Chem. Soc., 109 (1987) 3091-3097.
  • M. Niedre, M.S. Patterson, B.C. Wilson, Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo, Photochem. Photobiol., 75 (2002) 382-391.
  • R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization, J. Photochem. Photobiol. A Chem., 79 (1994) 11-17.
  • W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Röder, G. Schnurpfeil, Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions, J. Porphyr. Phthalocyanines, 2 (1998) 145-158.
  • I. Kraljić, S.E. Mohsni, A New Method For The Detection of Singlet Oxygen in Aqueous Solutions, J. Photochem. Photobiol., 28 (1978) 577-581.
  • A.C. Williams, B.W. Barry, Penetration enhancers, Adv. Drug Deliv. Rev., 56 (2004) 603 – 618.
  • D.P. Ferreira, D.S. Conceição, R.C. Calhelha, T. Sousa, R. Socoteanu, I.C.F.R. Ferreira, L.F.V. Ferreira, Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer, Carbohydr. Polym., 151 (2016) 160-171.
  • Y. Li, X. Zheng, X. Zhang, S. Liu, Q. Pei, M. Zheng, Z. Xie, Porphyrin-Based Carbon Dots for Photodynamic Therapy of Hepatoma, Adv. Healthcare Mater., 6 (2016) 1600924.
  • Y. Zhang, J. Ma, D. Wang, C. Xu, S. Shang, J. Cheng, C. Bau, Y. Li, H. Tian, Fe-TCPP@CS Nanoparticles as Photodynamic and Photothermal Agent for Efficient Antimicrobial Therapy, Biomater. Sci., 8 (2020) 6526-6532.
  • P. Sen, R. Soy, S. Mgidlana, J. Mack, T. Nyokong, Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties, Dyes Pigments, 2023 (2022) 110313.
  • 58. R. Zhang, Y. Li, M. Zhou, C. Wang, P. Feng, W. Miao, H. Huang, Photodynamic Chitosan Nano-Assembly as a Potent Alternative Candidate for Combating Antibiotic-Resistant Bacteria, ACS Appl. Mater. Interfaces., 11 (2019) 26711−26721.
  • G.Y. Atmaca, Investigation of singlet oxygen efficiency of di-axially substituted silicon phthalocyanine with sono-photochemical and photochemical studies, Polyhedron, 193 (2021) 114894.
  • Y. Liu, P. Wang, Q. Liu, X. Wang, Sinoporphyrin sodium triggered sono- photodynamic effects on breast cancer both in vitro and in vivo, Ultrason. Sonochem., 32 (2016) 437-448.
  • H. Chen, X. Zhou, Y. Gao, B. Zheng, F. Tang, Recent progress in development of new sonosensitizers for sonodynamic cancer therapy, Drug. Discov. Today.,19 (2014) 502-509.
  • N. Farajzadeh, G. Yaşa Atmaca, A. Erdoğmuş, M. Burkut Koçak, Comparatively singlet oxygen efficiency by sono-photochemical and photochemical studies of new lutetium (III) phthalocyanines, Dyes Pigments., 190 (2021) 109325.
  • N. Farajzadeh, S. Özdemir, S. Gonca, G. Yaşa Atmaca, A. Erdoğmuş, Z. Altuntaş Bayır, M. Burkut Koçak, Photophysicochemical and Biological Properties of New Phthalocyanines Bearing 4-(trifluoromethoxy)phenoxy and 2-(4-methylthiazol-5-yl)ethoxy Groups on Peripheral Positions, J. Photochem. Photobiol., 98 (2022) 894–906.
  • A. Günsel, N. Mutlu, G. Yaşa Atmaca, H. Günsel, A.T. Bilgiçli, A. Erdoğmuş, M. Nilüfer Yarasir, Novel Graphene Oxide/Zinc Phthalocyanine Composites Bearing 3-Chloro-4-Fluorophenoxy: Potential Usage for Sono/Photochemical Applications, ChemistrySelect, 8 (2023) 1-7.
  • K. Granados-Tavera, M. Zambrano-Angulo, N. Montenegro-Pohlhammer, G. Yaşa Atmaca, L. Sobotta, E. Güzel, G. Cardenas-Jiron, A. Erdoğmuş ¸ A.G. Gürek, Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes, Dyes Pigments., 210 (2023) 110986.
  • A. Günsel, M.C. Küçük, H. Günsel, G. Yaşa Atmaca, A.T. Bilgiçli, A. Erdoğmuş, M. Nilüfer Yarasir, 3‑Chloro‑4‑fluorophenoxy substituted zinc phthalocyanine/graphene oxide composites: exploring of their sono‑photochemical properties, Chem. Pap., 77 (2023) 5721–5731.
  • G. Yaşa Atmaca, K. Celep, A. Erdoğmuş, Application of comparative sonochemical, photochemical, and sono-photochemical methods to obtain new silicon phthalocyanine with high singlet oxygen efficiency, J. Organomet. Chem., 1004 (2024) 122952.
  • Y. Yang, J. Tu, D. Yang, J.L. Raymond, R.A. Roy, D. Zhang, Photo- and Sono-dynamic therapy: A review of mechanisms and considerations for pharmacological agents used in therapy incorporating light and sound, Curr. Pharm. Des., 25 (2019) 401-412.
  • K.A. Sadalana, P. Chaturvedi, Y.M. Seo, J.K. Kim, Y.S. Jo, Y.K. Lee, W.C. Ahn, Sono-Photodynamic Combination Therapy: A Review on Sensitizers, Anticancer Res., 34 (2014) 457-4664.
  • M. Wysocki, B. Czarczynska-Goslinska, D. Ziental, M. Michalak, E. Güzel, L. Sobotta, Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono- Photodynamic Therapy, ChemMedChem, 17 (2022) 1-21.
  • S. Liao, M. Cai, R. Zhu, T. Fu, Y. Du, J. Kong, Y. Zhang, C. Qu, X. Dong, J. Ni, X. Yin, Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/ Sono-Photodynamic Therapy of Chlorin e6 and Other Applications, Mol. Pharmaceutics., 20 (2023) 875−885.
  • M. Das, V. Pandey, K. Jajoria, D. Bhatia, I. Gupta, H. Shekhar, Glycosylated Porphyrin Derivatives for Sonodynamic Therapy: ROS Generation and Cytotoxicity Studies in Breast Cancer Cells. ACS Omega, 9 (2024) 1196−1205.
  • M. Durmus, Photochemical and photophysical characterization, Photosensitizers in medicine, environment, and security, Springer Dordrecht, 2011.
  • B. Golec, J. Buczyńska, K. Nawara, A. Gorski, J. Waluk, Photodegradation of free base and zinc porphyrins in the presence and absence of oxygen, Photochem. Photobiol. Sci., 22 (2023) 2725–2734.
  • T. Zhou, Y. Yin, W. Cai, H. Wang, L. Fan, G. He, J. Zhang, M. Jiang, J. Liu, A new antibacterial nano-system based on hematoporphyrin-carboxymethyl chitosan conjugate for enhanced photostability and photodynamic activity, Carbohydr. Polym., 269 (2021) 118242.
  • M. Taniguchia, J.S. Lindsey, D.F. Bocianb, D. Holten, Comprehensive review of photophysical parameters (ɛ, ɸf, s) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP)-Critical benchmark molecules in photochemistry and photosynthesis, J. Photochem. Photobiol. C: Photochem. Rev., 46 (2021) 100401.
There are 76 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Research Article
Authors

Emel Önal 0000-0001-7210-9126

Publication Date January 1, 2025
Submission Date May 31, 2024
Acceptance Date November 28, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Önal, E. (2025). Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation. Hacettepe Journal of Biology and Chemistry, 53(1), 109-125. https://doi.org/10.15671/hjbc.1492613
AMA Önal E. Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation. HJBC. January 2025;53(1):109-125. doi:10.15671/hjbc.1492613
Chicago Önal, Emel. “Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-Conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 109-25. https://doi.org/10.15671/hjbc.1492613.
EndNote Önal E (January 1, 2025) Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation. Hacettepe Journal of Biology and Chemistry 53 1 109–125.
IEEE E. Önal, “Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation”, HJBC, vol. 53, no. 1, pp. 109–125, 2025, doi: 10.15671/hjbc.1492613.
ISNAD Önal, Emel. “Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-Conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 109-125. https://doi.org/10.15671/hjbc.1492613.
JAMA Önal E. Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation. HJBC. 2025;53:109–125.
MLA Önal, Emel. “Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-Conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 109-25, doi:10.15671/hjbc.1492613.
Vancouver Önal E. Photochemical and Sono-Photochemical Studies of Zn (II) Porphyrin-conjugated Chitosan Hydrogels for Enhanced Singlet Oxygen Generation. HJBC. 2025;53(1):109-25.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc