Research Article
BibTex RIS Cite

KLİNOPTİOLİT İÇERİKLİ POLİAKRİLAMİD İLE GRAFTLANMIŞ JELATİN NANOKOMPOZİT HİDROJELİNİN SENTEZİ, KARAKTERİZASYONU ve İLAÇ SALIM DAVRANIŞI

Year 2025, Volume: 53 Issue: 2, 1 - 11
https://doi.org/10.15671/hjbc.1530114

Abstract

Bu çalışmada, jelatin (GA), akrilamid (AAm), klinoptiolit (CL) ve model anestetik ilaç Lidokain (LD)’den oluşan yeni tip jelatin bazlı kompozit hidrojeli serbest radikal polimerizasyon ile hazırlandı. Sentezlenen poliakrilamid ile graftlanmış jelatin (PA-g-GA), CL içerikli PA-g-GA ve ilaç yüklü PA-g-GA/CL kompozit hidrojellerinin karakterizasyonu FTIR ve SEM kullanılarak yapıldı. Sentezlenen yenkompozit hidrojelin ilaç salım davranışı, UV-Vis spektrofotometri ile incelendi. Farklı CL miktarı ve farklı ilaç konsantrasyon içeriklerinde sentezlenen yeni tip nanokompozit hidrojellerin, şişme ve ilaç salım davranışları incelendi. FTIR ve SEM analizleri, PA-g-GA/CL kompozit hidrojelinin başarıyla sentezlendiğini ve LD ilacıyla yüklendiğini ortaya koydu. Kompozitteki ilaç yükleme ve CL miktarı arttıkça LD salınımı (%) azalmıştır. İlaç salınım davranışını incelemek için LD salınım verilerine çeşitli kinetik modellere uyarlandı. Hazırlanan tüm hidrojellerin ilaç salımı Korsmeyer-Peppas modeline uymaktadır. Yeni nanokompozitlerin şişme ve ilaç salım özellikleri, jel yapısına klinoptiolitin eklenmesiyle geliştirildi.

References

  • S. Adepu, S. Ramakrishna, Controlled drug delivery systems: current status and future directions, Molecules, 26 (2021) 5905.
  • W. Mu, Q. Chu, Y. Liu, N. A. Zhang, A review on nano‑based drug delivery system for cancer chemo immunotherapy, Nanomicro Lett., 12 (2020) 142.
  • M. Wu, M. Lin, P. Li, X. Huang, K. Tian, C. Li, Local anesthetic effects of lidocaine loaded carboxymethyl chitosan cross- linked with sodium alginate hydrogels for drug delivery system, cell adhesion, and pain management, J. Drug Deliv. Sci. Technol., 79 (2023) 104007.
  • N. H. Thang, T. B. Chien, D. X. Cuong, Polymer-based hydrogels applied in drug delivery: an overview, Gels, 9 (2023) 523.
  • W. Heidarian, A. Z. Kouzani, A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing, Carbohydr. Polym., 313 (2023) 120879.
  • D. A. Şahbaz, Gelatin based hydrogels and ferrogels as smart drug delivery systems, Polym. Bull., 13 (2023) 1-21.
  • P. Jaipan, R. J. Nguyen, R. I. Narayan, Gelatin-based hydrogels for biomedical applications, MRS Commun., 7 (2017) 416-426.
  • N. Sahoo, R. K. Sahoo, N. Biswas, K. Guha, K. Kuotsu, Recent advancement of gelatin nanoparticles in drug and vaccine delivery, Int. J. Biol. Macromol., 81 (2015) 317-331.
  • E. Karadağ, S. Kundakcı, Ö. B. Üzüm, D. Saraydın, O. Güven, Water sorption studies and adsorptive features of acrylamide based hydrogels as semi-IPNs and composites, Hacettepe J. Biol. Chem., 42 (2014) 71-79.
  • B. Lv, X. Bu, Y. Da, P. Duan, H. Wang, J. Ren, B. Lyu, D. Gao, Gelatin/PAM double network hydrogels with super-compressibility, Polymer, 210 (2020) 317-331.
  • Z. Qiao, L. Tran, J. Parks, Y. Zhao, N. Hai, Y. Zhong, H. F. Ji, Highly stretchable gelatin-polyacrylamide hydrogels for potential transdermal drug release, Nano Select, 2 (2021) 107-115.
  • A. M. Ruvalcaba, F. B. Bracamantes, J. C. Sanchez, A. G. Alvarez, Polyacrylamide-gelatin polymeric networks: effect of pH and gelatin concentration on the swelling kinetics and mechanical properties, Polym. Bull., 62 (2009) 539-548.
  • H. Serati-Nouri, A. Jafari, L. Roshangar, M. Dadashpour, Y. Pilehvar-Soltanahmadi, S. V. Vlierberghe, N. Sarghami, Biomedical applications of zeolite-based materials: a review, Mat. Sci. Eng.: C Mater., 116 (2020) 111225.
  • S. Wang, S. Ramakrishna, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156 (2010) 11-24.
  • M. R. Abukhadra, A. Adlii, J. S. Khim, J. S. Ajarem, A. A. Allam, Insight into the technical qualification of the sonocogreen CaO/ clinoptilolite nanocomposite (CaO(NP)/clino) as an advanced delivery system for 5 Fluorouracil: equilibrium and cytotoxicity, ACS Omega, 6 (2020) 31982-31992.
  • H. Samadian, R. Vahidi, M. Salehi, H. Hosseini-Nave, A. Shahabi, S. Zanganeh, M. Lashkari, S. M. Kouhbananinejad, N. Rezaei Kolarijani, S. M. Amini, M. Asadi-Shekari, M. J. Mirzaei Parsa, Hydrogel nanocomposite based on alginate/zeolite for burn wound healing: in vitro and in vivo study, Iran. J. Basic Med. Sci., 26 (2023) 708-716.
  • A. Olad, H. Gharekhani, A. Mirmohseni, A. Bybordi, Study on the synergistic effect of clinoptilolite on the swelling kinetic and slow release behavior of maize bran-based superabsorbent nanocomposite, J. Polym. Res., 23 (2016) 241-255.
  • A. Rashidzadeh, A. Olad, A. Reyhanitabar, Hydrogel/clinoptilolite nanocomposite-coated fertilizer: swelling, water-retention and slow-release fertilizer properties, Polym. Bull., 72 (2015) 2667-2684.
  • S. Bahmani, R. Khajavi, M. Ehsani, Transdermal drug delivery system of lidocaine hydrochloride based on dissolving gelatin/sodium carboxymethylcellulose microneedles, AAPS Open, 9 (2023) 7.
  • D. Wójcik-Pastuszka, K. Stawicka, W. Musiał, Biopolymer-based hydrogel incorporated with naproxen sodium and lidocaine hydrochloride for controlled drug delivery, Polymers, 16 (2024) 1353.
  • R. Abu-Huwai, S. M. Assaf, M. Salem, Mucoadhesive dosage form of lidocaine hydrochloride: I. mucoadhesive and physicochemical characterization, Drug Dev. Ind. Pharm., 33 (2007) 855-864.
  • L. Bender, H. M. Boostrom, C. Varricchio, M. Zuanon, V. Celiksoy, A. Sloan, J. Cowpe, C. M. Heard, A novel dual action monolithic thermosetting hydrogel loaded with lidocaine and metronidazole as a potential treatment for alveolar osteitis, Eur. J. Pharm. Biopharm., 149 (2020) 85-94.
  • K. Dobie, G. Smith, A. J. Sloan, A. J. Smith, Enjects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect. Tissue Res., 43 (2002) 387-390.
  • Y. Li, E. Zhao, L. Li, L. Bai, W. Zhang, Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete in vitro and in vivo toxicity, Drug Deliv., 28 (2021) 1080-1092.
  • B. Taşdelen, Conducting hydrogels based on semi‐interpenetrating networks of polyaniline in poly (acrylamide‐co‐itaconic acid) matrix: synthesis and characterization, Polym. Adv. Technol., 28 (2017) 1865-1871.
  • B. Küçüktürkmen, U. C. Öz, A. Bozkır, In situ hydrogel formulation for intra-articular application of diclofenac sodium-loaded polymeric nanoparticles, Turk. J. Pharm. Sci., 14 (2017) 56-64.
  • B. Taşdelen, N. Kayaman-Apohan, O. Güven, B. M. Baysal, Anticancer drug release from poly(N-isopropylacrylamide/ itaconic acid) copolymeric hydrogels, Radiat. Phys. Chem., 73 (2005) 340-345.
  • E. Karadağ, Ö. B. Üzüm, D. Saraydın, O. Güven, Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions, Mater. Des., 27 (2006) 576-584.
  • S. J. Owonubi, B. A. Aderibigbe, E. Mukwevho, E. R. Sadiku, S. S. Ray, Characterization and in vitro release kinetics of antimalarials from whey protein‑based hydrogel biocomposites, Int. J. Ind. Chem., 9 (2018) 39-52.
  • M. P. Das, P. R. Suguna, K. Prasad, J. V. Vijaylakshmi, M. Renuka, Extraction and characterization of gelatin: a functional biopolymer. Int. J. Pharm. Pharm. Sci., 9 (2017) 239-242.
  • N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, Thomas, Synthesis and characterisation of gelatin/zeolite porous scaffold, Eur. Polym. J., 49 (2013) 2433-2445.
  • S. Moradi, A. Barati, A. E. Tonelli, H. Hamedi, Effect of clinoptilolite on structure and drug release behavior of chitosan/thyme oil γ-cyclodextrin inclusion compound hydrogels, J. Appl. Polym. Sci., 138 (2021) e49822.
  • B. Taşdelen, D. İ. Çifçi, S. Meriç, Preparation of N-isopropylacrylamide/itaconic acid/Pumice highly swollen composite hydrogels to explore their removal capacity of methylene blue, Colloids Surf. A: Physicochem. Eng. Asp., 518 (2017) 245-253.

PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL

Year 2025, Volume: 53 Issue: 2, 1 - 11
https://doi.org/10.15671/hjbc.1530114

Abstract

In this study, the novel gelatin based in situ hydrogel nanocomposites were prepared from incorporating clinoptiolite (CL) and Lidocaine (LD) as a model local anesthetic drug within polyacrylamide-g-gelatin (PA-g-GA) hydrogel during the synthesis by free radical polymerization. The prepared PA-g-GA, PA-g-GA/CL and drug loaded PA-g-GA/CL in situ hydrogel nanocomposites were analyzed by FTIR and SEM. The drug release behavior of the synthesized composite hydrogel was investigated with UV-Vis spectrophotometry. Swelling and drug release behavior of the new prepared hydrogel nanocomposites were investigated with different CL and drug content in the gel structure. FTIR and SEM analysis revealed that the LD loaded PA-g-GA/CL nanocomposite was successfully prepared. Drug release (%) decreased when the drug loading and CL amount in the composite increased. Various kinetic models for all drug release data were applied in order to study drug release behavior. Korsmeyer-Peppas model fitted for the drug release data of all samples. Swelling, drug release properties of the new nanocomposites were improved with the incorporation of clinoptiolite in the gel structure.

References

  • S. Adepu, S. Ramakrishna, Controlled drug delivery systems: current status and future directions, Molecules, 26 (2021) 5905.
  • W. Mu, Q. Chu, Y. Liu, N. A. Zhang, A review on nano‑based drug delivery system for cancer chemo immunotherapy, Nanomicro Lett., 12 (2020) 142.
  • M. Wu, M. Lin, P. Li, X. Huang, K. Tian, C. Li, Local anesthetic effects of lidocaine loaded carboxymethyl chitosan cross- linked with sodium alginate hydrogels for drug delivery system, cell adhesion, and pain management, J. Drug Deliv. Sci. Technol., 79 (2023) 104007.
  • N. H. Thang, T. B. Chien, D. X. Cuong, Polymer-based hydrogels applied in drug delivery: an overview, Gels, 9 (2023) 523.
  • W. Heidarian, A. Z. Kouzani, A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing, Carbohydr. Polym., 313 (2023) 120879.
  • D. A. Şahbaz, Gelatin based hydrogels and ferrogels as smart drug delivery systems, Polym. Bull., 13 (2023) 1-21.
  • P. Jaipan, R. J. Nguyen, R. I. Narayan, Gelatin-based hydrogels for biomedical applications, MRS Commun., 7 (2017) 416-426.
  • N. Sahoo, R. K. Sahoo, N. Biswas, K. Guha, K. Kuotsu, Recent advancement of gelatin nanoparticles in drug and vaccine delivery, Int. J. Biol. Macromol., 81 (2015) 317-331.
  • E. Karadağ, S. Kundakcı, Ö. B. Üzüm, D. Saraydın, O. Güven, Water sorption studies and adsorptive features of acrylamide based hydrogels as semi-IPNs and composites, Hacettepe J. Biol. Chem., 42 (2014) 71-79.
  • B. Lv, X. Bu, Y. Da, P. Duan, H. Wang, J. Ren, B. Lyu, D. Gao, Gelatin/PAM double network hydrogels with super-compressibility, Polymer, 210 (2020) 317-331.
  • Z. Qiao, L. Tran, J. Parks, Y. Zhao, N. Hai, Y. Zhong, H. F. Ji, Highly stretchable gelatin-polyacrylamide hydrogels for potential transdermal drug release, Nano Select, 2 (2021) 107-115.
  • A. M. Ruvalcaba, F. B. Bracamantes, J. C. Sanchez, A. G. Alvarez, Polyacrylamide-gelatin polymeric networks: effect of pH and gelatin concentration on the swelling kinetics and mechanical properties, Polym. Bull., 62 (2009) 539-548.
  • H. Serati-Nouri, A. Jafari, L. Roshangar, M. Dadashpour, Y. Pilehvar-Soltanahmadi, S. V. Vlierberghe, N. Sarghami, Biomedical applications of zeolite-based materials: a review, Mat. Sci. Eng.: C Mater., 116 (2020) 111225.
  • S. Wang, S. Ramakrishna, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156 (2010) 11-24.
  • M. R. Abukhadra, A. Adlii, J. S. Khim, J. S. Ajarem, A. A. Allam, Insight into the technical qualification of the sonocogreen CaO/ clinoptilolite nanocomposite (CaO(NP)/clino) as an advanced delivery system for 5 Fluorouracil: equilibrium and cytotoxicity, ACS Omega, 6 (2020) 31982-31992.
  • H. Samadian, R. Vahidi, M. Salehi, H. Hosseini-Nave, A. Shahabi, S. Zanganeh, M. Lashkari, S. M. Kouhbananinejad, N. Rezaei Kolarijani, S. M. Amini, M. Asadi-Shekari, M. J. Mirzaei Parsa, Hydrogel nanocomposite based on alginate/zeolite for burn wound healing: in vitro and in vivo study, Iran. J. Basic Med. Sci., 26 (2023) 708-716.
  • A. Olad, H. Gharekhani, A. Mirmohseni, A. Bybordi, Study on the synergistic effect of clinoptilolite on the swelling kinetic and slow release behavior of maize bran-based superabsorbent nanocomposite, J. Polym. Res., 23 (2016) 241-255.
  • A. Rashidzadeh, A. Olad, A. Reyhanitabar, Hydrogel/clinoptilolite nanocomposite-coated fertilizer: swelling, water-retention and slow-release fertilizer properties, Polym. Bull., 72 (2015) 2667-2684.
  • S. Bahmani, R. Khajavi, M. Ehsani, Transdermal drug delivery system of lidocaine hydrochloride based on dissolving gelatin/sodium carboxymethylcellulose microneedles, AAPS Open, 9 (2023) 7.
  • D. Wójcik-Pastuszka, K. Stawicka, W. Musiał, Biopolymer-based hydrogel incorporated with naproxen sodium and lidocaine hydrochloride for controlled drug delivery, Polymers, 16 (2024) 1353.
  • R. Abu-Huwai, S. M. Assaf, M. Salem, Mucoadhesive dosage form of lidocaine hydrochloride: I. mucoadhesive and physicochemical characterization, Drug Dev. Ind. Pharm., 33 (2007) 855-864.
  • L. Bender, H. M. Boostrom, C. Varricchio, M. Zuanon, V. Celiksoy, A. Sloan, J. Cowpe, C. M. Heard, A novel dual action monolithic thermosetting hydrogel loaded with lidocaine and metronidazole as a potential treatment for alveolar osteitis, Eur. J. Pharm. Biopharm., 149 (2020) 85-94.
  • K. Dobie, G. Smith, A. J. Sloan, A. J. Smith, Enjects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect. Tissue Res., 43 (2002) 387-390.
  • Y. Li, E. Zhao, L. Li, L. Bai, W. Zhang, Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete in vitro and in vivo toxicity, Drug Deliv., 28 (2021) 1080-1092.
  • B. Taşdelen, Conducting hydrogels based on semi‐interpenetrating networks of polyaniline in poly (acrylamide‐co‐itaconic acid) matrix: synthesis and characterization, Polym. Adv. Technol., 28 (2017) 1865-1871.
  • B. Küçüktürkmen, U. C. Öz, A. Bozkır, In situ hydrogel formulation for intra-articular application of diclofenac sodium-loaded polymeric nanoparticles, Turk. J. Pharm. Sci., 14 (2017) 56-64.
  • B. Taşdelen, N. Kayaman-Apohan, O. Güven, B. M. Baysal, Anticancer drug release from poly(N-isopropylacrylamide/ itaconic acid) copolymeric hydrogels, Radiat. Phys. Chem., 73 (2005) 340-345.
  • E. Karadağ, Ö. B. Üzüm, D. Saraydın, O. Güven, Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions, Mater. Des., 27 (2006) 576-584.
  • S. J. Owonubi, B. A. Aderibigbe, E. Mukwevho, E. R. Sadiku, S. S. Ray, Characterization and in vitro release kinetics of antimalarials from whey protein‑based hydrogel biocomposites, Int. J. Ind. Chem., 9 (2018) 39-52.
  • M. P. Das, P. R. Suguna, K. Prasad, J. V. Vijaylakshmi, M. Renuka, Extraction and characterization of gelatin: a functional biopolymer. Int. J. Pharm. Pharm. Sci., 9 (2017) 239-242.
  • N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, Thomas, Synthesis and characterisation of gelatin/zeolite porous scaffold, Eur. Polym. J., 49 (2013) 2433-2445.
  • S. Moradi, A. Barati, A. E. Tonelli, H. Hamedi, Effect of clinoptilolite on structure and drug release behavior of chitosan/thyme oil γ-cyclodextrin inclusion compound hydrogels, J. Appl. Polym. Sci., 138 (2021) e49822.
  • B. Taşdelen, D. İ. Çifçi, S. Meriç, Preparation of N-isopropylacrylamide/itaconic acid/Pumice highly swollen composite hydrogels to explore their removal capacity of methylene blue, Colloids Surf. A: Physicochem. Eng. Asp., 518 (2017) 245-253.
There are 33 citations in total.

Details

Primary Language English
Subjects Macromolecular Materials, Nanochemistry
Journal Section Research Article
Authors

Betül Taşdelen 0000-0002-0707-9191

Aslıhan Koruyucu 0000-0002-8443-5188

Nadide Gülşah Gülenç 0000-0002-6628-6078

Sevil Erdogan 0000-0001-9148-911X

Publication Date
Submission Date August 8, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2025 Volume: 53 Issue: 2

Cite

APA Taşdelen, B., Koruyucu, A., Gülenç, N. G., Erdogan, S. (n.d.). PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL. Hacettepe Journal of Biology and Chemistry, 53(2), 1-11. https://doi.org/10.15671/hjbc.1530114
AMA Taşdelen B, Koruyucu A, Gülenç NG, Erdogan S. PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL. HJBC. 53(2):1-11. doi:10.15671/hjbc.1530114
Chicago Taşdelen, Betül, Aslıhan Koruyucu, Nadide Gülşah Gülenç, and Sevil Erdogan. “PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL”. Hacettepe Journal of Biology and Chemistry 53, no. 2 n.d.: 1-11. https://doi.org/10.15671/hjbc.1530114.
EndNote Taşdelen B, Koruyucu A, Gülenç NG, Erdogan S PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL. Hacettepe Journal of Biology and Chemistry 53 2 1–11.
IEEE B. Taşdelen, A. Koruyucu, N. G. Gülenç, and S. Erdogan, “PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL”, HJBC, vol. 53, no. 2, pp. 1–11, doi: 10.15671/hjbc.1530114.
ISNAD Taşdelen, Betül et al. “PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL”. Hacettepe Journal of Biology and Chemistry 53/2 (n.d.), 1-11. https://doi.org/10.15671/hjbc.1530114.
JAMA Taşdelen B, Koruyucu A, Gülenç NG, Erdogan S. PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL. HJBC.;53:1–11.
MLA Taşdelen, Betül et al. “PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 2, pp. 1-11, doi:10.15671/hjbc.1530114.
Vancouver Taşdelen B, Koruyucu A, Gülenç NG, Erdogan S. PREPARATION, CHARACTERIZATION and DRUG RELEASE BEHAVIOR OF A CLINOPTIOLITE INCORPORATED POLYACRYLAMIDE GRAFTED GELATIN NANOCOMPOSITE IN SITU HYDROGEL. HJBC. 53(2):1-11.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc