Research Article
BibTex RIS Cite
Year 2025, Volume: 53 Issue: 1, 31 - 41, 01.01.2025
https://doi.org/10.15671/hjbc.1526093

Abstract

References

  • References 1D. Ghosh, B. Veeraraghavan, R. Elangovan, P. Vivekanandan, Antibiotic resistance and epigenetics: More to it than meets the eye, Antimicrob. Agents Chemother., 64 (2020) e02225-19.
  • F. Usai, A. Di Sotto, Trans-cinnamaldehyde as a novel candidate to overcome bacterial resistance: an overview of in vitro studies, Antibiotics, 12 (2023) 254.
  • G. Sahal, H.J. Woerdenbag, W.L. Hinrichs, A. Visser, P.G. Tepper, W.J. Quax, H.C. van der Mei, I.S. Bilkay, Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study, J. Ethnopharmacol., 246 (2020) 112188.
  • K. Beksac, G. Sahal, H.G. Donmez, Thyme essential oil as an antimicrobial and biofilm inhibitory agent against abscesses with P. mirabilis infections, J. Herb. Med., 28 (2021) 100446.
  • S. Sharma, J. Mohler, S.D. Mahajan, S.A. Schwartz, L. Bruggemann, R. Aalinkeel, Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment, Microorganisms, 11 (2023) 1614.
  • Y. Luo, Q. Yang, D. Zhang, W. Yan, Mechanisms and control strategies of antibiotic resistance in pathological biofilms, J. Microbiol. Biotechnol., 31 (2021) 1-7.
  • S. Mishra, A. Gupta, V. Upadhye, S.C. Singh, R.P. Sinha, D.P. Häder, Therapeutic strategies against biofilm infections, Life, 13 (2023) 172.
  • A. Unlu, T. Sar, G. Seker, A.G. Erman, E. Kalpar, M.Y. Akbas, Biofilm formation by Staphylococcus aureus strains and their control by selected phytochemicals, Int. J. Dairy Tech., 71 (2018) 637-646.
  • G.M. Abebe, The role of bacterial biofilm in antibiotic resistance and food contamination, Int. J. Microbiol., 2020 (2020) 1705814.
  • S. Ghosh, T. Sarkar, R. Chakraborty, Formation and development of biofilm-an alarming concern in food safety perspectives, Biocatal. Agric. Biotechnol., 38 (2021) 102210.
  • M.A. Rather, K. Gupta, P. Bardhan, M. Borah, A. Sarkar, K.S. Eldiehy, S. Bhuyan, M. Mandal, Microbial biofilm: A matter of grave concern for human health and food industry, J. Basic Microbiol., 61 (2021) 380-395.
  • N. Khorshidian, M. Yousefi, E. Khanniri, A.M. Mortazavian, Potential application of essential oils as antimicrobial preservatives in cheese, Innov. Food Sci. Emerg. Technol., 45 (2018) 62-72.
  • M. Didehdar, Z. Chegini, S.P. Tabaeian, S. Razavi, A. Shariati, Cinnamomum: The new therapeutic agents for inhibition of bacterial and fungal biofilm-associated infection, Front. Cell. Infect. Microbiol., 12 (2022) 930624.
  • A. Bolouri, A. Mohammad-Khah, Preparation and characterization of antibacterial nanofibrous trimethoprim/polyvinylpyrrolidone mats as an oral fast-dissolving drug delivery system, Bulgarian Chem. Commun., 48 (2016) 5-14.
  • G.D. Christensen, W. Simpson, J. Younger, L. Baddour, F. Barrett, D. Melton, E. Beachey, Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices, J. Clin. Microbiol., 22 (1985) 996-1006.
  • T. Royintarat, E.H. Choi, D. Boonyawan, P. Seesuriyachan, W. Wattanutchariya, Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin, Sci. Rep., 10 (2020) 1559.
  • A.M. Wilson, R.M. Jones, Exploring spatial averaging of contamination in fomite microbial transfer models and implications for dose, J. Expo. Sci. Environ. Epidemiol., 32 (2022) 759-766.
  • P. Neelakantan, C. Subbarao, S. Sharma, C.V. Subbarao, F. Garcia-Godoy, J.L. Gutmann, Effectiveness of curcumin against Enterococcus faecalis biofilm, Acta Odontol. Scand., 71 (2013) 1453-1457.
  • U.J. Tsopmene, C.R. Tokam Kuaté, P.N. Kayoka-Kabongo, B.N. Bisso, A. Metopa, C.T. Mofor, J.P. Dzoyem, Antibiofilm activity of curcumin and piperine and their synergistic effects with antifungals against Candida albicans clinical isolates, Scientifica, 2024 (2024) 2025557.
  • D. Zheng, C. Huang, H. Huang, Y. Zhao, M.R.U. Khan, H. Zhao, L. Huang, Antibacterial mechanism of curcumin: a review, Chem. Biodivers., 17 (2020) e2000171.
  • A.E. Krausz, B.L. Adler, V. Cabral, M. Navati, J. Doerner, R.A. Charafeddine, D. Chandra, H. Liang, L. Gunther, A. Clendaniel, S. Harper, J.M. Friedman, J.D. Nosanchuk, A.J. Friedman, Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent, Nanomedicine, 11 (2015) 195-206.
  • A.M. Khan, O.U.R. Abid, S. Mir, Assessment of biological activities of chitosan Schiff base tagged with medicinal plants, Biopolymers, 111 (2020) 23338.
  • Z. Lou, K.S. Letsididi, F. Yu, Z. Pei, H. Wang, R. Letsididi, Inhibitive effect of eugenol and its nanoemulsion on quorum sensing–mediated virulence factors and biofilm formation by Pseudomonas aeruginosa, J. Food Prot., 82 (2019) 379-389.
  • G.E. Jeyakumar, R. Lawrence, Mechanisms of bactericidal action of eugenol against Escherichia coli, J. Herb. Med., 26 (2021) 100406.
  • J.O.E. Nogueira, G.A. Campolina, L.R. Batista, E. Alves, A.R.S. Caetano, R.M. Brandão, D.L. Nelson, M.D.G. Cardoso, Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus, FEMS Microbiol. Lett., 368 (2021) fnab052.
  • A. Gupta, E. Jeyakumar, R. Lawrence, Journey of limonene as an antimicrobial agent, J. Pure Appl. Microbiol., 15 (2021) 1094-1110.
  • D. Trombetta, F. Castelli, M.G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, G. Bisignano, Mechanisms of antibacterial action of three monoterpenes, Antimicrob. Agents Chemother., 49 (2005) 2474-2478.
  • S. Ahmedi, P. Pant, N. Raj, N. Manzoor, Limonene inhibits virulence associated traits in Candida albicans: In-vitro and in-silico studies, Phytomedicine Plus, 2 (2022) 100285.
  • S. Qu, K. Yang, L. Chen, M. Liu, Q. Geng, X. He, Y. Li, Y. Liu, J. Tian, Cinnamaldehyde, a promising natural preservative against Aspergillus flavus, Front. Microbiol., 10 (2019) 2895.
  • J.C. Chalchat, I. Valade, Chemical composition of leaf oils of Cinnamomum from Madagascar: C. zeylanicum Blume, C. camphora L., C. fragrans Baillon and C. angustifolium, J. Essent. Oil Res., 12 (2000) 537-540.
  • S. Shen, T. Zhang, Y. Yuan, S. Lin, J. Xu, H. Ye, Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane, Food control, 47 (2015) 196-202.
  • A. Pootong, B. Norrapong, S. Cowawintaweewat, Antifungal activity of cinnamaldehyde against Candida albicans, Southeast Asian J. Trop. Med. Public Health, 48 (2017) 150-158.
  • Y. Qin, J. Yang, J. Xue, Characterization of antimicrobial poly (lactic acid)/poly (trimethylene carbonate) films with cinnamaldehyde, J. Mater. Sci., 50 (2015) 1150-1158.
  • L. Ying, S. Mingzhu, Y. Mingju, X. Ye, W. Yuechen, C. Ying, G. Bing, L. Hongchun, Z. Zuobin, The inhibition of trans-cinnamaldehyde on the virulence of Candida albicans via enhancing farnesol secretion with low potential for the development of resistance, Biochem. Biophys. Res. Commun., 515 (2019) 544-550.
  • G. Laverty, S.P. Gorman, B.F. Gilmore, Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation, Pathogens, 3 (2014) 596-632.
  • M. Zapotoczna, E. O’Neill, J.P. O'Gara, Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation, PLoS Pathog., 12 (2016) e1005671.
  • P. Uppuluri, J.L. Lopez Ribot, Candida albicans biofilms. In Candida albicans: Cellular and molecular biology, Cham: Springer International Publishing, New York, USA, 2017.
  • M.A. Olszewska, A. Gędas, M. Simões, The effects of eugenol, trans-cinnamaldehyde, citronellol, and terpineol on Escherichia coli biofilm control as assessed by culture-dependent and-independent methods, Molecules, 25 (2020) 2641.
  • N. Suwal, R.K. Subba, P. Paudyal, D.P. Khanal, M. Panthi, N. Suwal, M.A. Nassan, M. Alqarni, G.E.S. Batiha, N. Koirala, Antimicrobial and antibiofilm potential of Curcuma longa Linn. rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates, Cell. Mol. Biol., 67 (2021) 17-23.
  • I. Williams, W.A. Venables, D. Lloyd, F. Paul, I. Critchley, The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus, Microbiol., 143 (1997) 2407-2413.
  • H. Ceri, M.E. Olson, C. Stremick, R.R. Read, D. Morck, A. Buret, The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, J. Clin. Microbiol., 37 (1999) 1771-1776.
  • A. Borges, M.J Saavedra, M. Simoes, Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents, Curr. Med. Chem., 22 (2015) 2590-2614.
  • P. Jayaraman, K.R. Sakharkar, C. Lim, M.I. Siddiqi, S.K. Dhillon, M.K. Sakharkar, Novel phytochemical–antibiotic conjugates as multitarget inhibitors of Pseudomononas aeruginosa GyrB/ParE and DHFR, Drug Des. Dev. Ther., 7 (2013) 449-475.

Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin

Year 2025, Volume: 53 Issue: 1, 31 - 41, 01.01.2025
https://doi.org/10.15671/hjbc.1526093

Abstract

As the challenges in the treatment of infections caused by multi-drug resistant microorganisms with well-known antimicrobial agents become a serious treat for the human health in worldwide, development of novel antimicrobials with potent antimicrobial activity has garnered significant attention. Therefore, this study aimed to investigate the antimicrobial and antibiofilm effects of four phytochemicals (trans-cinnamaldehyde, limonene, eugenol, and curcumin) against Gram-positive and Gram-negative bacteria and a yeast. Prior to antibiofilm assays, minimum inhibitory concentrations (MIC), minimum bactericidal concentrations, and minimum fungicidal concentrations were determined, with significant bactericidal and fungicidal effects being observed at low phytochemical concentrations. Also, biofilm inhibition efficiency of these phytochemicals was assessed at sub-MIC values (0.5x, 0.25x, and 0.125x MIC). At least 60% biofilm inhibition was observed for most of the microorganisms at the lowest tested concentrations (0.125x MIC) of the phytochemicals. Their biofilm inhibition capacity generally increased up to 80-90% depending on the concentration. Six data-driven models and their joint optimization adopted in this study yielded validation-based high predictive accuracy and identified optimal conditions.

Ethical Statement

The authors declare no conflict of interest.

References

  • References 1D. Ghosh, B. Veeraraghavan, R. Elangovan, P. Vivekanandan, Antibiotic resistance and epigenetics: More to it than meets the eye, Antimicrob. Agents Chemother., 64 (2020) e02225-19.
  • F. Usai, A. Di Sotto, Trans-cinnamaldehyde as a novel candidate to overcome bacterial resistance: an overview of in vitro studies, Antibiotics, 12 (2023) 254.
  • G. Sahal, H.J. Woerdenbag, W.L. Hinrichs, A. Visser, P.G. Tepper, W.J. Quax, H.C. van der Mei, I.S. Bilkay, Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study, J. Ethnopharmacol., 246 (2020) 112188.
  • K. Beksac, G. Sahal, H.G. Donmez, Thyme essential oil as an antimicrobial and biofilm inhibitory agent against abscesses with P. mirabilis infections, J. Herb. Med., 28 (2021) 100446.
  • S. Sharma, J. Mohler, S.D. Mahajan, S.A. Schwartz, L. Bruggemann, R. Aalinkeel, Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment, Microorganisms, 11 (2023) 1614.
  • Y. Luo, Q. Yang, D. Zhang, W. Yan, Mechanisms and control strategies of antibiotic resistance in pathological biofilms, J. Microbiol. Biotechnol., 31 (2021) 1-7.
  • S. Mishra, A. Gupta, V. Upadhye, S.C. Singh, R.P. Sinha, D.P. Häder, Therapeutic strategies against biofilm infections, Life, 13 (2023) 172.
  • A. Unlu, T. Sar, G. Seker, A.G. Erman, E. Kalpar, M.Y. Akbas, Biofilm formation by Staphylococcus aureus strains and their control by selected phytochemicals, Int. J. Dairy Tech., 71 (2018) 637-646.
  • G.M. Abebe, The role of bacterial biofilm in antibiotic resistance and food contamination, Int. J. Microbiol., 2020 (2020) 1705814.
  • S. Ghosh, T. Sarkar, R. Chakraborty, Formation and development of biofilm-an alarming concern in food safety perspectives, Biocatal. Agric. Biotechnol., 38 (2021) 102210.
  • M.A. Rather, K. Gupta, P. Bardhan, M. Borah, A. Sarkar, K.S. Eldiehy, S. Bhuyan, M. Mandal, Microbial biofilm: A matter of grave concern for human health and food industry, J. Basic Microbiol., 61 (2021) 380-395.
  • N. Khorshidian, M. Yousefi, E. Khanniri, A.M. Mortazavian, Potential application of essential oils as antimicrobial preservatives in cheese, Innov. Food Sci. Emerg. Technol., 45 (2018) 62-72.
  • M. Didehdar, Z. Chegini, S.P. Tabaeian, S. Razavi, A. Shariati, Cinnamomum: The new therapeutic agents for inhibition of bacterial and fungal biofilm-associated infection, Front. Cell. Infect. Microbiol., 12 (2022) 930624.
  • A. Bolouri, A. Mohammad-Khah, Preparation and characterization of antibacterial nanofibrous trimethoprim/polyvinylpyrrolidone mats as an oral fast-dissolving drug delivery system, Bulgarian Chem. Commun., 48 (2016) 5-14.
  • G.D. Christensen, W. Simpson, J. Younger, L. Baddour, F. Barrett, D. Melton, E. Beachey, Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices, J. Clin. Microbiol., 22 (1985) 996-1006.
  • T. Royintarat, E.H. Choi, D. Boonyawan, P. Seesuriyachan, W. Wattanutchariya, Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin, Sci. Rep., 10 (2020) 1559.
  • A.M. Wilson, R.M. Jones, Exploring spatial averaging of contamination in fomite microbial transfer models and implications for dose, J. Expo. Sci. Environ. Epidemiol., 32 (2022) 759-766.
  • P. Neelakantan, C. Subbarao, S. Sharma, C.V. Subbarao, F. Garcia-Godoy, J.L. Gutmann, Effectiveness of curcumin against Enterococcus faecalis biofilm, Acta Odontol. Scand., 71 (2013) 1453-1457.
  • U.J. Tsopmene, C.R. Tokam Kuaté, P.N. Kayoka-Kabongo, B.N. Bisso, A. Metopa, C.T. Mofor, J.P. Dzoyem, Antibiofilm activity of curcumin and piperine and their synergistic effects with antifungals against Candida albicans clinical isolates, Scientifica, 2024 (2024) 2025557.
  • D. Zheng, C. Huang, H. Huang, Y. Zhao, M.R.U. Khan, H. Zhao, L. Huang, Antibacterial mechanism of curcumin: a review, Chem. Biodivers., 17 (2020) e2000171.
  • A.E. Krausz, B.L. Adler, V. Cabral, M. Navati, J. Doerner, R.A. Charafeddine, D. Chandra, H. Liang, L. Gunther, A. Clendaniel, S. Harper, J.M. Friedman, J.D. Nosanchuk, A.J. Friedman, Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent, Nanomedicine, 11 (2015) 195-206.
  • A.M. Khan, O.U.R. Abid, S. Mir, Assessment of biological activities of chitosan Schiff base tagged with medicinal plants, Biopolymers, 111 (2020) 23338.
  • Z. Lou, K.S. Letsididi, F. Yu, Z. Pei, H. Wang, R. Letsididi, Inhibitive effect of eugenol and its nanoemulsion on quorum sensing–mediated virulence factors and biofilm formation by Pseudomonas aeruginosa, J. Food Prot., 82 (2019) 379-389.
  • G.E. Jeyakumar, R. Lawrence, Mechanisms of bactericidal action of eugenol against Escherichia coli, J. Herb. Med., 26 (2021) 100406.
  • J.O.E. Nogueira, G.A. Campolina, L.R. Batista, E. Alves, A.R.S. Caetano, R.M. Brandão, D.L. Nelson, M.D.G. Cardoso, Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus, FEMS Microbiol. Lett., 368 (2021) fnab052.
  • A. Gupta, E. Jeyakumar, R. Lawrence, Journey of limonene as an antimicrobial agent, J. Pure Appl. Microbiol., 15 (2021) 1094-1110.
  • D. Trombetta, F. Castelli, M.G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, G. Bisignano, Mechanisms of antibacterial action of three monoterpenes, Antimicrob. Agents Chemother., 49 (2005) 2474-2478.
  • S. Ahmedi, P. Pant, N. Raj, N. Manzoor, Limonene inhibits virulence associated traits in Candida albicans: In-vitro and in-silico studies, Phytomedicine Plus, 2 (2022) 100285.
  • S. Qu, K. Yang, L. Chen, M. Liu, Q. Geng, X. He, Y. Li, Y. Liu, J. Tian, Cinnamaldehyde, a promising natural preservative against Aspergillus flavus, Front. Microbiol., 10 (2019) 2895.
  • J.C. Chalchat, I. Valade, Chemical composition of leaf oils of Cinnamomum from Madagascar: C. zeylanicum Blume, C. camphora L., C. fragrans Baillon and C. angustifolium, J. Essent. Oil Res., 12 (2000) 537-540.
  • S. Shen, T. Zhang, Y. Yuan, S. Lin, J. Xu, H. Ye, Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane, Food control, 47 (2015) 196-202.
  • A. Pootong, B. Norrapong, S. Cowawintaweewat, Antifungal activity of cinnamaldehyde against Candida albicans, Southeast Asian J. Trop. Med. Public Health, 48 (2017) 150-158.
  • Y. Qin, J. Yang, J. Xue, Characterization of antimicrobial poly (lactic acid)/poly (trimethylene carbonate) films with cinnamaldehyde, J. Mater. Sci., 50 (2015) 1150-1158.
  • L. Ying, S. Mingzhu, Y. Mingju, X. Ye, W. Yuechen, C. Ying, G. Bing, L. Hongchun, Z. Zuobin, The inhibition of trans-cinnamaldehyde on the virulence of Candida albicans via enhancing farnesol secretion with low potential for the development of resistance, Biochem. Biophys. Res. Commun., 515 (2019) 544-550.
  • G. Laverty, S.P. Gorman, B.F. Gilmore, Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation, Pathogens, 3 (2014) 596-632.
  • M. Zapotoczna, E. O’Neill, J.P. O'Gara, Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation, PLoS Pathog., 12 (2016) e1005671.
  • P. Uppuluri, J.L. Lopez Ribot, Candida albicans biofilms. In Candida albicans: Cellular and molecular biology, Cham: Springer International Publishing, New York, USA, 2017.
  • M.A. Olszewska, A. Gędas, M. Simões, The effects of eugenol, trans-cinnamaldehyde, citronellol, and terpineol on Escherichia coli biofilm control as assessed by culture-dependent and-independent methods, Molecules, 25 (2020) 2641.
  • N. Suwal, R.K. Subba, P. Paudyal, D.P. Khanal, M. Panthi, N. Suwal, M.A. Nassan, M. Alqarni, G.E.S. Batiha, N. Koirala, Antimicrobial and antibiofilm potential of Curcuma longa Linn. rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates, Cell. Mol. Biol., 67 (2021) 17-23.
  • I. Williams, W.A. Venables, D. Lloyd, F. Paul, I. Critchley, The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus, Microbiol., 143 (1997) 2407-2413.
  • H. Ceri, M.E. Olson, C. Stremick, R.R. Read, D. Morck, A. Buret, The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, J. Clin. Microbiol., 37 (1999) 1771-1776.
  • A. Borges, M.J Saavedra, M. Simoes, Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents, Curr. Med. Chem., 22 (2015) 2590-2614.
  • P. Jayaraman, K.R. Sakharkar, C. Lim, M.I. Siddiqi, S.K. Dhillon, M.K. Sakharkar, Novel phytochemical–antibiotic conjugates as multitarget inhibitors of Pseudomononas aeruginosa GyrB/ParE and DHFR, Drug Des. Dev. Ther., 7 (2013) 449-475.
There are 43 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Bioassays, Biologically Active Molecules
Journal Section Research Article
Authors

Sinem Diken Gür 0000-0001-6105-4609

Publication Date January 1, 2025
Submission Date August 1, 2024
Acceptance Date August 26, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Diken Gür, S. (2025). Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin. Hacettepe Journal of Biology and Chemistry, 53(1), 31-41. https://doi.org/10.15671/hjbc.1526093
AMA Diken Gür S. Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin. HJBC. January 2025;53(1):31-41. doi:10.15671/hjbc.1526093
Chicago Diken Gür, Sinem. “Promising Phytochemicals That Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 31-41. https://doi.org/10.15671/hjbc.1526093.
EndNote Diken Gür S (January 1, 2025) Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin. Hacettepe Journal of Biology and Chemistry 53 1 31–41.
IEEE S. Diken Gür, “Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin”, HJBC, vol. 53, no. 1, pp. 31–41, 2025, doi: 10.15671/hjbc.1526093.
ISNAD Diken Gür, Sinem. “Promising Phytochemicals That Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 31-41. https://doi.org/10.15671/hjbc.1526093.
JAMA Diken Gür S. Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin. HJBC. 2025;53:31–41.
MLA Diken Gür, Sinem. “Promising Phytochemicals That Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 31-41, doi:10.15671/hjbc.1526093.
Vancouver Diken Gür S. Promising Phytochemicals that Show Antibiofilm Activity at Sub-Minimum Inhibitory Concentrations: Trans-Cinnamaldehyde, Limonene, Eugenol, and Curcumin. HJBC. 2025;53(1):31-4.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc