Research Article
BibTex RIS Cite

Homological aspects of formal triangular matrix rings

Year 2022, , 1504 - 1516, 01.12.2022
https://doi.org/10.15672/hujms.1014028

Abstract

Let $T=\biggl(\begin{matrix} A&0\\U&B\end{matrix}\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We first give some computing formulas of projective, injective, flat and $FP$-injective dimensions of special left $T$-modules. Then we establish some formulas of (weak) global dimensions of $T$. It is proven that (1) If $U_{A}$ is flat and $_{B}U$ is projective, $lD(A)\neq lD(B)$, then $lD(T)={\rm max}\{lD(A),lD(B)\}$; (2) If $U_{A}$ and $_{B}U$ are flat, $wD(A)\neq wD(B)$, then $wD(T)={\rm max}\{wD(A),wD(B)\}$.

Supporting Institution

National Natural Science Foundation of China

Project Number

11771202

References

  • [1] J. Asadollahi and S. Salarian, On the vanishing of Ext over formal triangular matrix rings, Forum Math. 18, 951-966, 2006.
  • [2] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
  • [3] R.R. Colby and K.R. Fuller, Equivalence and Duality for Module Categories, Cambridge University Press, Cambridge, 2004.
  • [4] N.Q. Ding and J.L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78, 165-177, 1993.
  • [5] D.J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13, 144-146, 1972.
  • [6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
  • [7] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Monographs Textbooks Pure Appl. Math. 33, Marcel Dekker, Inc. New York and Basel, 1976.
  • [8] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, De Gruyter, Berlin-New York, 2006.
  • [9] E.L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
  • [10] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27, 5507-5525, 1999.
  • [11] A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147, 41-58, 2000.
  • [12] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
  • [13] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York-Heidelberg- Berlin, 1999.
  • [14] P. Loustaunau and J. Shapiro, Homological dimensions in a Morita context with applications to subidealizers and fixed rings, Proc. Amer. Math. Soc. 110, 601-610, 1990.
  • [15] L.X. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224, 106271 (21 pages), 2020.
  • [16] L.X. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Comm. Algebra 48, 5296-5310, 2020.
  • [17] L.X. Mao, The structures of dual modules over formal triangular matrix rings, Publ. Math. Debrecen 97 (3-4), 367-380, 2020.
  • [18] L.X. Mao, Homological dimensions of special modules over formal triangular matrix rings, J. Algebra Appl. 21, 2250146 (14 pages), 2022.
  • [19] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398, 63-110, 2014.
  • [20] J.J. Rotman, An Introduction to Homological Algebra, Second Edition, Springer, New York, 2009.
  • [21] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323-329, 1970.
Year 2022, , 1504 - 1516, 01.12.2022
https://doi.org/10.15672/hujms.1014028

Abstract

Project Number

11771202

References

  • [1] J. Asadollahi and S. Salarian, On the vanishing of Ext over formal triangular matrix rings, Forum Math. 18, 951-966, 2006.
  • [2] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
  • [3] R.R. Colby and K.R. Fuller, Equivalence and Duality for Module Categories, Cambridge University Press, Cambridge, 2004.
  • [4] N.Q. Ding and J.L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78, 165-177, 1993.
  • [5] D.J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13, 144-146, 1972.
  • [6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
  • [7] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Monographs Textbooks Pure Appl. Math. 33, Marcel Dekker, Inc. New York and Basel, 1976.
  • [8] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, De Gruyter, Berlin-New York, 2006.
  • [9] E.L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
  • [10] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27, 5507-5525, 1999.
  • [11] A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147, 41-58, 2000.
  • [12] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
  • [13] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York-Heidelberg- Berlin, 1999.
  • [14] P. Loustaunau and J. Shapiro, Homological dimensions in a Morita context with applications to subidealizers and fixed rings, Proc. Amer. Math. Soc. 110, 601-610, 1990.
  • [15] L.X. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224, 106271 (21 pages), 2020.
  • [16] L.X. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Comm. Algebra 48, 5296-5310, 2020.
  • [17] L.X. Mao, The structures of dual modules over formal triangular matrix rings, Publ. Math. Debrecen 97 (3-4), 367-380, 2020.
  • [18] L.X. Mao, Homological dimensions of special modules over formal triangular matrix rings, J. Algebra Appl. 21, 2250146 (14 pages), 2022.
  • [19] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398, 63-110, 2014.
  • [20] J.J. Rotman, An Introduction to Homological Algebra, Second Edition, Springer, New York, 2009.
  • [21] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323-329, 1970.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Lixin Mao 0000-0001-7225-928X

Project Number 11771202
Publication Date December 1, 2022
Published in Issue Year 2022

Cite

APA Mao, L. (2022). Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics, 51(6), 1504-1516. https://doi.org/10.15672/hujms.1014028
AMA Mao L. Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics. December 2022;51(6):1504-1516. doi:10.15672/hujms.1014028
Chicago Mao, Lixin. “Homological Aspects of Formal Triangular Matrix Rings”. Hacettepe Journal of Mathematics and Statistics 51, no. 6 (December 2022): 1504-16. https://doi.org/10.15672/hujms.1014028.
EndNote Mao L (December 1, 2022) Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics 51 6 1504–1516.
IEEE L. Mao, “Homological aspects of formal triangular matrix rings”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, pp. 1504–1516, 2022, doi: 10.15672/hujms.1014028.
ISNAD Mao, Lixin. “Homological Aspects of Formal Triangular Matrix Rings”. Hacettepe Journal of Mathematics and Statistics 51/6 (December 2022), 1504-1516. https://doi.org/10.15672/hujms.1014028.
JAMA Mao L. Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics. 2022;51:1504–1516.
MLA Mao, Lixin. “Homological Aspects of Formal Triangular Matrix Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, 2022, pp. 1504-16, doi:10.15672/hujms.1014028.
Vancouver Mao L. Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics. 2022;51(6):1504-16.