Research Article
BibTex RIS Cite

Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems

Year 2025, Volume: 53 Issue: 4, 1 - 10, 01.10.2025
https://doi.org/10.15671/hjbc.1579016

Abstract

Resonance energy transfer (RET) techniques, such as fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), are powerful tools for probing protein-protein interactions, conformational changes, and post-translational modifications in live cells. These methods leverage the non-radiative transfer of energy from a donor molecule to an acceptor, offering real-time, highly sensitive insights into molecular dynamics within their native environment. However, RET assays are prone to concentration-dependent artifacts. At elevated concentrations, donor and acceptor molecules leading to non-specific energy transfer, which may produce misleading or false-positive signals. In contrast, low concentrations can reduce signal intensity, diminishing the sensitivity and accuracy of the measurements. To systematically address these limitations and refine the applicability of FRET and BRET in cellular studies, we designed and tested a variety of RET constructs. Specifically, mEGFP was used as a FRET donor in combination with the mCherry acceptor, and as a BRET acceptor in conjunction with the Nluc donor. These constructs were expressed both in the cytosol and at the plasma membrane, allowing for a comparative evaluation of RET efficiency in different cellular compartments. Our study demonstrates the critical need for precise control of donor and acceptor concentrations to mitigate non-specific energy transfer and ensure accurate detection of protein interactions. This work underscores the importance of optimizing experimental conditions for RET-based assays to enhance the reliability of FRET and BRET as investigative tools in live-cell protein interaction studies.

Supporting Institution

TÜBİTAK

Project Number

Tübitak 118Z590, Tübitak 118Z694

Thanks

I kindly thank Prof. Dr. Cagdas D. Son for his insightful discussions and continuous support. This work was supported by The Scientific and Technological Research Council of Türkiye, Tübitak 118Z590 and Tübitak 118Z694 grants.

References

  • Reference1. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Annalen der Physik, Leipzig-Germany, 1948.
  • Reference2. T. Ansbacher, H. K. Srivastava, T. Stein, R. Baer, M. Merkx and A. Shurki, Calculation of transition dipole moment in fluorescent proteins--towards efficient energy transfer, Phys Chem Chem Phys, 14 (2012) 4109-4117.
  • Reference3. G. Milligan, R. J. Ward and S. Marsango, GPCR homo-oligomerization, Curr Opin Cell Biol, 57 (2019) 40-47.
  • Reference4. S. Ferre, F. Ciruela, V. Casado and L. Pardo, Oligomerization of G protein-coupled receptors: Still doubted?, Progress in molecular biology and translational science, 169 (2020) 297-321.
  • Reference5. T. A. Nenasheva, M. Neary, G. I. Mashanov, N. J. Birdsall, R. A. Breckenridge and J. E. Molloy, Abundance, distribution, mobility and oligomeric state of M(2) muscarinic acetylcholine receptors in live cardiac muscle, J Mol Cell Cardiol, 57 (2013) 129-136.
  • Reference6. K. Herrick-Davis, E. Grinde, A. Cowan and J. E. Mazurkiewicz, Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle, Mol Pharmacol, 84 (2013) 630-642.
  • Reference7. B. Jastrzebska, Y. Chen, T. Orban, H. Jin, L. Hofmann and K. Palczewski, Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface, J Biol Chem, 290 (2015) 25728-25744.
  • Reference8. R. Franco, E. Martínez-Pinilla, J. L. Lanciego and G. Navarro, Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization, Front Pharmacol, 7 (2016) 76.
  • Reference9. V. K. Parmar, E. Grinde, J. E. Mazurkiewicz and K. Herrick-Davis, Beta(2)-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression, Biochim Biophys Acta Biomembr, 1859 (2017) 1445-1455.
  • Reference10. V. Capra, M. Mauri, F. Guzzi, M. Busnelli, M. R. Accomazzo, P. Gaussem, S. P. Nisar, S. J. Mundell, M. Parenti and G. E. Rovati, Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo, Biochem Pharmacol, 124 (2017) 43-56.
  • Reference11. J. Jin, F. Momboisse, G. Boncompain, F. Koensgen, Z. Zhou, N. Cordeiro, F. Arenzana-Seisdedos, F. Perez, B. Lagane, E. Kellenberger and A. Brelot, CCR5 adopts three homodimeric conformations that control cell surface delivery, Science signaling, 11 (2018).
  • Reference12. S. M. Walsh, S. Mathiasen, S. M. Christensen, J. F. Fay, C. King, D. Provasi, E. Borrero, S. G. F. Rasmussen, J. J. Fung, M. Filizola, K. Hristova, B. Kobilka, D. L. Farrens and D. Stamou, Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs, Biophysical journal, 115 (2018) 300-312.
  • Reference13. D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel and K. Palczewski, Atomic-force microscopy: Rhodopsin dimers in native disc membranes, Nature, 421 (2003) 127-128.
  • Reference14. Y. Liang, D. Fotiadis, S. Filipek, D. A. Saperstein, K. Palczewski and A. Engel, Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes, J Biol Chem, 278 (2003) 21655-21662.
  • Reference15. T. Galvez, B. Duthey, J. Kniazeff, J. Blahos, G. Rovelli, B. Bettler, L. Prezeau and J. P. Pin, Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function, EMBO J, 20 (2001) 2152-2159.
  • Reference16. P. Rondard, S. Huang, C. Monnier, H. Tu, B. Blanchard, N. Oueslati, F. Malhaire, Y. Li, E. Trinquet, G. Labesse, J. P. Pin and J. Liu, Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning, EMBO J, 27 (2008) 1321-1332.
  • Reference17. L. Comps-Agrar, J. Kniazeff, L. Norskov-Lauritsen, D. Maurel, M. Gassmann, N. Gregor, L. Prezeau, B. Bettler, T. Durroux, E. Trinquet and J. P. Pin, The oligomeric state sets GABA(B) receptor signalling efficacy, EMBO J, 30 (2011) 2336-2349.
  • Reference18. J. P. Pin and F. Acher, The metabotropic glutamate receptors: structure, activation mechanism and pharmacology, Curr Drug Targets CNS Neurol Disord, 1 (2002) 297-317.
  • Reference19. E. Doumazane, P. Scholler, L. Fabre, J. M. Zwier, E. Trinquet, J. P. Pin and P. Rondard, Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors, Proc Natl Acad Sci USA, 110 (2013) E1416-1425.
  • Reference20. W. Q. Ding, Z. J. Cheng, J. McElhiney, S. M. Kuntz and L. J. Miller, Silencing of secretin receptor function by dimerization with a misspliced variant secretin receptor in ductal pancreatic adenocarcinoma, Cancer research, 62 (2002) 5223-5229.
  • Reference21. T. Seck, R. Baron and W. C. Horne, The alternatively spliced deltae13 transcript of the rabbit calcitonin receptor dimerizes with the C1a isoform and inhibits its surface expression, J Biol Chem, 278 (2003) 23085-23093.
  • Reference22. O. Kraetke, B. Wiesner, J. Eichhorst, J. Furkert, M. Bienert and M. Beyermann, Dimerization of corticotropin-releasing factor receptor type 1 is not coupled to ligand binding, Journal of receptor and signal transduction research, 25 (2005) 251-276.
  • Reference23. K. G. Harikumar, M. M. Morfis, C. S. Lisenbee, P. M. Sexton and L. J. Miller, Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors, Mol Pharmacol, 69 (2006) 363-373.
  • Reference24. K. G. Harikumar, D. I. Pinon and L. J. Miller, Transmembrane segment IV contributes a functionally important interface for oligomerization of the Class II G protein-coupled secretin receptor, J Biol Chem, 282 (2007) 30363-30372.
  • Reference25. S. F. Young, C. Griffante and G. Aguilera, Dimerization between vasopressin V1b and corticotropin releasing hormone type 1 receptors, Cell Mol Neurobiol, 27 (2007) 439-461.
  • Reference26. K. G. Harikumar, R. M. Happs and L. J. Miller, Dimerization in the absence of higher-order oligomerization of the G protein-coupled secretin receptor, Biochim Biophys Acta, 1778 (2008) 2555-2563.
  • Reference27. D. Maurel, L. Comps-Agrar, C. Brock, M. L. Rives, E. Bourrier, M. A. Ayoub, H. Bazin, N. Tinel, T. Durroux, L. Prezeau, E. Trinquet and J. P. Pin, Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization, Nat Methods, 5 (2008) 561-567.
  • Reference28. D. Schelshorn, F. Joly, S. Mutel, C. Hampe, B. Breton, V. Mutel and R. Lutjens, Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation, Mol Pharmacol, 81 (2012) 309-318.
  • Reference29. R. Rozenfeld and Lakshmi A. Devi, Exploring a role for heteromerization in GPCR signalling specificity, Biochemical Journal, 433 (2010) 11-18.
  • Reference30. G. Schulte and S. C. Wright, Frizzleds as GPCRs – More Conventional Than We Thought!, Trends in pharmacological sciences, 39 (2018) 828-842.
  • Reference31. J. H. Felce, S. L. Latty, R. G. Knox, S. R. Mattick, Y. Lui, S. F. Lee, D. Klenerman and S. J. Davis, Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure, Cell reports, 20 (2017) 2654-2665.
  • Reference32. O. Cevheroglu, B. Demirbas, D. Ogutcu and M. Murat, ADGRG1, an adhesion G protein-coupled receptor, forms oligomers, The FEBS journal, 291 (2024) 2461-2478.
  • Reference33. M. J. Lohse, Dimerization in GPCR mobility and signaling, Curr Opin Pharmacol, 10 (2010) 53-58.
  • Reference34. H. Biebermann, H. Krude, A. Elsner, V. Chubanov, T. Gudermann and A. Gruters, Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization, Diabetes, 52 (2003) 2984-2988.
  • Reference35. S. AbdAlla, H. Lother, A. el Massiery and U. Quitterer, Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness, Nature Medicine, 7 (2001) 1003-1009.
  • Reference36. P. Seeman, Dopamine D2 receptors as treatment targets in schizophrenia, Clin Schizophr Relat Psychoses, 4 (2010) 56-73.
  • Reference37. U. Renner, A. Zeug, A. Woehler, M. Niebert, A. Dityatev, G. Dityateva, N. Gorinski, D. Guseva, D. Abdel-Galil, M. Frohlich, F. Doring, E. Wischmeyer, D. W. Richter, E. Neher and E. G. Ponimaskin, Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking, J Cell Sci, 125 (2012) 2486-2499.
  • Reference38. D. O. Borroto-Escuela, A. O. Tarakanov and K. Fuxe, FGFR1-5-HT1A Heteroreceptor Complexes: Implications for Understanding and Treating Major Depression, Trends Neurosci, 39 (2016) 5-15.
  • Reference39. T. E. Hebert, S. Moffett, J. P. Morello, T. P. Loisel, D. G. Bichet, C. Barret and M. Bouvier, A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation, J Biol Chem, 271 (1996) 16384-16392.
  • Reference40. S. AbdAlla, H. Lother, A. el Massiery and U. Quitterer, Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness, Nature Medicine, 7 (2001) 1003-1009.
  • Reference41. F. M. Decaillot, M. A. Kazmi, Y. Lin, S. Ray-Saha, T. P. Sakmar and P. Sachdev, CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration, J Biol Chem, 286 (2011) 32188-32197.
  • Reference42. M. Audet and M. Bouvier, Restructuring G-protein- coupled receptor activation, Cell, 151 (2012) 14-23.
  • Reference43. D. Calebiro, V. O. Nikolaev, L. Persani and M. J. Lohse, Signaling by internalized G-protein-coupled receptors, Trends in pharmacological sciences, 31 (2010) 221-228.
  • Reference44. B. Hollins, S. Kuravi, G. J. Digby and N. A. Lambert, The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers, Cellular signalling, 21 (2009) 1015-1021.
  • Reference45. I. Masuho, O. Ostrovskaya, G. M. Kramer, C. D. Jones, K. Xie and K. A. Martemyanov, Distinct profiles of functional discrimination among G proteins determine the actions of G protein–coupled receptors, Science signaling, 8 (2015).
  • Reference46. L. Albertazzi, D. Arosio, L. Marchetti, F. Ricci and F. Beltram, Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair, Photochemistry and photobiology, 85 (2009) 287-297.
  • Reference47. Z. Xia and Y. Liu, Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes, Biophysical journal, 81 (2001) 2395-2402.
  • Reference48. O. Cevheroglu, M. Murat, S. Mingu-Akmete and C. D. Son, Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor, J Phys Chem B, 125 (2021) 9526-9536.
There are 48 citations in total.

Details

Primary Language English
Subjects Protein Trafficking, Proteomics and Intermolecular Interactions, Receptors and Membrane Biology, Structural Biology, Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Orkun Cevheroglu 0000-0002-3895-8869

Project Number Tübitak 118Z590, Tübitak 118Z694
Publication Date October 1, 2025
Submission Date November 4, 2024
Acceptance Date September 10, 2025
Published in Issue Year 2025 Volume: 53 Issue: 4

Cite

APA Cevheroglu, O. (2025). Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems. Hacettepe Journal of Biology and Chemistry, 53(4), 1-10. https://doi.org/10.15671/hjbc.1579016
AMA Cevheroglu O. Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems. HJBC. October 2025;53(4):1-10. doi:10.15671/hjbc.1579016
Chicago Cevheroglu, Orkun. “Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems”. Hacettepe Journal of Biology and Chemistry 53, no. 4 (October 2025): 1-10. https://doi.org/10.15671/hjbc.1579016.
EndNote Cevheroglu O (October 1, 2025) Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems. Hacettepe Journal of Biology and Chemistry 53 4 1–10.
IEEE O. Cevheroglu, “Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems”, HJBC, vol. 53, no. 4, pp. 1–10, 2025, doi: 10.15671/hjbc.1579016.
ISNAD Cevheroglu, Orkun. “Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems”. Hacettepe Journal of Biology and Chemistry 53/4 (October2025), 1-10. https://doi.org/10.15671/hjbc.1579016.
JAMA Cevheroglu O. Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems. HJBC. 2025;53:1–10.
MLA Cevheroglu, Orkun. “Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems”. Hacettepe Journal of Biology and Chemistry, vol. 53, no. 4, 2025, pp. 1-10, doi:10.15671/hjbc.1579016.
Vancouver Cevheroglu O. Minimizing Artifacts in BRET and FRET Assays: Novel Controls for Enhanced RET Accuracy in Mammalian Systems. HJBC. 2025;53(4):1-10.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc