Research Article
BibTex RIS Cite

CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS

Year 2010, Volume: 39 Issue: 2, 255 - 263, 01.02.2010
https://izlik.org/JA35NP77FC

Abstract

References

  • Alzer, H. and Koumandos, S. Series representations for γ and other mathematical constants, Analysis Mathematica 34, 1–8, 2008.
  • Alzer, H. and Koumandos, S. Series and product representations for some mathematical constants, Period. Math. Hungar 58 (1), 71–82, 2009.
  • Alzer, H., Karayannakis, D. and Srivastava, H. M. Series representations of some mathe- matical constants, J. Math. Anal. Appl. 320, 145–162, 2006.
  • Alzer, H. Sharp inequalities for harmonic numbers, Expo. Math. 24, 385–388, 2006.
  • Basu, A. A new method in the study of Euler sums, Ramanujan J. 16, 7–24, 2008.
  • Chu, W. and Fu, A. M. Dougall-Dixon formula and harmonic number identities, Ramanujan J. 18, 11–31, 2009.
  • Chu, W. and DeDonno, L. Identita’ binomiali e numeri armonici, Boll. Della Unione Ital- iana, Sez B., 213, 2007.
  • Euler, L. Opera Omnia, Ser. 1, Vol XV (Teubner, Berlin,1917).
  • Flajolet, P. and Salvy, B. Euler sums and contour integral representations, Expo. Math. 7, –35, 1998.
  • Georghiou, C. and Philippou, A. N. Harmonic sums and the Zeta function, Fibonacci Quart. , 29–36, 1983.
  • Krattenthaler, C. and Rao, K. S. Automatic generation of hypergeometric identities by the beta integral method, J. Comput. Math. Appl. 160, 159–173, 2003.
  • Sofo, A. Integral forms of sums associated with harmonic numbers, Appl. Math. Comput. , 365–372, 2009.
  • Sofo, A. Computational Techniques for the Summation of Series (Kluwer Academic/Plenum Publishers, New York, 2003).
  • Sofo, A. Sums of derivatives of binomial coefficients, Advances Appl. Math. 42, 123–134, Sofo, A. Harmonic numbers and double binomial coefficients, Integral Transforms and Spec. Funct. 20 (11), 847–857, 2009.
  • Sondow, J. and Weisstein, E. W. Harmonic Number, From MathWorld–A Wolfram Web Resource, availabe online at (http://mathworld.wolfram.com/HarmonicNumber.html). Wolfram Research Inc. Mathematica (Wolfram Research Inc., Champaign, IL).

CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS

Year 2010, Volume: 39 Issue: 2, 255 - 263, 01.02.2010
https://izlik.org/JA35NP77FC

Abstract

We develop a master theorem from which we are able to represent infinite sums of harmonic numbers and binomial coefficients in both integral and closed form. The new results extend known existing results in the published literature.

References

  • Alzer, H. and Koumandos, S. Series representations for γ and other mathematical constants, Analysis Mathematica 34, 1–8, 2008.
  • Alzer, H. and Koumandos, S. Series and product representations for some mathematical constants, Period. Math. Hungar 58 (1), 71–82, 2009.
  • Alzer, H., Karayannakis, D. and Srivastava, H. M. Series representations of some mathe- matical constants, J. Math. Anal. Appl. 320, 145–162, 2006.
  • Alzer, H. Sharp inequalities for harmonic numbers, Expo. Math. 24, 385–388, 2006.
  • Basu, A. A new method in the study of Euler sums, Ramanujan J. 16, 7–24, 2008.
  • Chu, W. and Fu, A. M. Dougall-Dixon formula and harmonic number identities, Ramanujan J. 18, 11–31, 2009.
  • Chu, W. and DeDonno, L. Identita’ binomiali e numeri armonici, Boll. Della Unione Ital- iana, Sez B., 213, 2007.
  • Euler, L. Opera Omnia, Ser. 1, Vol XV (Teubner, Berlin,1917).
  • Flajolet, P. and Salvy, B. Euler sums and contour integral representations, Expo. Math. 7, –35, 1998.
  • Georghiou, C. and Philippou, A. N. Harmonic sums and the Zeta function, Fibonacci Quart. , 29–36, 1983.
  • Krattenthaler, C. and Rao, K. S. Automatic generation of hypergeometric identities by the beta integral method, J. Comput. Math. Appl. 160, 159–173, 2003.
  • Sofo, A. Integral forms of sums associated with harmonic numbers, Appl. Math. Comput. , 365–372, 2009.
  • Sofo, A. Computational Techniques for the Summation of Series (Kluwer Academic/Plenum Publishers, New York, 2003).
  • Sofo, A. Sums of derivatives of binomial coefficients, Advances Appl. Math. 42, 123–134, Sofo, A. Harmonic numbers and double binomial coefficients, Integral Transforms and Spec. Funct. 20 (11), 847–857, 2009.
  • Sondow, J. and Weisstein, E. W. Harmonic Number, From MathWorld–A Wolfram Web Resource, availabe online at (http://mathworld.wolfram.com/HarmonicNumber.html). Wolfram Research Inc. Mathematica (Wolfram Research Inc., Champaign, IL).
There are 15 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Research Article
Authors

Anthony Sofo This is me

Publication Date February 1, 2010
IZ https://izlik.org/JA35NP77FC
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Sofo, A. (2010). CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS. Hacettepe Journal of Mathematics and Statistics, 39(2), 255-263. https://izlik.org/JA35NP77FC
AMA 1.Sofo A. CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):255-263. https://izlik.org/JA35NP77FC
Chicago Sofo, Anthony. 2010. “CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS”. Hacettepe Journal of Mathematics and Statistics 39 (2): 255-63. https://izlik.org/JA35NP77FC.
EndNote Sofo A (February 1, 2010) CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS. Hacettepe Journal of Mathematics and Statistics 39 2 255–263.
IEEE [1]A. Sofo, “CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 255–263, Feb. 2010, [Online]. Available: https://izlik.org/JA35NP77FC
ISNAD Sofo, Anthony. “CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS”. Hacettepe Journal of Mathematics and Statistics 39/2 (February 1, 2010): 255-263. https://izlik.org/JA35NP77FC.
JAMA 1.Sofo A. CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS. Hacettepe Journal of Mathematics and Statistics. 2010;39:255–263.
MLA Sofo, Anthony. “CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, Feb. 2010, pp. 255-63, https://izlik.org/JA35NP77FC.
Vancouver 1.Sofo A. CLOSED FORM REPRESENTATIONS OF HARMONIC SUMS. Hacettepe Journal of Mathematics and Statistics [Internet]. 2010 Feb. 1;39(2):255-63. Available from: https://izlik.org/JA35NP77FC