Research Article
BibTex RIS Cite

Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers

Year 2025, Volume: 53 Issue: 1, 77 - 86, 01.01.2025
https://doi.org/10.15671/hjbc.1531280

Abstract

Rattus norvegicus (Brown rat) has a great importance for public health and economy because it lives in close association with human populations. However, molecular systematic studies on global populations of R. norvegicus are very few. In this study, sequences obtained from Europe, Asia, Africa, and America regions were analyzed using mitochondrial Cytochrome-b and Cytochrome oxidase-I gene regions and genetic differentiation levels between these populations were revealed. Accordingly, samples belonging to the studied populations did not split in Bayesian Inference trees and Median-joining networks; these samples also formed common haplotypes, and mean genetic distance and fixation index values were generally low. The results of the study showed that gene flow between these populations may be continuing due to the transportation activity by humans.

Ethical Statement

Türkiye samples (n: 28) belong to AUMAC (Ankara University Mammalian Research Collection - https://mammalia.ankara.edu.tr/) (Ankara University Local Ethics Committee for Animal Experiments (Document no: 2018-14-81)).

Supporting Institution

-

Thanks

I would like to thank Prof. Dr. Nuri Yiğit for helping to provide the specimens for this study.

References

  • JL. Long, Introduced Mammals of the World: Their History, Distribution and Influence, Melbourne: CSIRO Publishing, 2003.
  • G.G. Musser, and M.D. Carleton, Family Muridae, Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference, Washington, DC: 2nd Smithsonian Institution Press, (1993). P.501-755.
  • L.A. Ruedas, Rattus norvegicus (errata version published in 2020), The IUCN Red List of Threatened Species (2016) eT19353A165118026.
  • X. Bonnefoy, H. Kampen, and K. Sweeney, Public health significance of urban pests, Copenhagen: World Health Organization, 2008.
  • 5D.W. Nagorsen, Rodents & lagomorphs of British Columbia, Victoria: Royal British Columbia Museum, 2005.
  • A. Hulme-Beaman, K. Dobney, T. Cucchi, and J.B. Searle, An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments, Trends Ecol Evol., 31 (2016) 633-645.
  • J.A. McNeely, H.A., Mooney, L.E. Neville, P. Schei, and J.K. Waage (eds), A global strategy on invasive alien species. IUCN and the Global Invasive Species Programme, Gland (2001).
  • J.M. Clinton, Rats in urban America, Public Health Rep., 84 (1969) 1.
  • R.E. Marsh, Roof rats. The handbook: prevention and control of wildlife damage, Paper 6 (1994).
  • J.E. Childs, J.N. Mills, and G.E Glass, Rat borne haemorrhagic fever viruses, special risk for mammologists?, J Mammal., 76 (1995) 664-680.
  • D. Pimentel, L. Lach, R. Zuniga, and D. Morrison, Environmental and economic costs of nonindigenous species in the United States, Biosci., 50 (2000) 53-65.
  • G. Singleton, Impacts of rodents on rice production in Asia. IRRI Discussion Paper Series No. 43. International Rice Research Institute, Los Baños, Philippines, (2003) p. 30.
  • K.P. Aplin, T. Chesser, and J.T. Have, Evolutionary biology of the genus Rattus: profile of an archetypal rodent pest, ACIAR MG S., 96 (2003) 487-498.
  • K. Rao, and K.R.M. Bai, Rodent Exclusion. Pimentel D, editor., Encyclopedia of Pest Management Volume II, (2007) P.562-566.
  • B.G. Meerburg, G.R. Singleton, and A. Kijlstra, Rodent-borne diseases and their risks for public health, Crit Rev Microbiol., 35 (2009) 221-270.
  • L. Khlyap, G. Glass, and M. Kosoy, Rodents in urban ecosystems of Russia and the USA In Rodents: habitat, pathology, and environmental impact, Nova Science Publishers, Inc; (2012) P.1-21.
  • M. Kosoy, L. Khlyap, J.F. Cosson, and S. Morand, Aboriginal and invasive rats of genus Rattus as hosts of infectious agents, Vector Borne Zoonotic Dis., 15 (2015) 3-12.
  • N. Yiğit, E. Çolak, and A. Karataş, Rodents of Türkiye: Türkiye Kemiricileri, Meteksan Company, (2006).
  • N. Yiğit, E. Çolak, Ş. Özkurt, A. Özlük, R. Çolak, N. Gül, F. Saygılı, and D. Yüce, Allozyme Variation in Wild Rats Rattus norvegicus (Berkenhout 1769) (Mammalia: Rodentia) from Turkey, Acta Zool. Bulg., 62 (2010) 79-88.
  • J.B. Lack, M.J. Hamilton, J.K. Braun, M.A. Mares, and R.A. Van Den Bussche, Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the US reveals distinct colonization histories and dispersal, Biol. Invasions, 15 (2013) 1067-1087.
  • M. Combs, E.E. Puckett, J. Richardson, D. Mims, and J. Munshi‐South, Spatial population genomics of the brown rat (Rattus norvegicus) in New York City, Mol. Ecol., 27 (2018) 83-98.
  • E. Hadjisterkotis, G. Konstantinou, D. Sanna, M. Pirastru, and P. Mereu, First mtDNA sequences and body measurements for Rattus norvegicus from the Mediterranean island of Cyprus, Life, 10 (2020) 136.
  • Y. Chen, L. Zhao, H. Teng, C. Shi, Q. Liu, J. Zhang, and Y. Zhang, Population genomics reveal rapid genetic differentiation in a recently invasive population of Rattus norvegicus, Front. Zool., 18 (2021) 1-10.
  • C.E. Lee, Evolutionary genetics of invasive species, Trends Ecol Evol, 17 (2002) 386-391.
  • J. Le Roux, and A.M. Wieczorek, Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management, Ann Appl Bio, 154 (2009) 1-17.
  • J. Abdelkrim, M. Pascal, C. Calmet, and S. Samadi, Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations, Conserv Biol, 19 (2005) 1509-1518.
  • M. Jaarola, and J.B. Searle, Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences, Mol. Ecol., 11 (2002) 2613-2621.
  • J.H. Robins, M. Hingston, E. Matisoo‐Smith, and H.A. Ross, Identifying Rattus species using mitochondrial DNA, Mol. Ecol. Notes., 7 (2007) 717-729.
  • N. Yiğit, D. Çetintürk, and E. Çolak, Phylogenetic assessment of voles of the Guentheri group (Mammalia: Microtus) in Turkish Thrace and Western Anatolia, Eur. zool. j., 84 (2017) 252-260.
  • S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura K, MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol Biol Evol., 35 (2018) 1547-1549.
  • R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J., 29 (1950) 147-160.
  • J. Rozas, A. Ferrer-Mata, J.C., Sánchez-DelBarrio, S. Guirao-Rico, P. Librado, S.E. Ramos-Onsins, and A. Sánchez-Gracia, DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol Biol Evol., 34 (2017) 3299-3302.
  • H.J. Bandelt, P. Forster, and A. Röhl, Median-joining networks for inferring intraspecific phylogenies, Mol Biol Evol., 16 (1999) 37-48.
  • S. Guindon, and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol., 52 (2003) 696-704.
  • D. Darriba, G.L. Taboada, R. Doallo, and D. Posada, jModelTest 2: more models, new heuristics and high-performance computing, Nat. Methods., 9 (2012) 772.
  • M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 16 (1980) 111-120.
  • M. Hasegawa, H. Kishino, and T.A. Yano, Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 22 (1985) 160-174.
  • J.P. Huelsenbeck, F. Ronquist, and B. Hall, An introduction to Bayesian inference of phylogeny, DNA SEQUENCE, (2001) 1-7.
  • M. Ruedi, J. Manzinalli, A. Dietrich, and L. Vinciguerra, Shortcomings of DNA barcodes: a perspective from the mammal fauna of Switzerland, HYSTRIX, 34 (2023) 54-61.
  • C. Sciandra, E. Mori, E. Solano, G. Mazza, A. Viviano, M. Scarfò, F. Bona, F. Annesi, and R. Castiglia, Mice on the borders: genetic determinations of rat and house mouse species in Lampedusa and Pantelleria islands (Southern Italy), Biogeographia, 37 (2022).
  • Y. Song, Z. Lan, and M.H. Kohn, Mitochondrial DNA phylogeography of the Norway rat, PLoS One, 9 (2014) e88425.
  • M. López, P. Foronda, C. Feliu, and M. Hernández, Genetic characterization of black rat (Rattus rattus) of the Canary Islands: origin and colonization, Biol. Invasions, 15 (2013) 2367-2372.
  • M. Moseley, K. Naidoo, A. Bastos, L. Retief, J. Frean, S. Telfer, J. Rossouw, Multi-locus sequence analyses reveal a clonal L. borgpetersenii genotype in a heterogeneous invasive Rattus spp. community across the City of Johannesburg, South Africa, Parasit Vectors, 13 (2003) 1-9.
  • Y. Sakuma, M.C. Ranorosoa, G. Kinoshita, H. Shimoji, K. Tsuchiya, S.D. Ohdachi, S. Arai, C. Tanaka, H. Ramino, and H. Suzuki, Variation in the coat-color-controlling genes, Mc1r and Asip, in the house mouse Mus musculus from Madagascar, Mammal study, 41 (2016) 131-140.
  • D.S. Chingangbam, J.M. Laishram, and H. Suzuki, Molecular phylogenetic characterization of common murine rodents from Manipur, Northeast India, Genes genet. syst., 90 (2015) 21-30.
  • A.D. Bastos, D. Nair, P.J. Taylor, H. Brettschneider, F. Kirsten, E. Mostert, E. von Maltitz, J.M. Lamb, P. van Hooft, S.R. Belmain, G. Contrafatto, S. Downs, and C.T. Chimimba, Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa, BMC Genet., 12 (2011) 1-18.
  • M. Pagès, Y. Chaval, V. Herbreteau, S. Waengsothorn, J.F. Cosson, J.P. Hugot, S. Morand, and J. Michaux, Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol. Biol., 10 (2010) 1-27.
  • P.P.C. Hemamali, and S.H. Boyagoda, Historic black rat invasions into Sri Lanka lead to hybridization forming two sub-lineages in the Rattus rattus species complex, Ceylon J. Sci., 49 (2010) 433.
  • K. Park, S.H. Lee, J. Kim, J. Lee, G.Y. Lee, S. Cho, J. Noh, J. Choi, J. Park, D.H. Song, S.H. Gu, H. Yun, J.E. Kim, D. Lee, I.U. Hwang, W.K. Kim, and J.W. Song, A portable diagnostic assay, genetic diversity, and isolation of Seoul virus from Rattus norvegicus collected in Gangwon Province, Republic of Korea, Pathogen, 11 (2022) 1047.
  • M. Jing, Y. Chen, K. Yao, Y. Wang, and L. Huang, Comparative phylogeography of two commensal rat species (Rattus tanezumi and Rattus norvegicus) in China: Insights from mitochondrial DNA, microsatellite, and 2b‐RAD data, ECOL EVOL., 12 (2022) e9409.
  • C.J. Conroy, K.C. Rowe, K.M. Rowe, P.L. Kamath, K.P. Aplin, L. Hui, K.J. David, C. Moritz, and J.L. Patton, Cryptic genetic diversity in Rattus of the San Francisco Bay region, California, Biol. Invasions., 15 (2013) 741-758.
  • A. Naidu, R.R. Fitak, A. Munguia‐Vega, and Culver M. Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals, Mol. Ecol. Resour., 12 (2012) 191-196.
  • S. Schäffer, F.E. Zachos, and S. Koblmüller, Opening the treasure chest: a DNA-barcoding primer set for most higher taxa of Central European birds and mammals from museum collections, PLoS One, 12 (2017) e0174449.
  • N. Shivambu, T.C. Shivambu, C.T. Downs, and S. Willows‐Munro, Genetic diversity of rodent species sold in South African pet shops, Afr. J. Ecol., 61 (2023) 89-101.
  • J.K. Cooper, G. Sykes, S. King, K. Cottrill, N.V. Ivanova, R. Hanner, and P. Ikonomi, Species identification in cell culture: a two-pronged molecular approach, In Vitro Cell Dev Biol Anim., 43 (2007) 344-351.
  • Y.L. Jones, S.M. Peters, C. Weland, N. Ivanova, and H.F. Yancy. Potential Use of DNA Barcodes in Regulatory Science: Identification of the US Food and Drug Administration's``Dirty 22,'' Contributors to the Spread of Foodborne Pathogens, Food Prot., 76 (2013) 144-149.
  • E.E. Puckett, J. Park, M. Combs, M.J. Blum, J.E. Bryant, A. Caccone, F. Costa, E.E. Deinum, A. Esther, C.G. Himsworth, P.D. Keightley, A. Ko, Å Lundkvist, L.M. McElhinney, S. Morand, J. Robins, J. Russell, T.M. Strand, O. Suarez, L. Yon, and J. Munshi, South Global population divergence and admixture of the brown rat (Rattus norvegicus), Proc R Soc Lond B Biol Sci, 283 (2016) 20161762.
  • M.K. McClintock, and N.T. Adler, The role of the female during copulation in wild and domestic Norway rats (Rattus norvegicus), Behaviour, 67 (1978) 67-95.
  • S.C. Hathaway, and D.K. Blackmore, Ecological aspects of the epidemiology of infection with leptospires of the Ballum serogroup in the black rat (Rattus rattus) and the brown rat (Rattus norvegicus) in New Zealand, Epidemiol Infect., 87 (1981) 427-436.
  • M.J. Meaney, and J.A. Stewart, A descriptive study of social development in the rat (Rattus norvegicus), Anim. Behav., 29 (1981) 34-45.
  • B. McGUIRE, T. Pizzuto, W.E. Bemis, and L.L. Getz, General ecology of a rural population of Norway rats (Rattus norvegicus) based on intensive live trapping, Am. Midl. Nat., 155 (2006) 221-236.
  • L.C. Gardner‐Santana, D.E. Norris, C.M. Fornadel, E.R. Hinson, S.L. Klein, and G.E. Glass, Commensal ecology, urban landscapes, and their influence on the genetic characteristics of city‐dwelling Norway rats (Rattus norvegicus), Mol. Ecol., 18 (2009) 2766-2778.
  • A.Y. Feng, and C.G. Himsworth, The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus), Urban Ecosyst., 17 (2014) 149-162.
  • J. Pascual, S. Franco, R. Bueno-Marí, V. Peracho, and T. Montalvo, Demography and ecology of Norway rats, Rattus norvegicus, in the sewer system of Barcelona (Catalonia, Spain), J. Pest Sci., 93 (2020) 711-722.
  • M.K. Schweinfurth, The social life of Norway rats (Rattus norvegicus), Elife, 9 (2020) e54020.
  • H.J. Pelz, D. Hänisch, and G. Lauenstein, Resistance to anticoagulant rodenticides in Germany and future strategies to control Rattus norvegicus, Pestic. Sci., 43 (1995) 61-67.
  • A. Buckle, S. Endepols, N. Klemann, and J. Jacob, Resistance testing and the effectiveness of difenacoum against Norway rats (Rattus norvegicus) in a tyrosine139cysteine focus of anticoagulant resistance, Westphalia, Germany, Pest Manag. Sci., 69 (2013) 233-239.
  • B.G. Meerburg, M.P. van Gent‐Pelzer, B. Schoelitsz, and T.A. van der Lee, Distribution of anticoagulant rodenticide resistance in Rattus norvegicus in the Netherlands according to Vkorc1 mutations, Pest Manag. Sci., 70 (2014) 1761-1766.
  • M.Z. Haniza, S. Adams, E.P. Jones, A. MacNicoll, E.B. Mallon, R.H. Smith, and M.S. Lambert, Large-scale structure of brown rat (Rattus norvegicus) populations in England: effects on rodenticide resistance, PeerJ, 3 (2015) e1458.
  • E.Y. Huang, S.T. Law, W. Nong, H.Y. Yip, T. Uea-Anuwong, I. Magouras, J.H.L. Hui, The screening for anticoagulant rodenticide gene VKORC1 polymorphism in the rat Rattus norvegicus, Rattus tanezumi and Rattus losea in Hong Kong, Sci. Rep., 12 (2022) 12545.
  • T. Aivelo, E. Koivisto, A. Esther, S. Koivisto, and O. Huitu, VKORC1-based resistance to anticoagulant rodenticides widespread in Finnish house mice but not in brown rats, Int. J. Pest Manag., (2023) 1-8.
  • I.M. Krijger, M. Strating, M. van Gent‐Pelzer, T.A. Van Der Lee, S.A. Burt, F.H. Schroeten, R. de Vries, M. de Cock, M. Maas, and B.G. Meerburg, Large‐scale identification of rodenticide resistance in Rattus norvegicus and Mus musculus in The Netherlands based on Vkorc1 codon 139 mutations, Pest Manag. Sci., 79 (2023) 989-995.
  • N. Yiğit, M.T. Duman, D. Çetintürk, F. Saygılı-Yiğit, E. Çolak, and R. Çolak, Vkorc1 gene polymorphisms confer resistance to anticoagulant rodenticide in Turkish rats, PeerJ, 11 (2023) e15055.
  • D.Y. Liu, J. Liu, B.Y. Liu, Y.Y. Liu, H.R. Xiong, W. Hou, and Z.Q. Yang, Phylogenetic analysis based on mitochondrial DNA sequences of wild rats, and the relationship with Seoul virus infection in Hubei, China, Virol. Sin., 32 (2017) 235-244.
  • S. Wright, The relation of livestock breeding to theories of evolution, J. Anim. Sci., 46 (1978) 1192-1200.
  • K.P. Aplin, H. Suzuki, A.A. Chinen, R.T. Chesser, J. Ten Have, S.C. Donnellan, J. Austin, A. Frost, J.P. Gonzalez, V. Herbreteau, F. Catzeflis, J. Soubrier, Y.P. Fang, J. Robins, E. Matisoo-Smith, A.D.S. Bastos, I. Maryanto, M.H. Sinaga, C. Denys, R.A. Van Den Bussche, C. Conroy, K. Rowe, and A. Cooper, Multiple geographic origins of commensalism and complex dispersal history of black rats, PloS one, 6 (2011) e26357.
  • S.A. Barnett, The Story of Rats: Their Impact on Us, and Our Impact on Them. Crows Nest, NSW, Australia: Allen and Unwin, (2001).
  • B. Grzimek, Grzimeks Tierleben: Enzyklopädie des Tierreichs (Augsburg: Weltbild Verl), (1967).
  • X.D. Lin, W.P. Guo, W. Wang, Y. Zou, Z.Y. Hao, D.J. Zhou, X. Dong, Y.G. Qu, M.H. Li, H.F. Tian, J.F. Wen, A. Plyusnin, J. Xu, and Y.Z. Zhang, Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today, J Virol., 86 (2012) 972-981.
  • R. Robinson, Genetics of the Norway Rat: International Series of Monographs in Pure and Applied Biology (Vol 24) Elsevier, 2013.

Rattus norvegicus (Berkenhout 1769) Populasyonlarının Genetik Farklılaşmasının İki Mitokondriyal Belirtecin Analiz Edilmesi İle Ortaya Çıkarılması

Year 2025, Volume: 53 Issue: 1, 77 - 86, 01.01.2025
https://doi.org/10.15671/hjbc.1531280

Abstract

Rattus norvegicus (Kahverenkli sıçan) insan popülasyonlarıyla yakın ilişki içinde yaşaması nedeniyle halk sağlığı ve ekonomi açısından büyük öneme sahiptir. Ancak, R. norvegicus'un küresel popülasyonları üzerine moleküler sistematik çalışmalar çok azdır. Bu çalışmada, Avrupa, Asya, Afrika ve Amerika bölgelerinden elde edilen diziler, mitokondriyal Sitokrom-b ve Sitokrom oksidaz-I gen bölgeleri kullanılarak analiz edilmiş ve bu popülasyonlar arasındaki genetik farklılaşma düzeyleri ortaya çıkarılmıştır. Buna göre, çalışılan popülasyonlara ait örnekler Bayesian Çıkarım Ağaçları ve Median-joining ilişki ağlarında ayrılmamıştır; bu örnekler aynı zamanda ortak haplotipler oluşturmuştur ve ortalama genetik uzaklık ve fiksasyon indeksi değerleri genel olarak düşüktür. Çalışmanın sonuçları, bu populasyonlar arasındaki gen akışının, insanların taşıma aktivitesi nedeniyle devam ediyor olabileceğini göstermiştir.

References

  • JL. Long, Introduced Mammals of the World: Their History, Distribution and Influence, Melbourne: CSIRO Publishing, 2003.
  • G.G. Musser, and M.D. Carleton, Family Muridae, Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference, Washington, DC: 2nd Smithsonian Institution Press, (1993). P.501-755.
  • L.A. Ruedas, Rattus norvegicus (errata version published in 2020), The IUCN Red List of Threatened Species (2016) eT19353A165118026.
  • X. Bonnefoy, H. Kampen, and K. Sweeney, Public health significance of urban pests, Copenhagen: World Health Organization, 2008.
  • 5D.W. Nagorsen, Rodents & lagomorphs of British Columbia, Victoria: Royal British Columbia Museum, 2005.
  • A. Hulme-Beaman, K. Dobney, T. Cucchi, and J.B. Searle, An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments, Trends Ecol Evol., 31 (2016) 633-645.
  • J.A. McNeely, H.A., Mooney, L.E. Neville, P. Schei, and J.K. Waage (eds), A global strategy on invasive alien species. IUCN and the Global Invasive Species Programme, Gland (2001).
  • J.M. Clinton, Rats in urban America, Public Health Rep., 84 (1969) 1.
  • R.E. Marsh, Roof rats. The handbook: prevention and control of wildlife damage, Paper 6 (1994).
  • J.E. Childs, J.N. Mills, and G.E Glass, Rat borne haemorrhagic fever viruses, special risk for mammologists?, J Mammal., 76 (1995) 664-680.
  • D. Pimentel, L. Lach, R. Zuniga, and D. Morrison, Environmental and economic costs of nonindigenous species in the United States, Biosci., 50 (2000) 53-65.
  • G. Singleton, Impacts of rodents on rice production in Asia. IRRI Discussion Paper Series No. 43. International Rice Research Institute, Los Baños, Philippines, (2003) p. 30.
  • K.P. Aplin, T. Chesser, and J.T. Have, Evolutionary biology of the genus Rattus: profile of an archetypal rodent pest, ACIAR MG S., 96 (2003) 487-498.
  • K. Rao, and K.R.M. Bai, Rodent Exclusion. Pimentel D, editor., Encyclopedia of Pest Management Volume II, (2007) P.562-566.
  • B.G. Meerburg, G.R. Singleton, and A. Kijlstra, Rodent-borne diseases and their risks for public health, Crit Rev Microbiol., 35 (2009) 221-270.
  • L. Khlyap, G. Glass, and M. Kosoy, Rodents in urban ecosystems of Russia and the USA In Rodents: habitat, pathology, and environmental impact, Nova Science Publishers, Inc; (2012) P.1-21.
  • M. Kosoy, L. Khlyap, J.F. Cosson, and S. Morand, Aboriginal and invasive rats of genus Rattus as hosts of infectious agents, Vector Borne Zoonotic Dis., 15 (2015) 3-12.
  • N. Yiğit, E. Çolak, and A. Karataş, Rodents of Türkiye: Türkiye Kemiricileri, Meteksan Company, (2006).
  • N. Yiğit, E. Çolak, Ş. Özkurt, A. Özlük, R. Çolak, N. Gül, F. Saygılı, and D. Yüce, Allozyme Variation in Wild Rats Rattus norvegicus (Berkenhout 1769) (Mammalia: Rodentia) from Turkey, Acta Zool. Bulg., 62 (2010) 79-88.
  • J.B. Lack, M.J. Hamilton, J.K. Braun, M.A. Mares, and R.A. Van Den Bussche, Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the US reveals distinct colonization histories and dispersal, Biol. Invasions, 15 (2013) 1067-1087.
  • M. Combs, E.E. Puckett, J. Richardson, D. Mims, and J. Munshi‐South, Spatial population genomics of the brown rat (Rattus norvegicus) in New York City, Mol. Ecol., 27 (2018) 83-98.
  • E. Hadjisterkotis, G. Konstantinou, D. Sanna, M. Pirastru, and P. Mereu, First mtDNA sequences and body measurements for Rattus norvegicus from the Mediterranean island of Cyprus, Life, 10 (2020) 136.
  • Y. Chen, L. Zhao, H. Teng, C. Shi, Q. Liu, J. Zhang, and Y. Zhang, Population genomics reveal rapid genetic differentiation in a recently invasive population of Rattus norvegicus, Front. Zool., 18 (2021) 1-10.
  • C.E. Lee, Evolutionary genetics of invasive species, Trends Ecol Evol, 17 (2002) 386-391.
  • J. Le Roux, and A.M. Wieczorek, Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management, Ann Appl Bio, 154 (2009) 1-17.
  • J. Abdelkrim, M. Pascal, C. Calmet, and S. Samadi, Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations, Conserv Biol, 19 (2005) 1509-1518.
  • M. Jaarola, and J.B. Searle, Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences, Mol. Ecol., 11 (2002) 2613-2621.
  • J.H. Robins, M. Hingston, E. Matisoo‐Smith, and H.A. Ross, Identifying Rattus species using mitochondrial DNA, Mol. Ecol. Notes., 7 (2007) 717-729.
  • N. Yiğit, D. Çetintürk, and E. Çolak, Phylogenetic assessment of voles of the Guentheri group (Mammalia: Microtus) in Turkish Thrace and Western Anatolia, Eur. zool. j., 84 (2017) 252-260.
  • S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura K, MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol Biol Evol., 35 (2018) 1547-1549.
  • R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J., 29 (1950) 147-160.
  • J. Rozas, A. Ferrer-Mata, J.C., Sánchez-DelBarrio, S. Guirao-Rico, P. Librado, S.E. Ramos-Onsins, and A. Sánchez-Gracia, DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol Biol Evol., 34 (2017) 3299-3302.
  • H.J. Bandelt, P. Forster, and A. Röhl, Median-joining networks for inferring intraspecific phylogenies, Mol Biol Evol., 16 (1999) 37-48.
  • S. Guindon, and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol., 52 (2003) 696-704.
  • D. Darriba, G.L. Taboada, R. Doallo, and D. Posada, jModelTest 2: more models, new heuristics and high-performance computing, Nat. Methods., 9 (2012) 772.
  • M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 16 (1980) 111-120.
  • M. Hasegawa, H. Kishino, and T.A. Yano, Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 22 (1985) 160-174.
  • J.P. Huelsenbeck, F. Ronquist, and B. Hall, An introduction to Bayesian inference of phylogeny, DNA SEQUENCE, (2001) 1-7.
  • M. Ruedi, J. Manzinalli, A. Dietrich, and L. Vinciguerra, Shortcomings of DNA barcodes: a perspective from the mammal fauna of Switzerland, HYSTRIX, 34 (2023) 54-61.
  • C. Sciandra, E. Mori, E. Solano, G. Mazza, A. Viviano, M. Scarfò, F. Bona, F. Annesi, and R. Castiglia, Mice on the borders: genetic determinations of rat and house mouse species in Lampedusa and Pantelleria islands (Southern Italy), Biogeographia, 37 (2022).
  • Y. Song, Z. Lan, and M.H. Kohn, Mitochondrial DNA phylogeography of the Norway rat, PLoS One, 9 (2014) e88425.
  • M. López, P. Foronda, C. Feliu, and M. Hernández, Genetic characterization of black rat (Rattus rattus) of the Canary Islands: origin and colonization, Biol. Invasions, 15 (2013) 2367-2372.
  • M. Moseley, K. Naidoo, A. Bastos, L. Retief, J. Frean, S. Telfer, J. Rossouw, Multi-locus sequence analyses reveal a clonal L. borgpetersenii genotype in a heterogeneous invasive Rattus spp. community across the City of Johannesburg, South Africa, Parasit Vectors, 13 (2003) 1-9.
  • Y. Sakuma, M.C. Ranorosoa, G. Kinoshita, H. Shimoji, K. Tsuchiya, S.D. Ohdachi, S. Arai, C. Tanaka, H. Ramino, and H. Suzuki, Variation in the coat-color-controlling genes, Mc1r and Asip, in the house mouse Mus musculus from Madagascar, Mammal study, 41 (2016) 131-140.
  • D.S. Chingangbam, J.M. Laishram, and H. Suzuki, Molecular phylogenetic characterization of common murine rodents from Manipur, Northeast India, Genes genet. syst., 90 (2015) 21-30.
  • A.D. Bastos, D. Nair, P.J. Taylor, H. Brettschneider, F. Kirsten, E. Mostert, E. von Maltitz, J.M. Lamb, P. van Hooft, S.R. Belmain, G. Contrafatto, S. Downs, and C.T. Chimimba, Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa, BMC Genet., 12 (2011) 1-18.
  • M. Pagès, Y. Chaval, V. Herbreteau, S. Waengsothorn, J.F. Cosson, J.P. Hugot, S. Morand, and J. Michaux, Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol. Biol., 10 (2010) 1-27.
  • P.P.C. Hemamali, and S.H. Boyagoda, Historic black rat invasions into Sri Lanka lead to hybridization forming two sub-lineages in the Rattus rattus species complex, Ceylon J. Sci., 49 (2010) 433.
  • K. Park, S.H. Lee, J. Kim, J. Lee, G.Y. Lee, S. Cho, J. Noh, J. Choi, J. Park, D.H. Song, S.H. Gu, H. Yun, J.E. Kim, D. Lee, I.U. Hwang, W.K. Kim, and J.W. Song, A portable diagnostic assay, genetic diversity, and isolation of Seoul virus from Rattus norvegicus collected in Gangwon Province, Republic of Korea, Pathogen, 11 (2022) 1047.
  • M. Jing, Y. Chen, K. Yao, Y. Wang, and L. Huang, Comparative phylogeography of two commensal rat species (Rattus tanezumi and Rattus norvegicus) in China: Insights from mitochondrial DNA, microsatellite, and 2b‐RAD data, ECOL EVOL., 12 (2022) e9409.
  • C.J. Conroy, K.C. Rowe, K.M. Rowe, P.L. Kamath, K.P. Aplin, L. Hui, K.J. David, C. Moritz, and J.L. Patton, Cryptic genetic diversity in Rattus of the San Francisco Bay region, California, Biol. Invasions., 15 (2013) 741-758.
  • A. Naidu, R.R. Fitak, A. Munguia‐Vega, and Culver M. Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals, Mol. Ecol. Resour., 12 (2012) 191-196.
  • S. Schäffer, F.E. Zachos, and S. Koblmüller, Opening the treasure chest: a DNA-barcoding primer set for most higher taxa of Central European birds and mammals from museum collections, PLoS One, 12 (2017) e0174449.
  • N. Shivambu, T.C. Shivambu, C.T. Downs, and S. Willows‐Munro, Genetic diversity of rodent species sold in South African pet shops, Afr. J. Ecol., 61 (2023) 89-101.
  • J.K. Cooper, G. Sykes, S. King, K. Cottrill, N.V. Ivanova, R. Hanner, and P. Ikonomi, Species identification in cell culture: a two-pronged molecular approach, In Vitro Cell Dev Biol Anim., 43 (2007) 344-351.
  • Y.L. Jones, S.M. Peters, C. Weland, N. Ivanova, and H.F. Yancy. Potential Use of DNA Barcodes in Regulatory Science: Identification of the US Food and Drug Administration's``Dirty 22,'' Contributors to the Spread of Foodborne Pathogens, Food Prot., 76 (2013) 144-149.
  • E.E. Puckett, J. Park, M. Combs, M.J. Blum, J.E. Bryant, A. Caccone, F. Costa, E.E. Deinum, A. Esther, C.G. Himsworth, P.D. Keightley, A. Ko, Å Lundkvist, L.M. McElhinney, S. Morand, J. Robins, J. Russell, T.M. Strand, O. Suarez, L. Yon, and J. Munshi, South Global population divergence and admixture of the brown rat (Rattus norvegicus), Proc R Soc Lond B Biol Sci, 283 (2016) 20161762.
  • M.K. McClintock, and N.T. Adler, The role of the female during copulation in wild and domestic Norway rats (Rattus norvegicus), Behaviour, 67 (1978) 67-95.
  • S.C. Hathaway, and D.K. Blackmore, Ecological aspects of the epidemiology of infection with leptospires of the Ballum serogroup in the black rat (Rattus rattus) and the brown rat (Rattus norvegicus) in New Zealand, Epidemiol Infect., 87 (1981) 427-436.
  • M.J. Meaney, and J.A. Stewart, A descriptive study of social development in the rat (Rattus norvegicus), Anim. Behav., 29 (1981) 34-45.
  • B. McGUIRE, T. Pizzuto, W.E. Bemis, and L.L. Getz, General ecology of a rural population of Norway rats (Rattus norvegicus) based on intensive live trapping, Am. Midl. Nat., 155 (2006) 221-236.
  • L.C. Gardner‐Santana, D.E. Norris, C.M. Fornadel, E.R. Hinson, S.L. Klein, and G.E. Glass, Commensal ecology, urban landscapes, and their influence on the genetic characteristics of city‐dwelling Norway rats (Rattus norvegicus), Mol. Ecol., 18 (2009) 2766-2778.
  • A.Y. Feng, and C.G. Himsworth, The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus), Urban Ecosyst., 17 (2014) 149-162.
  • J. Pascual, S. Franco, R. Bueno-Marí, V. Peracho, and T. Montalvo, Demography and ecology of Norway rats, Rattus norvegicus, in the sewer system of Barcelona (Catalonia, Spain), J. Pest Sci., 93 (2020) 711-722.
  • M.K. Schweinfurth, The social life of Norway rats (Rattus norvegicus), Elife, 9 (2020) e54020.
  • H.J. Pelz, D. Hänisch, and G. Lauenstein, Resistance to anticoagulant rodenticides in Germany and future strategies to control Rattus norvegicus, Pestic. Sci., 43 (1995) 61-67.
  • A. Buckle, S. Endepols, N. Klemann, and J. Jacob, Resistance testing and the effectiveness of difenacoum against Norway rats (Rattus norvegicus) in a tyrosine139cysteine focus of anticoagulant resistance, Westphalia, Germany, Pest Manag. Sci., 69 (2013) 233-239.
  • B.G. Meerburg, M.P. van Gent‐Pelzer, B. Schoelitsz, and T.A. van der Lee, Distribution of anticoagulant rodenticide resistance in Rattus norvegicus in the Netherlands according to Vkorc1 mutations, Pest Manag. Sci., 70 (2014) 1761-1766.
  • M.Z. Haniza, S. Adams, E.P. Jones, A. MacNicoll, E.B. Mallon, R.H. Smith, and M.S. Lambert, Large-scale structure of brown rat (Rattus norvegicus) populations in England: effects on rodenticide resistance, PeerJ, 3 (2015) e1458.
  • E.Y. Huang, S.T. Law, W. Nong, H.Y. Yip, T. Uea-Anuwong, I. Magouras, J.H.L. Hui, The screening for anticoagulant rodenticide gene VKORC1 polymorphism in the rat Rattus norvegicus, Rattus tanezumi and Rattus losea in Hong Kong, Sci. Rep., 12 (2022) 12545.
  • T. Aivelo, E. Koivisto, A. Esther, S. Koivisto, and O. Huitu, VKORC1-based resistance to anticoagulant rodenticides widespread in Finnish house mice but not in brown rats, Int. J. Pest Manag., (2023) 1-8.
  • I.M. Krijger, M. Strating, M. van Gent‐Pelzer, T.A. Van Der Lee, S.A. Burt, F.H. Schroeten, R. de Vries, M. de Cock, M. Maas, and B.G. Meerburg, Large‐scale identification of rodenticide resistance in Rattus norvegicus and Mus musculus in The Netherlands based on Vkorc1 codon 139 mutations, Pest Manag. Sci., 79 (2023) 989-995.
  • N. Yiğit, M.T. Duman, D. Çetintürk, F. Saygılı-Yiğit, E. Çolak, and R. Çolak, Vkorc1 gene polymorphisms confer resistance to anticoagulant rodenticide in Turkish rats, PeerJ, 11 (2023) e15055.
  • D.Y. Liu, J. Liu, B.Y. Liu, Y.Y. Liu, H.R. Xiong, W. Hou, and Z.Q. Yang, Phylogenetic analysis based on mitochondrial DNA sequences of wild rats, and the relationship with Seoul virus infection in Hubei, China, Virol. Sin., 32 (2017) 235-244.
  • S. Wright, The relation of livestock breeding to theories of evolution, J. Anim. Sci., 46 (1978) 1192-1200.
  • K.P. Aplin, H. Suzuki, A.A. Chinen, R.T. Chesser, J. Ten Have, S.C. Donnellan, J. Austin, A. Frost, J.P. Gonzalez, V. Herbreteau, F. Catzeflis, J. Soubrier, Y.P. Fang, J. Robins, E. Matisoo-Smith, A.D.S. Bastos, I. Maryanto, M.H. Sinaga, C. Denys, R.A. Van Den Bussche, C. Conroy, K. Rowe, and A. Cooper, Multiple geographic origins of commensalism and complex dispersal history of black rats, PloS one, 6 (2011) e26357.
  • S.A. Barnett, The Story of Rats: Their Impact on Us, and Our Impact on Them. Crows Nest, NSW, Australia: Allen and Unwin, (2001).
  • B. Grzimek, Grzimeks Tierleben: Enzyklopädie des Tierreichs (Augsburg: Weltbild Verl), (1967).
  • X.D. Lin, W.P. Guo, W. Wang, Y. Zou, Z.Y. Hao, D.J. Zhou, X. Dong, Y.G. Qu, M.H. Li, H.F. Tian, J.F. Wen, A. Plyusnin, J. Xu, and Y.Z. Zhang, Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today, J Virol., 86 (2012) 972-981.
  • R. Robinson, Genetics of the Norway Rat: International Series of Monographs in Pure and Applied Biology (Vol 24) Elsevier, 2013.
There are 80 citations in total.

Details

Primary Language English
Subjects Molecular Evolution
Journal Section Research Article
Authors

Derya Çetintürk 0000-0002-1323-4311

Publication Date January 1, 2025
Submission Date August 10, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Çetintürk, D. (2025). Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers. Hacettepe Journal of Biology and Chemistry, 53(1), 77-86. https://doi.org/10.15671/hjbc.1531280
AMA Çetintürk D. Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers. HJBC. January 2025;53(1):77-86. doi:10.15671/hjbc.1531280
Chicago Çetintürk, Derya. “Revealing the Genetic Differentiation of Rattus Norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 77-86. https://doi.org/10.15671/hjbc.1531280.
EndNote Çetintürk D (January 1, 2025) Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers. Hacettepe Journal of Biology and Chemistry 53 1 77–86.
IEEE D. Çetintürk, “Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers”, HJBC, vol. 53, no. 1, pp. 77–86, 2025, doi: 10.15671/hjbc.1531280.
ISNAD Çetintürk, Derya. “Revealing the Genetic Differentiation of Rattus Norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 77-86. https://doi.org/10.15671/hjbc.1531280.
JAMA Çetintürk D. Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers. HJBC. 2025;53:77–86.
MLA Çetintürk, Derya. “Revealing the Genetic Differentiation of Rattus Norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 77-86, doi:10.15671/hjbc.1531280.
Vancouver Çetintürk D. Revealing the Genetic Differentiation of Rattus norvegicus (Berkenhout 1769) Populations by Analyzing Two Mitochondrial Markers. HJBC. 2025;53(1):77-86.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc