Research Article
BibTex RIS Cite
Year 2022, , 1661 - 1673, 01.12.2022
https://doi.org/10.15672/hujms.1010314

Abstract

References

  • [1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
  • [2] S. Bulut, Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers, Math. Slovaca 71 (4), 823–830, 2021.
  • [3] J. Dziok, R.K. Raina and J. Sokół, On α-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput. 218, 996–1002, 2011.
  • [4] J. Dziok, R.K. Raina and J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl. 61, 2605–2613, 2011.
  • [5] J. Dziok, R.K. Raina and J. Sokół, On a class of starlike functions related to a shelllike curve connected with Fibonacci numbers, Math. Comput. Model. 57, 1203–1211, 2013.
  • [6] S. Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (1), 38–49, 2007.
  • [7] M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 8, 85–89, 1933.
  • [8] H.Ö. Güney, S. İlhan and J. Sokół, An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3) 25 (1), 117–129, 2019.
  • [9] H.Ö. Güney, J. Sokółand S. İlhan, Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Univ. Apulensis Math. Inform. 54, 161–174, 2018.
  • [10] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41, 193–203, 1910.
  • [11] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinburgh 46, 253–281, 1908.
  • [12] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157– 169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
  • [13] C. Pommerenke, Univalent Functions; Vanderhoeck and Ruprecht: Göttingen, Germany, 1975.
  • [14] N. Yılmaz Özgür and J. Sokół, On starlike functions connected with k-Fibonacci numbers, Bull. Malays. Math. Sci. Soc. 38 (1), 249–258, 2015.
  • [15] R.K. Raina and J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca 66 (1), 135–140, 2016.
  • [16] V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15, 171–180, 2004.
  • [17] M. Shafiq, H.M. Srivastava, N. Khan, Q.Z. Ahmad, M. Darus and S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry 12:1043, 1–17, 2020.
  • [18] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis 175 (23), 111–116, 1999.
  • [19] J. Sokół, S. İlhan and H.Ö. Güney, An upper bound for third Hankel determinant of starlike functions related to shell-like curves connected with Fibonacci numbers, J. Math. Appl. 41, 195–206, 2018.
  • [20] J. Sokół, S. İlhan and H.Ö. Güney, Second Hankel determinant problem for several classes of analytic functions related to shell-like curves connected with Fibonacci numbers, TWMS J. App.& Eng. Math. 8 (1a), 220–229, 2018.
  • [21] J. Sokół, R.K. Raina and N. Yılmaz Özgür, Applications of k-Fibonacci numbers for the starlike analytic functions, Hacet. J. Math. Stat. 44 (1), 121–127, 2015.

Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers

Year 2022, , 1661 - 1673, 01.12.2022
https://doi.org/10.15672/hujms.1010314

Abstract

Let $\mathcal{A}$ denote the class of functions $f$ which are analytic in the open unit disk $\mathbb{U}$ and given by
\[
f(z)=z+\sum_{n=2}^{\infty }a_{n}z^{n}\qquad \left( z\in \mathbb{U}\right) .
\]
The coefficient functional $\phi _{\lambda }\left( f\right) =a_{3}-\lambda a_{2}^{2}$ on $f\in \mathcal{A}$ represents various geometric quantities. For example, $\phi _{1}\left( f\right) =a_{3}-a_{2}^{2}=S_{f}\left( 0\right) /6,$ where $S_{f}$ is the Schwarzian derivative. The problem of maximizing the absolute value of the functional $\phi _{\lambda }\left( f\right) $ is called the Fekete-Szegö problem.

In a very recent paper, Shafiq \textit{et al}. [Symmetry 12:1043, 2020] defined a new subclass $\mathcal{SL}\left(k,q\right), (k>0, 0<q<1) $ consist of functions $f\in\mathcal{A}$ satisfying the following subordination:
\[
\frac{z\,D_{q}f\left( z\right) }{f(z)}\prec \frac{2\tilde{p}_{k}\left(
z\right) }{\left( 1+q\right) +\left( 1-q\right) \tilde{p}_{k}\left( z\right)
}\qquad \left( z\in \mathbb{U}\right) ,
\]
where
\[
\tilde{p}_{k}\left( z\right) =\frac{1+\tau _{k}^{2}z^{2}}{1-k\tau _{k}z-\tau
_{k}^{2}z^{2}}, \qquad \tau _{k}=\frac{k-\sqrt{k^{2}+4}}{2},
\]
and investigated the Fekete-Szegö problem for functions belong to the class $\mathcal{SL}(k,q)$. This class is connected with $k$-Fibonacci numbers. The main purpose of this paper is to obtain sharp bounds on $\phi _{\lambda }\left( f\right)$ for functions $f$ belong to the class $\mathcal{SL}\left(k,q\right)$ when both $\lambda \in \mathbb{R}$ and $\lambda \in \mathbb{C}$, and to improve the result given in the above mentioned paper.

References

  • [1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
  • [2] S. Bulut, Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers, Math. Slovaca 71 (4), 823–830, 2021.
  • [3] J. Dziok, R.K. Raina and J. Sokół, On α-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput. 218, 996–1002, 2011.
  • [4] J. Dziok, R.K. Raina and J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl. 61, 2605–2613, 2011.
  • [5] J. Dziok, R.K. Raina and J. Sokół, On a class of starlike functions related to a shelllike curve connected with Fibonacci numbers, Math. Comput. Model. 57, 1203–1211, 2013.
  • [6] S. Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (1), 38–49, 2007.
  • [7] M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 8, 85–89, 1933.
  • [8] H.Ö. Güney, S. İlhan and J. Sokół, An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3) 25 (1), 117–129, 2019.
  • [9] H.Ö. Güney, J. Sokółand S. İlhan, Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Univ. Apulensis Math. Inform. 54, 161–174, 2018.
  • [10] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41, 193–203, 1910.
  • [11] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinburgh 46, 253–281, 1908.
  • [12] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157– 169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
  • [13] C. Pommerenke, Univalent Functions; Vanderhoeck and Ruprecht: Göttingen, Germany, 1975.
  • [14] N. Yılmaz Özgür and J. Sokół, On starlike functions connected with k-Fibonacci numbers, Bull. Malays. Math. Sci. Soc. 38 (1), 249–258, 2015.
  • [15] R.K. Raina and J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca 66 (1), 135–140, 2016.
  • [16] V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15, 171–180, 2004.
  • [17] M. Shafiq, H.M. Srivastava, N. Khan, Q.Z. Ahmad, M. Darus and S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry 12:1043, 1–17, 2020.
  • [18] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis 175 (23), 111–116, 1999.
  • [19] J. Sokół, S. İlhan and H.Ö. Güney, An upper bound for third Hankel determinant of starlike functions related to shell-like curves connected with Fibonacci numbers, J. Math. Appl. 41, 195–206, 2018.
  • [20] J. Sokół, S. İlhan and H.Ö. Güney, Second Hankel determinant problem for several classes of analytic functions related to shell-like curves connected with Fibonacci numbers, TWMS J. App.& Eng. Math. 8 (1a), 220–229, 2018.
  • [21] J. Sokół, R.K. Raina and N. Yılmaz Özgür, Applications of k-Fibonacci numbers for the starlike analytic functions, Hacet. J. Math. Stat. 44 (1), 121–127, 2015.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Serap Bulut 0000-0002-6506-4588

Publication Date December 1, 2022
Published in Issue Year 2022

Cite

APA Bulut, S. (2022). Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers. Hacettepe Journal of Mathematics and Statistics, 51(6), 1661-1673. https://doi.org/10.15672/hujms.1010314
AMA Bulut S. Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers. Hacettepe Journal of Mathematics and Statistics. December 2022;51(6):1661-1673. doi:10.15672/hujms.1010314
Chicago Bulut, Serap. “Fekete-Szegö Problem for $q$-Starlike Functions in Connected With $k$-Fibonacci Numbers”. Hacettepe Journal of Mathematics and Statistics 51, no. 6 (December 2022): 1661-73. https://doi.org/10.15672/hujms.1010314.
EndNote Bulut S (December 1, 2022) Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers. Hacettepe Journal of Mathematics and Statistics 51 6 1661–1673.
IEEE S. Bulut, “Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, pp. 1661–1673, 2022, doi: 10.15672/hujms.1010314.
ISNAD Bulut, Serap. “Fekete-Szegö Problem for $q$-Starlike Functions in Connected With $k$-Fibonacci Numbers”. Hacettepe Journal of Mathematics and Statistics 51/6 (December 2022), 1661-1673. https://doi.org/10.15672/hujms.1010314.
JAMA Bulut S. Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers. Hacettepe Journal of Mathematics and Statistics. 2022;51:1661–1673.
MLA Bulut, Serap. “Fekete-Szegö Problem for $q$-Starlike Functions in Connected With $k$-Fibonacci Numbers”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, 2022, pp. 1661-73, doi:10.15672/hujms.1010314.
Vancouver Bulut S. Fekete-Szegö problem for $q$-starlike functions in connected with $k$-Fibonacci numbers. Hacettepe Journal of Mathematics and Statistics. 2022;51(6):1661-73.