Research Article
BibTex RIS Cite

Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium

Year 2025, Volume: 53 Issue: 1, 159 - 168, 01.01.2025
https://doi.org/10.15671/hjbc.1511046

Abstract

This study delved into the fluorescence properties of a Ni(II) Schiff base complex towards nitroaromatic compounds, such as dinitrobenzene (DNB), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,4-dinitrophenol (DNP), and 1,3,5-trinitrophenol (TNP),. Remarkably, the compound exhibited exceptional sensitivity in detecting TNP, with a notable Ksv value of 40.5 × 103 M-1 . LOD value of the targeted compound was found to be 0.134 μM, encompassing a linear working range of 2.50–50.00 μM.. Furthermore, the synthesized Ni(II) complex proved effective in the fluorescence quenching-based detection of TNP in water solutions, demonstrating both high selectivity and sensitivity.
Through fluorescence titrations (Job's plot), the stoichiometry between the compound and TNP was found to be 2/1 (complex/TNP). This finding underlines the potential utility of the complex as a promising tool in environmental monitoring or related fields where the detection of TNP is crucial.

References

  • 1. E.V. Verbitskiy, G.L.Rusinov, O.N. Chupakhin, V.N. Charushin, Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review, Dyes and Pigm., 180 (2020) 108141.
  • 2. Y.F. Zhao, L.B. Xu, F.L. Kong, L. Yu, Design and preparation of poly(tannic acid) nanoparticles with intrinsic fluorescence: A sensitive detector of picric acid, Chem. Eng. J., 416 (2021) 129090.
  • 3. Y.C. Zheng, S. Wang, R.F. Li, L. Pan, L.Q. Li, Z.P. Qi, C. Li, Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots, Res. Chem. Intermed., 47 (2021) 2421-2431.
  • 4. J.F. Wyman, M.P. Serve, D.W. Hobson, L.H Lee, D.E. Uddin, Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats, J. Toxicol. Environ. Health, 7 (1992) 313-327.
  • 5. J.F. Wyman, H.E. Guard, W.D. Won, J.H. Quay, Conversion of 2,4,6-Trinitrophenol to a Mutagen by Pseudomonas-Aeruginosa, Appl. Environ. Microbiol., 37 (1979) 222-226.
  • 6. D.T.T. Trinh, W. Khanitchaidecha, D. Channei, A. Nakaruk, Synthesis, characterization and environmental applications of bismuth vanadate, Res. Chem. Intermed., 45 (2019) 5217-5259.
  • 7. T.P. Forbes, E. Sisco, Recent advances in ambient mass spectrometry of trace explosives, Analyst., 143 (2018) 1948-1969.
  • 8. J.S. Caygill, F. Davis, S.P.J. Higson, Current trends in explosive detection techniques. Talanta, 88 (2012) 14-29.
  • 9. J.W. Grate, R.G. Ewing, D.A. Atkinson, Vapor-generation methods for explosives-detection research. Trac-Trends in Anal. Chem., 41 (2012) 1-14.
  • 10. R. Gillibert, J.Q. Huang, Y. Zhang, W.L. Fu, M.L. de la Chapelle, Explosive detection by Surface Enhanced Raman Scattering, Trac-Trends in Anal. Chem., 105 (2018) 166-172.
  • 11. P. Wen, M. Amin, WD. Herzog, RR. Kunz, Key challenges and prospects for optical standoff trace detection of explosives, Trac-Trends in Anal. Chem., 100 (2018) 136-144.
  • 12. X.C. Sun, Y. Wang, Y. Lei, Fluorescence based explosive detection: from mechanisms to sensory materials, Chem. Soc. Rev., 44 (2015) 8019-61.
  • 13. C.P. Wang, WW. Sheng, C. Sun, J. Lei, JS. Hu, A cobalt-coordination polymer as a highly selective and sensitive luminescent sensor for detecting 2,4,6-trinitrophenol, Mol. Cryst. Liq., 768 (2024) 117-26.
  • 14. J.N. Malegaonkar, M. Al Kobaisi, P. K. Singh, S.V. Bhosale, S.V. Bhosale, Sensitive turn-off detection of nitroaromatics using fluorescent tetraphenylethylene phosphonate derivative, J. Photoch. Photobio. A., 438 (2023) 114530.
  • 15. Y. Salinas, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, A.M. Costero, M. Parra, S. Gil, Optical chemosensors and reagents to detect explosives, Chem. Soc. Rev., 41 (2012) 1261-96.
  • 16. H.A. Yu, D.A. DeTata, S.W. Lewis, D.S. Silvester, Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science, Trac-Trends in Anal. Chem., 97 (2017) 374-384.
  • 17. M. Calcerrada, M. González-Herráez, C. García-Ruiz, Recent advances in capillary electrophoresis instrumentation for the analysis of explosives, Trac-Trends in Anal. Chem., 75 (2016) 75-85.
  • 18. D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev., 100 (2000) 2537-2574.
  • 19. A. Rose, Z.G. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Sensitivity gains in chemosensing by lasing action in organic polymers, Nature, 434 (2005) 876-879.
  • 20. V. Kumar, B. Maiti, M.K. Chini, P. De, S. Satapathi, Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics, Sci. Rep., 9 (2019) 7269.
  • 21. M.J. Tsai, C.Y. Li, J.Y. Wu, Luminescent Zn(ii) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics, Crystengcomm, 20 (2018) 6762-6774.
  • 22. A. Altun, R.M. Apetrei, P. Camurlu, Functional Biosensing Platform for Urea Detection: Copolymer of Fc-Substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene, J. Electrochem. Soc., 168 (2021) 067513.
  • 23. M. Chhatwal, R. Mittal, R.D. Gupta, S.K. Awasthi, Sensing ensembles for nitroaromatics, J. Mater. Chem. C., 6 (2018) 12142-12158.
  • 24. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic Framework Materials as Chemical Sensors, Chem. Rev., 112 (2012) 1105-1125.
  • 25. Z.C. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev., 43 (2014) 5815-5840.
  • 26. W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 46 (2017) 3242-3285.
  • 27. A. Altun, E. Senkuytu, D. Davarci. Synthesis and crystal structure of the 6-oxyquinoline derivative cyclotriphosphazene chemosensor with high selectivity and immediate sensitivity for Fe(III) ion and TNT detection, Polyhedron, 240 (2023) 116458.
  • 28. H. Zhu, TM. Geng, K.B. Tang, Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and p-Nitrophenol. Polymers, 15 (2023) 653.
  • 29. K.K. Kartha, A. Sandeep, V.K. Praveen, A. Ajayaghosh, Detection of Nitroaromatic Explosives with Fluorescent Molecular Assemblies and π-Gels, Chem. Rec., 15 (2015) 252-265.
  • 30. F. Akhgari, H. Fattahi, Y.M. Oskoei. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives, Sensor Actuat. B-Chem., 221 (2015) 867-878.
  • 31. A. Kose, S. Erkan, M. Tümer. A series of phenanthroline-imine compounds: Computational, OLED properties and fluorimetric sensing of nitroaromatic compounds, Spectrochim Acta A Mol Biomol Spectrosc., 286 (2023) 122006.
  • 32. N. Turan, K. Buldurun, F. Türkan, A. Aras, N. Çolak, M. Murahari, E. Bursal, A. Mantarcı, Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies, Molecular Diversity, 26 (2022) 2459-2472.
  • 33. D. Laziz, C. Beghidja, N. Baali, B. Zouchoune, A. Beghidja. Synthesis, structural characterization, DFT calculations and biological properties of mono- and dinuclear nickel complexes with tetradentate transformed ligands by aerobic oxidative-coupling reactions, Inorg. Chim. Acta., 497 (2019) 119085.
  • 34. K. Buldurun. Synthesis, Characterization, Thermal Study and Optical Property Evaluation of Co(II), Pd(II) Complexes Containing Schiff Bases of Thiophene-3-Carboxylate Ligand, J. Electron. Mater., 49 (2020) 1935-43.
  • 35. M.E. Alkis, K. Buldurun, Y. Alan, N. Turan, A. Altun. Electroporation Enhances the Anticancer Effects of Novel Cu(II) and Fe(II) Complexes in Chemotherapy-Resistant Glioblastoma Cancer Cells, Chem. Biodivers., 20 (2023).
  • 36. Buldurun K, Özdemir M. Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones, J. Mol. Struct., 1202 (2020) 127266.
  • 37. S.O. Tümay, S. Yesilot. Small molecule based water-soluble fluorescence material for highly selective and ultra-sensitive detection of TNT: Design and spectrofluorimetric determination in real samples, Sensor Actuat. B-Chem., 343 (2021) 130088.
  • 38. C. Carrillo-Carrión, B.M. Simonet, M. Valcárcel, Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots, Anal. Chim. Acta, 792 (2013) 93-100.
  • 39. Q. Zhang, D.M. Zhang, Y.L. Lu, Y. Yao, S. Li, Q.J. Liu, Graphene oxide-based optical biosensor functionalized with peptides for explosive detection, Biosens. Bioelectronic., 68 (2015) 494-499.
  • 40. J.R. Albani, Principles and Applications of Fluorescence Spectroscopy, Wiley-Blackwel Publisher, Lille, France 2007.
  • 41. H.C. Hung, C.W. Cheng, Y.Y. Wang, Y.J. Chen, W.S. Chung, Highly Selective Fluorescent Sensors for Hg and Ag Based on Bis-triazole-Coupled Polyoxyethylenes in MeOH Solution. Eur. J. Org. Chem., 36 (2009) 6360-6366.
  • 42. V. Sharma, M.S. Mehata. Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots, Spectrochim Acta A Mol Biomol Spectrosc., 260 (2021) 119937.
  • 43. S. Kumari, S. Joshi, T.C. Cordova-Sintjago, D.D. Pant, R. Sakhuja, Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium, Sensor Actuat. B-Chem., 229 (2016) 599-608.
  • 44. X. Guo, B. Gao, X. Cui, J.H. Wang, W.Y. Dong, Q. Duan, T. Fei, Z. Su, PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer, Dyes and Pigm., 191 (2021) 109379.
Year 2025, Volume: 53 Issue: 1, 159 - 168, 01.01.2025
https://doi.org/10.15671/hjbc.1511046

Abstract

References

  • 1. E.V. Verbitskiy, G.L.Rusinov, O.N. Chupakhin, V.N. Charushin, Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review, Dyes and Pigm., 180 (2020) 108141.
  • 2. Y.F. Zhao, L.B. Xu, F.L. Kong, L. Yu, Design and preparation of poly(tannic acid) nanoparticles with intrinsic fluorescence: A sensitive detector of picric acid, Chem. Eng. J., 416 (2021) 129090.
  • 3. Y.C. Zheng, S. Wang, R.F. Li, L. Pan, L.Q. Li, Z.P. Qi, C. Li, Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots, Res. Chem. Intermed., 47 (2021) 2421-2431.
  • 4. J.F. Wyman, M.P. Serve, D.W. Hobson, L.H Lee, D.E. Uddin, Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats, J. Toxicol. Environ. Health, 7 (1992) 313-327.
  • 5. J.F. Wyman, H.E. Guard, W.D. Won, J.H. Quay, Conversion of 2,4,6-Trinitrophenol to a Mutagen by Pseudomonas-Aeruginosa, Appl. Environ. Microbiol., 37 (1979) 222-226.
  • 6. D.T.T. Trinh, W. Khanitchaidecha, D. Channei, A. Nakaruk, Synthesis, characterization and environmental applications of bismuth vanadate, Res. Chem. Intermed., 45 (2019) 5217-5259.
  • 7. T.P. Forbes, E. Sisco, Recent advances in ambient mass spectrometry of trace explosives, Analyst., 143 (2018) 1948-1969.
  • 8. J.S. Caygill, F. Davis, S.P.J. Higson, Current trends in explosive detection techniques. Talanta, 88 (2012) 14-29.
  • 9. J.W. Grate, R.G. Ewing, D.A. Atkinson, Vapor-generation methods for explosives-detection research. Trac-Trends in Anal. Chem., 41 (2012) 1-14.
  • 10. R. Gillibert, J.Q. Huang, Y. Zhang, W.L. Fu, M.L. de la Chapelle, Explosive detection by Surface Enhanced Raman Scattering, Trac-Trends in Anal. Chem., 105 (2018) 166-172.
  • 11. P. Wen, M. Amin, WD. Herzog, RR. Kunz, Key challenges and prospects for optical standoff trace detection of explosives, Trac-Trends in Anal. Chem., 100 (2018) 136-144.
  • 12. X.C. Sun, Y. Wang, Y. Lei, Fluorescence based explosive detection: from mechanisms to sensory materials, Chem. Soc. Rev., 44 (2015) 8019-61.
  • 13. C.P. Wang, WW. Sheng, C. Sun, J. Lei, JS. Hu, A cobalt-coordination polymer as a highly selective and sensitive luminescent sensor for detecting 2,4,6-trinitrophenol, Mol. Cryst. Liq., 768 (2024) 117-26.
  • 14. J.N. Malegaonkar, M. Al Kobaisi, P. K. Singh, S.V. Bhosale, S.V. Bhosale, Sensitive turn-off detection of nitroaromatics using fluorescent tetraphenylethylene phosphonate derivative, J. Photoch. Photobio. A., 438 (2023) 114530.
  • 15. Y. Salinas, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, A.M. Costero, M. Parra, S. Gil, Optical chemosensors and reagents to detect explosives, Chem. Soc. Rev., 41 (2012) 1261-96.
  • 16. H.A. Yu, D.A. DeTata, S.W. Lewis, D.S. Silvester, Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science, Trac-Trends in Anal. Chem., 97 (2017) 374-384.
  • 17. M. Calcerrada, M. González-Herráez, C. García-Ruiz, Recent advances in capillary electrophoresis instrumentation for the analysis of explosives, Trac-Trends in Anal. Chem., 75 (2016) 75-85.
  • 18. D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev., 100 (2000) 2537-2574.
  • 19. A. Rose, Z.G. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Sensitivity gains in chemosensing by lasing action in organic polymers, Nature, 434 (2005) 876-879.
  • 20. V. Kumar, B. Maiti, M.K. Chini, P. De, S. Satapathi, Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics, Sci. Rep., 9 (2019) 7269.
  • 21. M.J. Tsai, C.Y. Li, J.Y. Wu, Luminescent Zn(ii) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics, Crystengcomm, 20 (2018) 6762-6774.
  • 22. A. Altun, R.M. Apetrei, P. Camurlu, Functional Biosensing Platform for Urea Detection: Copolymer of Fc-Substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene, J. Electrochem. Soc., 168 (2021) 067513.
  • 23. M. Chhatwal, R. Mittal, R.D. Gupta, S.K. Awasthi, Sensing ensembles for nitroaromatics, J. Mater. Chem. C., 6 (2018) 12142-12158.
  • 24. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic Framework Materials as Chemical Sensors, Chem. Rev., 112 (2012) 1105-1125.
  • 25. Z.C. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev., 43 (2014) 5815-5840.
  • 26. W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 46 (2017) 3242-3285.
  • 27. A. Altun, E. Senkuytu, D. Davarci. Synthesis and crystal structure of the 6-oxyquinoline derivative cyclotriphosphazene chemosensor with high selectivity and immediate sensitivity for Fe(III) ion and TNT detection, Polyhedron, 240 (2023) 116458.
  • 28. H. Zhu, TM. Geng, K.B. Tang, Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and p-Nitrophenol. Polymers, 15 (2023) 653.
  • 29. K.K. Kartha, A. Sandeep, V.K. Praveen, A. Ajayaghosh, Detection of Nitroaromatic Explosives with Fluorescent Molecular Assemblies and π-Gels, Chem. Rec., 15 (2015) 252-265.
  • 30. F. Akhgari, H. Fattahi, Y.M. Oskoei. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives, Sensor Actuat. B-Chem., 221 (2015) 867-878.
  • 31. A. Kose, S. Erkan, M. Tümer. A series of phenanthroline-imine compounds: Computational, OLED properties and fluorimetric sensing of nitroaromatic compounds, Spectrochim Acta A Mol Biomol Spectrosc., 286 (2023) 122006.
  • 32. N. Turan, K. Buldurun, F. Türkan, A. Aras, N. Çolak, M. Murahari, E. Bursal, A. Mantarcı, Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies, Molecular Diversity, 26 (2022) 2459-2472.
  • 33. D. Laziz, C. Beghidja, N. Baali, B. Zouchoune, A. Beghidja. Synthesis, structural characterization, DFT calculations and biological properties of mono- and dinuclear nickel complexes with tetradentate transformed ligands by aerobic oxidative-coupling reactions, Inorg. Chim. Acta., 497 (2019) 119085.
  • 34. K. Buldurun. Synthesis, Characterization, Thermal Study and Optical Property Evaluation of Co(II), Pd(II) Complexes Containing Schiff Bases of Thiophene-3-Carboxylate Ligand, J. Electron. Mater., 49 (2020) 1935-43.
  • 35. M.E. Alkis, K. Buldurun, Y. Alan, N. Turan, A. Altun. Electroporation Enhances the Anticancer Effects of Novel Cu(II) and Fe(II) Complexes in Chemotherapy-Resistant Glioblastoma Cancer Cells, Chem. Biodivers., 20 (2023).
  • 36. Buldurun K, Özdemir M. Ruthenium(II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones, J. Mol. Struct., 1202 (2020) 127266.
  • 37. S.O. Tümay, S. Yesilot. Small molecule based water-soluble fluorescence material for highly selective and ultra-sensitive detection of TNT: Design and spectrofluorimetric determination in real samples, Sensor Actuat. B-Chem., 343 (2021) 130088.
  • 38. C. Carrillo-Carrión, B.M. Simonet, M. Valcárcel, Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots, Anal. Chim. Acta, 792 (2013) 93-100.
  • 39. Q. Zhang, D.M. Zhang, Y.L. Lu, Y. Yao, S. Li, Q.J. Liu, Graphene oxide-based optical biosensor functionalized with peptides for explosive detection, Biosens. Bioelectronic., 68 (2015) 494-499.
  • 40. J.R. Albani, Principles and Applications of Fluorescence Spectroscopy, Wiley-Blackwel Publisher, Lille, France 2007.
  • 41. H.C. Hung, C.W. Cheng, Y.Y. Wang, Y.J. Chen, W.S. Chung, Highly Selective Fluorescent Sensors for Hg and Ag Based on Bis-triazole-Coupled Polyoxyethylenes in MeOH Solution. Eur. J. Org. Chem., 36 (2009) 6360-6366.
  • 42. V. Sharma, M.S. Mehata. Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots, Spectrochim Acta A Mol Biomol Spectrosc., 260 (2021) 119937.
  • 43. S. Kumari, S. Joshi, T.C. Cordova-Sintjago, D.D. Pant, R. Sakhuja, Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium, Sensor Actuat. B-Chem., 229 (2016) 599-608.
  • 44. X. Guo, B. Gao, X. Cui, J.H. Wang, W.Y. Dong, Q. Duan, T. Fei, Z. Su, PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer, Dyes and Pigm., 191 (2021) 109379.
There are 44 citations in total.

Details

Primary Language English
Subjects Photochemistry, Physical Chemistry (Other)
Journal Section Research Article
Authors

Ayhan Altun 0000-0002-0931-4693

Publication Date January 1, 2025
Submission Date July 5, 2024
Acceptance Date September 30, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Altun, A. (2025). Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium. Hacettepe Journal of Biology and Chemistry, 53(1), 159-168. https://doi.org/10.15671/hjbc.1511046
AMA Altun A. Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium. HJBC. January 2025;53(1):159-168. doi:10.15671/hjbc.1511046
Chicago Altun, Ayhan. “Schiff Base-Nickel(II) Complex: A Robust Luminescent Probe for the Detection of 2,4,6-Trinitrophenol in an Aqueous Medium”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 159-68. https://doi.org/10.15671/hjbc.1511046.
EndNote Altun A (January 1, 2025) Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium. Hacettepe Journal of Biology and Chemistry 53 1 159–168.
IEEE A. Altun, “Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium”, HJBC, vol. 53, no. 1, pp. 159–168, 2025, doi: 10.15671/hjbc.1511046.
ISNAD Altun, Ayhan. “Schiff Base-Nickel(II) Complex: A Robust Luminescent Probe for the Detection of 2,4,6-Trinitrophenol in an Aqueous Medium”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 159-168. https://doi.org/10.15671/hjbc.1511046.
JAMA Altun A. Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium. HJBC. 2025;53:159–168.
MLA Altun, Ayhan. “Schiff Base-Nickel(II) Complex: A Robust Luminescent Probe for the Detection of 2,4,6-Trinitrophenol in an Aqueous Medium”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 159-68, doi:10.15671/hjbc.1511046.
Vancouver Altun A. Schiff Base-Nickel(II) Complex: A robust luminescent probe for the detection of 2,4,6-trinitrophenol in an aqueous medium. HJBC. 2025;53(1):159-68.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc