Research Article
BibTex RIS Cite
Year 2025, Volume: 53 Issue: 1, 97 - 108, 01.01.2025
https://doi.org/10.15671/hjbc.1532795

Abstract

References

  • D.K. Ozhathil, M.W. Tay, S.E. Wolf, L.K. Branski, A narrative review of the history of skin grafting in burn care, Medicina (Kaunas), 57 (2021) 380.
  • L.A. Elfawy, C.Y. Ng, I.N. Amirrah, Z. Mazlan, A.P.Y. Wen, N.I. Md. Fadilah, M. Maarof, Y. Lokanathan, Mh. B. Fauzi, Sustainable approach of functional biomaterials - tissue engineering for skin burn treatment: A comprehensive review, Pharmaceuticals (Basel), 16 (2023) 701.
  • A.M. Jorgensen, N. Mahajan, A. Atala, S.V. Murphy, Advances in skin tissue engineering and regenerative medicine, J. Burn Care Res., 44 (2023) 33-41.
  • J. Hurlow, K. Couch, K. Laforet, L. Bolton, D. Metcalf, P. Bowler, Clinical biofilms: A challenging frontier in wound care, Adv. Wound Care, 4 (2015) 295-301.
  • H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Biofilms: An emergent form of bacterial life, Nat. Rev. Microbiol., 14 (2016) 563-575.
  • M. Malone, T. Bjarnsholt, A.J. McBain, G.A. James, P. Stoodly, D. Leaper, M. Tachi, G. Schultz, T. Swanson, R.D. Wolcott, The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data, J. Wound Care, 26 (2017) 20-25.
  • S. Li, P. Renick, J. Senkowsky, A. Nair, L. Tang, Diagnostics for wound infections, Adv. Wound Care (New Rochelle), 10 (2021) 317-327.
  • S. Dhingra, N.A.A. Rahman, E. Peile, M. Rahman, M. Sartelli, M.A. Hassali, T. Islam, S. Islam, M. Haque, Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter, Front. Public Health, 8 (2020) 535668.
  • World Health Organization, Global antimicrobial resistance and use surveillance system (GLASS) report 2021, Geneva.
  • C.J.L. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.R. Aguilar, et al., Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis, Lancet, 399 (2019) 629-655.
  • A. Pirisi, Phage therapy - Advantages over antibiotics, Lancet, 356 (2000) 1418.
  • S. Matsuzaki, J. Uchiyama, I. Takemura-Uchiyama, M. Daibata, Perspective: The age of the phage, Nature, 509 (2014) S9.
  • S. Hesse, S. Adhya, Phage therapy in the twenty-first century: Facing the decline of the antibiotic era; is the time for the age of the phage?, Annu. Rev. Microbiol., 73 (2019) 155-174.
  • T. Luong, A.C. Salabarria, R.A. Edwards, D.R. Roach, Standardized bacteriophage purification for personalized phage therapy, Nat. Protoc., 15 (2020) 2867-2890.
  • J.-P. Pirnay, Phage therapy in the year 2035, Front. Microbiol., 3 (2020) 11.
  • S. Royer, A.P. Morais, D.W. da Fonseca Batistão, Phage therapy as strategy to face post-antibiotic era: A guide to beginners and experts, Arch. Microbiol., 203 (2021) 1271-1279.
  • G.F. Hatfull, R.M. Dedrick, R.T. Schooley, Phage therapy for antibiotic-resistant bacterial infections, Annu. Rev. Med., 73 (2022) 197-211.
  • N.J. Anyaegbunam, C.C. Anekpo, Z.K.G. Anyaegbunam, Y. Doowuese, Ch.B. Chinaka, O.J. Odo, H.C. Sharndama, O.Ph. Okeke, I.E. Mba, The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects, Microbiol. Res., 64 (2022) 127155.
  • P. Ioannou, S. Baliou, G. Samonis, Bacteriophages in infectious diseases and beyond - A narrative review, Antibiotics (Basel), 12 (2023) 1012.
  • D. Gospodarowicz, N. Ferrara, L. Schweigerer, G. Neufeld, Structural characterization and biological functions of fibroblast growth factor, Endocr. Rev., 8 (1987) 95-114.
  • Y. Tabata, A. Nagano, Y. Ikada, Biodegradation of hydrogel carrier incorporating fibroblast growth factor, Tissue Eng., 5 (1999) 127-138.
  • Q.M. Nunes, Y. Li, C. Sun, T.K. Kinnunen, D.G. Fernig, Fibroblast growth factors as tissue repair and regeneration, PeerJ, 12 (2016) 1535.
  • J.W. Park, S.R. Hwang, I.S. Yoon, Advanced growth factor delivery systems in wound management and skin regeneration, Molecules, 22 (2017) 1259.
  • L.M. Caballero Aguilar, S.M. Silva, S.E. Moulton, Growth factor delivery: Defining the next generation platforms for tissue engineering, J. Control. Release, 306 (2019) 40-58.
  • M. Abdelhakim, X. Lin, R. Ogawa, The Japanese experience with basic fibroblast growth factor in cutaneous wound management and scar prevention: A systematic review of clinical and biological aspects, Dermatol. Ther. (Heidelb), 10 (2020) 569-587.
  • C.M. Echave, L.S. Burgo, J.L. Pedraz, G. Orive, Gelatin as biomaterial for tissue engineering, Curr. Pharm. Des., 23 (2017) 3567-3584.
  • T. Buie, J. McCune, E. Cosgriff-Hernandez, Gelatin matrices for growth factor sequestration, Trends Biotechnol., 38 (2020) 546-557.
  • L. Lukin, I. Erezuma, L. Maeso, J. Zarate, M.F. Desimone, T.H. Al-Tel, A. Dolatshahi-Pirouz, G. Orive, Progress in gelatin as biomaterial for tissue engineering, Pharmaceutics, 14 (2022) 1177-1196.
  • R. Hama, A. Ulziibayar, J.W. Reinhardt, T. Watanabe, J. Kelly, T. Shinoka, Recent developments in biopolymer-based hydrogels for tissue engineering applications, Biomolecules, 13 (2023) 280.
  • F. Milano, F. Masi, M. Madaghiele, A. Sannino, L. Salvatore, N. Gallo, Current trends in gelatin-based drug delivery systems, Pharmaceutics, 15 (2023) 1499.
  • G. Sezonov, D. Joseleau-Petit, A.D.R. Escherichia coli physiology in Luria-Bertani broth, J. Bacteriol., 189 (2007) 8746-8749.
  • F. Moghtader, S. Egri, E. Piskin, Phages in modified alginate beads, Artif. Cells Nanomed. Biotechnol., 45 (2017) 357-363.
  • F. Moghtader, Nanobio-Approaches for the Detection of Bacteria by SERS, PhD Dissertation (no:547231-Supervised: Prof. Erhan Biskin), Hacettepe Univ., Nanotechnology and Nanomedicine Programme, 2019, Ankara, Turkey.
  • E. Goldman, L.H. Green, Practical handbook of microbiology, CRC Press, Boca Raton, Fl, 2015.
  • M.R.J. Clokie, A.M. Kropinski, Bacteriophages: Methods and protocols, Volume 1: Isolation, characterization, and interactions, Clifton, NJ, 2009.
  • N. Bonilla, M.I. Rojas, G.N.F. Cruz, S.-H. Hung, F. Rohwer, J.J. Barr, Phage on tapa quick and efficient protocol for the preparation of bacteriophage laboratory stocks, PeerJ, 4 (2016) 2261.
  • F. Moghtader, G. Congur, A. Erdem, E. Piskin, Impedimetric detection of pathogenic bacteria with bacteriophages using gold nanorod deposited graphite electrodes, RSC Adv., 6 (2016) 97832-91839.
  • F. Moghtader, A. Tomak, H. Zareie, E. Piskin, Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals, Artif. Cells Nanomed. Biotechnol., 46 (2018) 122-130.
  • A. Mazzocco, T.E. Waddell, E. Lingohr, R.P. Johnson, Enumeration of bacteriophages by the direct plating plaque assay, Methods Mol. Biol., 501 (2009) 77-80.
  • M. Panec, D.S. Katz, Plaque assay protocols, Microbe Library, 2013. Available from: http://www.microlibrary.org/ component/ resources/laboratory-test/3073-plaque-assay-protocols.
  • K.L. Hockett, D.A. Baltrus, Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds, J. Visualized Exp., 119 (2017) e55064.
  • M. Ozeki, Y. Tabata, In vivo degradability of hydrogels prepared from different gelatins by various crosslinking methods, J. Biomater. Sci. Polym. Ed., 16 (2005) 549-561.
  • K. Hayashi, Y. Tabata, Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions, Acta Biomater., 7 (2011) 2797-2803.
  • S. Tajima, Y. Tabata, Preparation of cell aggregates incorporating gelatin hydrogel microspheres containing bone morphogenic protein-2 with different degradabilities, J. Biomater. Sci. Polym. Ed., 29 (2018) 775-792.
  • Y. Tabata, A. Nagano, Y. Ikada, Biodegradation of hydrogel carrier incorporating fibroblast growth factor, Tissue Eng., 5 (1999) 127-138.
  • R. Mcgrath, Protein measurement by ninhydrin determination of amino acids released by alkaline hydrolysis, Anal. Biochem., 49 (1972) 95-102.
  • A.J. Kuijpers, P.B. van Wachem, M.J. van Luyn, J.A. Plantinga, G.H.M. Engbers, J. Krijgsveld, S.A.J. Zaat, J. Dankert, J. Feijen, In vivo compatibility and degradation of cross-linked gelatin gels incorporated in knitted Dacron, J. Biomed. Mater. Res., 51 (2000) 136-145.
  • C. Tondera, S. Hauser, A. Krüger-Genge, F. Jung, A.T. Neffe, A. Lendlein, R. Klopfleisch, J. Steinbach, C. Neuber, J. Pietzsch, Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from multimodal preclinical imaging in immunocompetent nude mice, Theranostics, 6 (2016) 2114-2128.
  • T. Sutjaritvorakul, F. Wiwatwongwana, P. Imsuwan, A.J.S. Whalley, S. Chutipaijit, Enzymatic degradation of modified gelatin and carboxymethyl cellulose scaffolds, Mater. Today Proc., 5 (2018) 14813-14817.
  • P.G. Leiman, S. Kanamaru, V.V. Mesyanzhinov, F. Arisaka, M.G. Rossmann, Structure and morphogenesis of bacteriophage T4, Cell. Mol. Life Sci., 60 (2003) 2356-2370.
  • L.W. Black, V.B. Rao, Structure, assembly, and DNA packaging of the bacteriophage T4 head, Adv. Virus Res., 82 (2012) 119-153.
  • A. Fokine, Z. Zhang, S. Kanamaru, V.D. Bowman, A.A. Aksyuk, F. Arisaka, V.B. Rao, M.G. Rossmann, The molecular architecture of the bacteriophage T4 neck, J. Mol. Biol., 425 (2013) 1731-1744.
  • M.L. Yap, M.G. Rossman, Structure and function of bacteriophage T4, Future Microbiol., 9 (2014) 1319-1327.
  • J.D. Childs, H.C. Birnboim, Polyacrylamide gel electrophoresis of intact bacteriophage T4D particles, J. Virol., 16 (1975) 652-661.
  • B. Michen, T. Graule, Isoelectric points of viruses, J. Appl. Microbiol., 109 (2010) 388-397.

Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor

Year 2025, Volume: 53 Issue: 1, 97 - 108, 01.01.2025
https://doi.org/10.15671/hjbc.1532795

Abstract

Bu çalışmanın amacı, enfekte yaraların iyileşmesinde kullanılmak üzere çok fonksiyonlu farmasötikler olarak fajları (antibakteriyel ajan olarak) ve/veya temel fibroblast büyüme faktörünü (anjiyojenik faktör olarak) taşıyan – kontrollu salan jelatin hidrojel mikroküreleri (GEL'ler) hazırlamaktır. Hem konak hem de hedef olarak E.coli kullanılarak T4 fajları çoğaltılmış ve aktivite testleri yapılmıştır. Farklı çapraz bağlanma derecelerine sahip GEL'ler iki aşamalı bir proses ile bazik ve/veya asidik jelatin kullanılarak hazırlanmıştır. Jeller farklı miktarlarda glutaraldehit ile çapraz bağlanmıştır. Asidik ve enzimatik bozunmalar incelenmiştir. Bu mikrokürelerin içine T4 fajları ve/veya temel fibroblast büyüme faktörü yüklenmiş ve salım kinetikleri ve modları araştırılarak optimize edilmiştir

References

  • D.K. Ozhathil, M.W. Tay, S.E. Wolf, L.K. Branski, A narrative review of the history of skin grafting in burn care, Medicina (Kaunas), 57 (2021) 380.
  • L.A. Elfawy, C.Y. Ng, I.N. Amirrah, Z. Mazlan, A.P.Y. Wen, N.I. Md. Fadilah, M. Maarof, Y. Lokanathan, Mh. B. Fauzi, Sustainable approach of functional biomaterials - tissue engineering for skin burn treatment: A comprehensive review, Pharmaceuticals (Basel), 16 (2023) 701.
  • A.M. Jorgensen, N. Mahajan, A. Atala, S.V. Murphy, Advances in skin tissue engineering and regenerative medicine, J. Burn Care Res., 44 (2023) 33-41.
  • J. Hurlow, K. Couch, K. Laforet, L. Bolton, D. Metcalf, P. Bowler, Clinical biofilms: A challenging frontier in wound care, Adv. Wound Care, 4 (2015) 295-301.
  • H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Biofilms: An emergent form of bacterial life, Nat. Rev. Microbiol., 14 (2016) 563-575.
  • M. Malone, T. Bjarnsholt, A.J. McBain, G.A. James, P. Stoodly, D. Leaper, M. Tachi, G. Schultz, T. Swanson, R.D. Wolcott, The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data, J. Wound Care, 26 (2017) 20-25.
  • S. Li, P. Renick, J. Senkowsky, A. Nair, L. Tang, Diagnostics for wound infections, Adv. Wound Care (New Rochelle), 10 (2021) 317-327.
  • S. Dhingra, N.A.A. Rahman, E. Peile, M. Rahman, M. Sartelli, M.A. Hassali, T. Islam, S. Islam, M. Haque, Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter, Front. Public Health, 8 (2020) 535668.
  • World Health Organization, Global antimicrobial resistance and use surveillance system (GLASS) report 2021, Geneva.
  • C.J.L. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.R. Aguilar, et al., Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis, Lancet, 399 (2019) 629-655.
  • A. Pirisi, Phage therapy - Advantages over antibiotics, Lancet, 356 (2000) 1418.
  • S. Matsuzaki, J. Uchiyama, I. Takemura-Uchiyama, M. Daibata, Perspective: The age of the phage, Nature, 509 (2014) S9.
  • S. Hesse, S. Adhya, Phage therapy in the twenty-first century: Facing the decline of the antibiotic era; is the time for the age of the phage?, Annu. Rev. Microbiol., 73 (2019) 155-174.
  • T. Luong, A.C. Salabarria, R.A. Edwards, D.R. Roach, Standardized bacteriophage purification for personalized phage therapy, Nat. Protoc., 15 (2020) 2867-2890.
  • J.-P. Pirnay, Phage therapy in the year 2035, Front. Microbiol., 3 (2020) 11.
  • S. Royer, A.P. Morais, D.W. da Fonseca Batistão, Phage therapy as strategy to face post-antibiotic era: A guide to beginners and experts, Arch. Microbiol., 203 (2021) 1271-1279.
  • G.F. Hatfull, R.M. Dedrick, R.T. Schooley, Phage therapy for antibiotic-resistant bacterial infections, Annu. Rev. Med., 73 (2022) 197-211.
  • N.J. Anyaegbunam, C.C. Anekpo, Z.K.G. Anyaegbunam, Y. Doowuese, Ch.B. Chinaka, O.J. Odo, H.C. Sharndama, O.Ph. Okeke, I.E. Mba, The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects, Microbiol. Res., 64 (2022) 127155.
  • P. Ioannou, S. Baliou, G. Samonis, Bacteriophages in infectious diseases and beyond - A narrative review, Antibiotics (Basel), 12 (2023) 1012.
  • D. Gospodarowicz, N. Ferrara, L. Schweigerer, G. Neufeld, Structural characterization and biological functions of fibroblast growth factor, Endocr. Rev., 8 (1987) 95-114.
  • Y. Tabata, A. Nagano, Y. Ikada, Biodegradation of hydrogel carrier incorporating fibroblast growth factor, Tissue Eng., 5 (1999) 127-138.
  • Q.M. Nunes, Y. Li, C. Sun, T.K. Kinnunen, D.G. Fernig, Fibroblast growth factors as tissue repair and regeneration, PeerJ, 12 (2016) 1535.
  • J.W. Park, S.R. Hwang, I.S. Yoon, Advanced growth factor delivery systems in wound management and skin regeneration, Molecules, 22 (2017) 1259.
  • L.M. Caballero Aguilar, S.M. Silva, S.E. Moulton, Growth factor delivery: Defining the next generation platforms for tissue engineering, J. Control. Release, 306 (2019) 40-58.
  • M. Abdelhakim, X. Lin, R. Ogawa, The Japanese experience with basic fibroblast growth factor in cutaneous wound management and scar prevention: A systematic review of clinical and biological aspects, Dermatol. Ther. (Heidelb), 10 (2020) 569-587.
  • C.M. Echave, L.S. Burgo, J.L. Pedraz, G. Orive, Gelatin as biomaterial for tissue engineering, Curr. Pharm. Des., 23 (2017) 3567-3584.
  • T. Buie, J. McCune, E. Cosgriff-Hernandez, Gelatin matrices for growth factor sequestration, Trends Biotechnol., 38 (2020) 546-557.
  • L. Lukin, I. Erezuma, L. Maeso, J. Zarate, M.F. Desimone, T.H. Al-Tel, A. Dolatshahi-Pirouz, G. Orive, Progress in gelatin as biomaterial for tissue engineering, Pharmaceutics, 14 (2022) 1177-1196.
  • R. Hama, A. Ulziibayar, J.W. Reinhardt, T. Watanabe, J. Kelly, T. Shinoka, Recent developments in biopolymer-based hydrogels for tissue engineering applications, Biomolecules, 13 (2023) 280.
  • F. Milano, F. Masi, M. Madaghiele, A. Sannino, L. Salvatore, N. Gallo, Current trends in gelatin-based drug delivery systems, Pharmaceutics, 15 (2023) 1499.
  • G. Sezonov, D. Joseleau-Petit, A.D.R. Escherichia coli physiology in Luria-Bertani broth, J. Bacteriol., 189 (2007) 8746-8749.
  • F. Moghtader, S. Egri, E. Piskin, Phages in modified alginate beads, Artif. Cells Nanomed. Biotechnol., 45 (2017) 357-363.
  • F. Moghtader, Nanobio-Approaches for the Detection of Bacteria by SERS, PhD Dissertation (no:547231-Supervised: Prof. Erhan Biskin), Hacettepe Univ., Nanotechnology and Nanomedicine Programme, 2019, Ankara, Turkey.
  • E. Goldman, L.H. Green, Practical handbook of microbiology, CRC Press, Boca Raton, Fl, 2015.
  • M.R.J. Clokie, A.M. Kropinski, Bacteriophages: Methods and protocols, Volume 1: Isolation, characterization, and interactions, Clifton, NJ, 2009.
  • N. Bonilla, M.I. Rojas, G.N.F. Cruz, S.-H. Hung, F. Rohwer, J.J. Barr, Phage on tapa quick and efficient protocol for the preparation of bacteriophage laboratory stocks, PeerJ, 4 (2016) 2261.
  • F. Moghtader, G. Congur, A. Erdem, E. Piskin, Impedimetric detection of pathogenic bacteria with bacteriophages using gold nanorod deposited graphite electrodes, RSC Adv., 6 (2016) 97832-91839.
  • F. Moghtader, A. Tomak, H. Zareie, E. Piskin, Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals, Artif. Cells Nanomed. Biotechnol., 46 (2018) 122-130.
  • A. Mazzocco, T.E. Waddell, E. Lingohr, R.P. Johnson, Enumeration of bacteriophages by the direct plating plaque assay, Methods Mol. Biol., 501 (2009) 77-80.
  • M. Panec, D.S. Katz, Plaque assay protocols, Microbe Library, 2013. Available from: http://www.microlibrary.org/ component/ resources/laboratory-test/3073-plaque-assay-protocols.
  • K.L. Hockett, D.A. Baltrus, Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds, J. Visualized Exp., 119 (2017) e55064.
  • M. Ozeki, Y. Tabata, In vivo degradability of hydrogels prepared from different gelatins by various crosslinking methods, J. Biomater. Sci. Polym. Ed., 16 (2005) 549-561.
  • K. Hayashi, Y. Tabata, Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions, Acta Biomater., 7 (2011) 2797-2803.
  • S. Tajima, Y. Tabata, Preparation of cell aggregates incorporating gelatin hydrogel microspheres containing bone morphogenic protein-2 with different degradabilities, J. Biomater. Sci. Polym. Ed., 29 (2018) 775-792.
  • Y. Tabata, A. Nagano, Y. Ikada, Biodegradation of hydrogel carrier incorporating fibroblast growth factor, Tissue Eng., 5 (1999) 127-138.
  • R. Mcgrath, Protein measurement by ninhydrin determination of amino acids released by alkaline hydrolysis, Anal. Biochem., 49 (1972) 95-102.
  • A.J. Kuijpers, P.B. van Wachem, M.J. van Luyn, J.A. Plantinga, G.H.M. Engbers, J. Krijgsveld, S.A.J. Zaat, J. Dankert, J. Feijen, In vivo compatibility and degradation of cross-linked gelatin gels incorporated in knitted Dacron, J. Biomed. Mater. Res., 51 (2000) 136-145.
  • C. Tondera, S. Hauser, A. Krüger-Genge, F. Jung, A.T. Neffe, A. Lendlein, R. Klopfleisch, J. Steinbach, C. Neuber, J. Pietzsch, Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from multimodal preclinical imaging in immunocompetent nude mice, Theranostics, 6 (2016) 2114-2128.
  • T. Sutjaritvorakul, F. Wiwatwongwana, P. Imsuwan, A.J.S. Whalley, S. Chutipaijit, Enzymatic degradation of modified gelatin and carboxymethyl cellulose scaffolds, Mater. Today Proc., 5 (2018) 14813-14817.
  • P.G. Leiman, S. Kanamaru, V.V. Mesyanzhinov, F. Arisaka, M.G. Rossmann, Structure and morphogenesis of bacteriophage T4, Cell. Mol. Life Sci., 60 (2003) 2356-2370.
  • L.W. Black, V.B. Rao, Structure, assembly, and DNA packaging of the bacteriophage T4 head, Adv. Virus Res., 82 (2012) 119-153.
  • A. Fokine, Z. Zhang, S. Kanamaru, V.D. Bowman, A.A. Aksyuk, F. Arisaka, V.B. Rao, M.G. Rossmann, The molecular architecture of the bacteriophage T4 neck, J. Mol. Biol., 425 (2013) 1731-1744.
  • M.L. Yap, M.G. Rossman, Structure and function of bacteriophage T4, Future Microbiol., 9 (2014) 1319-1327.
  • J.D. Childs, H.C. Birnboim, Polyacrylamide gel electrophoresis of intact bacteriophage T4D particles, J. Virol., 16 (1975) 652-661.
  • B. Michen, T. Graule, Isoelectric points of viruses, J. Appl. Microbiol., 109 (2010) 388-397.
There are 55 citations in total.

Details

Primary Language English
Subjects Macromolecular and Materials Chemistry (Other), Molecular Medicine
Journal Section Research Article
Authors

Farzaneh Moghtader 0009-0003-5988-6280

Publication Date January 1, 2025
Submission Date August 13, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2025 Volume: 53 Issue: 1

Cite

APA Moghtader, F. (2025). Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor. Hacettepe Journal of Biology and Chemistry, 53(1), 97-108. https://doi.org/10.15671/hjbc.1532795
AMA Moghtader F. Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor. HJBC. January 2025;53(1):97-108. doi:10.15671/hjbc.1532795
Chicago Moghtader, Farzaneh. “Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor”. Hacettepe Journal of Biology and Chemistry 53, no. 1 (January 2025): 97-108. https://doi.org/10.15671/hjbc.1532795.
EndNote Moghtader F (January 1, 2025) Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor. Hacettepe Journal of Biology and Chemistry 53 1 97–108.
IEEE F. Moghtader, “Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor”, HJBC, vol. 53, no. 1, pp. 97–108, 2025, doi: 10.15671/hjbc.1532795.
ISNAD Moghtader, Farzaneh. “Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor”. Hacettepe Journal of Biology and Chemistry 53/1 (January 2025), 97-108. https://doi.org/10.15671/hjbc.1532795.
JAMA Moghtader F. Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor. HJBC. 2025;53:97–108.
MLA Moghtader, Farzaneh. “Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 1, 2025, pp. 97-108, doi:10.15671/hjbc.1532795.
Vancouver Moghtader F. Multifunctional Gelatin Hydrogel Microspheres Delivering Phages and Basic Fibroblast Growth Factor. HJBC. 2025;53(1):97-108.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc