Research Article
BibTex RIS Cite

TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION

Year 2011, Volume: 40 Issue: 6, 885 - 894, 01.06.2011
https://izlik.org/JA46GC78RC

Abstract

We aim at establishing two identities contiguous to Kummer’s transformation :(1 − z)−a2F1" 12a, 12a +12;b +12;z1 − z2#= 2F1a, b ;2b ;2z
by using two different methods. They are further applied to prove two summation formulas for the series 3F2(1), closely related to the classical Watson’s theorem due to Lavoie.

References

  • [1] Bailey, W. N. Product of generalized hypergeometric series, Proc. London Math. Soc. (ser. 2) 28, 242–254, 1928.
  • [2] Mortici, C. New improvements of the Stirling formula, Appl. Math. Comput. 217, 699–704, 2010.
  • [3] Mortici, C. A quicker convergence toward the gamma constant with the logarithm term involving the constant e, Carpathian J. Math. 26 (1), 86–91, 2010.
  • [4] Erd´elyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. Tables of Integral Transforms (Vol. 2) (McGraw-Hill Book Company, New York, Toronto and London, 1954).
  • [5] Kim, Y. S., Rakha, M. A. and Rathie, A. K. Generalization of Kummer’s second theorem with applications, Comput. Math. Math. Phys. 50 (3), 387–402, 2010.
  • [6] Kim, Y. S., Rakha, M. A. and Rathie, A. K. Extensions of certain classical summation theorems for the series 2F1 and 3F2 with applications in Ramanujan’s summations, Int. J. Math. Math. Sci., 2011, to appear.
  • [7] Lavoie, J. L. Some summation formulas for the series 3F2(1), Math. Comput. 49 (179), 269–274, 1987.
  • [8] Lavoie, J. L., Grondin, F. and Rathie, A. K. Generalizations of Watson’s theorem on the sum of a 3F2, Indian J. Math. 34, 23–32, 1992.
  • [9] Lavoie, J. L., Grondin, F., Rathie, A. K. and Arora, K. Generalizations of Dixon’s theorem on the sum of a 3F2, Math. Comput. 62, 267–276, 1994.
  • [10] Lavoie, J. L., Grondin, F. and Rathie, A. K. Generalizations of Whipple’s theorem on the sum of a 3F2, J. Comput. Appl. Math. 72, 293–300, 1996.
  • [11] Lewanowicz, S. Generalized Watson’s summation formula for 3F2(1), J. Comput. Appl. Math. 86, 375–386, 1997.
  • [12] Milgram, M. On hypergeometric 3F2(1), Arxiv: math. CA/ 0603096, 2006. [13] Rainville, E. D. Special Functions (Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971).
  • [14] Rakha, M. A. and Rathie, A. K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications, Integral Transformations and Special Functions, 2011, to appear.
  • [15] Rathie, A. K. and Nagar, V. On Kummer’s second theorem involving product of generalized hypergeometric series, Le Math. (Catania) 50, 35–38, 1995.
  • [16] Srivastava, H. M and Choi, J. Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht, Boston and London, 2001).
  • [17] Vidunas, R. A generalization of Kummer’s identity, Rocky Mount. J. Math. 32, 919–935, 2002; also available at http://arxiv.org/abs/math CA/ 005095

TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION

Year 2011, Volume: 40 Issue: 6, 885 - 894, 01.06.2011
https://izlik.org/JA46GC78RC

Abstract

References

  • [1] Bailey, W. N. Product of generalized hypergeometric series, Proc. London Math. Soc. (ser. 2) 28, 242–254, 1928.
  • [2] Mortici, C. New improvements of the Stirling formula, Appl. Math. Comput. 217, 699–704, 2010.
  • [3] Mortici, C. A quicker convergence toward the gamma constant with the logarithm term involving the constant e, Carpathian J. Math. 26 (1), 86–91, 2010.
  • [4] Erd´elyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. Tables of Integral Transforms (Vol. 2) (McGraw-Hill Book Company, New York, Toronto and London, 1954).
  • [5] Kim, Y. S., Rakha, M. A. and Rathie, A. K. Generalization of Kummer’s second theorem with applications, Comput. Math. Math. Phys. 50 (3), 387–402, 2010.
  • [6] Kim, Y. S., Rakha, M. A. and Rathie, A. K. Extensions of certain classical summation theorems for the series 2F1 and 3F2 with applications in Ramanujan’s summations, Int. J. Math. Math. Sci., 2011, to appear.
  • [7] Lavoie, J. L. Some summation formulas for the series 3F2(1), Math. Comput. 49 (179), 269–274, 1987.
  • [8] Lavoie, J. L., Grondin, F. and Rathie, A. K. Generalizations of Watson’s theorem on the sum of a 3F2, Indian J. Math. 34, 23–32, 1992.
  • [9] Lavoie, J. L., Grondin, F., Rathie, A. K. and Arora, K. Generalizations of Dixon’s theorem on the sum of a 3F2, Math. Comput. 62, 267–276, 1994.
  • [10] Lavoie, J. L., Grondin, F. and Rathie, A. K. Generalizations of Whipple’s theorem on the sum of a 3F2, J. Comput. Appl. Math. 72, 293–300, 1996.
  • [11] Lewanowicz, S. Generalized Watson’s summation formula for 3F2(1), J. Comput. Appl. Math. 86, 375–386, 1997.
  • [12] Milgram, M. On hypergeometric 3F2(1), Arxiv: math. CA/ 0603096, 2006. [13] Rainville, E. D. Special Functions (Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971).
  • [14] Rakha, M. A. and Rathie, A. K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications, Integral Transformations and Special Functions, 2011, to appear.
  • [15] Rathie, A. K. and Nagar, V. On Kummer’s second theorem involving product of generalized hypergeometric series, Le Math. (Catania) 50, 35–38, 1995.
  • [16] Srivastava, H. M and Choi, J. Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht, Boston and London, 2001).
  • [17] Vidunas, R. A generalization of Kummer’s identity, Rocky Mount. J. Math. 32, 919–935, 2002; also available at http://arxiv.org/abs/math CA/ 005095
There are 16 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Research Article
Authors

Junesang Choi This is me

 arjun K. Rathie This is me

Publication Date June 1, 2011
IZ https://izlik.org/JA46GC78RC
Published in Issue Year 2011 Volume: 40 Issue: 6

Cite

APA Choi, J., & Rathie, arjunK. (2011). TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION. Hacettepe Journal of Mathematics and Statistics, 40(6), 885-894. https://izlik.org/JA46GC78RC
AMA 1.Choi J, Rathie arjunK. TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION. Hacettepe Journal of Mathematics and Statistics. 2011;40(6):885-894. https://izlik.org/JA46GC78RC
Chicago Choi, Junesang, and  arjun K. Rathie. 2011. “TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION”. Hacettepe Journal of Mathematics and Statistics 40 (6): 885-94. https://izlik.org/JA46GC78RC.
EndNote Choi J, Rathie arjunK (June 1, 2011) TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION. Hacettepe Journal of Mathematics and Statistics 40 6 885–894.
IEEE [1]J. Choi and  arjunK.Rathie, “TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 6, pp. 885–894, June 2011, [Online]. Available: https://izlik.org/JA46GC78RC
ISNAD Choi, Junesang - Rathie, arjunK. “TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION”. Hacettepe Journal of Mathematics and Statistics 40/6 (June 1, 2011): 885-894. https://izlik.org/JA46GC78RC.
JAMA 1.Choi J, Rathie arjunK. TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION. Hacettepe Journal of Mathematics and Statistics. 2011;40:885–894.
MLA Choi, Junesang, and  arjun K. Rathie. “TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 6, June 2011, pp. 885-94, https://izlik.org/JA46GC78RC.
Vancouver 1.Choi J, Rathie arjunK. TWO FORMULAS CONTIGUOUS TO A QUADRATIC TRANSFORMATION DUE TO KUMMER WITH AN APPLICATION. Hacettepe Journal of Mathematics and Statistics [Internet]. 2011 June 1;40(6):885-94. Available from: https://izlik.org/JA46GC78RC