BibTex RIS Cite

Best Subordinants of the Strong Differential Superordination

Year 2009, Volume: 38 Issue: 3, 293 - 298, 01.03.2009

References

  • Antonino, Jos´e A. and Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations, 114, 101–105, 1994.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations. Theory and applications (Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000).
  • Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Vari- ables 48 (10), 815–826, 2003.
  • Oros, G. I. and Oros, Gh. Strong differential subordination, Turkish Journal of Mathematics 33(3), 249–257, 2009.
  • Oros, G. I. Strong differential superordination, Acta Universitatis Apulensis 19, 101–106, 2009.
  • Oros, G. I. Sufficient conditions for univalence obtained by using first order nonlinear strong differential subordinations(to appear).
  • Oros, G. I. Sufficient conditions for univalence obtained by using second order linear strong differential subordinations, Turkish Journal of Mathematics (accepted).
  • Oros, G. I. and Oros, Gh. Second order nonlinear strong differential subordinations, Bull. Belg. Math. Soc. Simon Stevin 16, 171–178, 2009.

Best Subordinants of the Strong Differential Superordination

Year 2009, Volume: 38 Issue: 3, 293 - 298, 01.03.2009

References

  • Antonino, Jos´e A. and Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations, 114, 101–105, 1994.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations. Theory and applications (Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000).
  • Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Vari- ables 48 (10), 815–826, 2003.
  • Oros, G. I. and Oros, Gh. Strong differential subordination, Turkish Journal of Mathematics 33(3), 249–257, 2009.
  • Oros, G. I. Strong differential superordination, Acta Universitatis Apulensis 19, 101–106, 2009.
  • Oros, G. I. Sufficient conditions for univalence obtained by using first order nonlinear strong differential subordinations(to appear).
  • Oros, G. I. Sufficient conditions for univalence obtained by using second order linear strong differential subordinations, Turkish Journal of Mathematics (accepted).
  • Oros, G. I. and Oros, Gh. Second order nonlinear strong differential subordinations, Bull. Belg. Math. Soc. Simon Stevin 16, 171–178, 2009.
There are 8 citations in total.

Details

Primary Language Turkish
Authors

Gheorghe Oros This is me

A.o. Taut This is me

Publication Date March 1, 2009
Published in Issue Year 2009 Volume: 38 Issue: 3

Cite

APA Oros, G., & Taut, A. (2009). Best Subordinants of the Strong Differential Superordination. Hacettepe Journal of Mathematics and Statistics, 38(3), 293-298. https://izlik.org/JA55WS53HN
AMA 1.Oros G, Taut A. Best Subordinants of the Strong Differential Superordination. Hacettepe Journal of Mathematics and Statistics. 2009;38(3):293-298. https://izlik.org/JA55WS53HN
Chicago Oros, Gheorghe, and A.o. Taut. 2009. “Best Subordinants of the Strong Differential Superordination”. Hacettepe Journal of Mathematics and Statistics 38 (3): 293-98. https://izlik.org/JA55WS53HN.
EndNote Oros G, Taut A (March 1, 2009) Best Subordinants of the Strong Differential Superordination. Hacettepe Journal of Mathematics and Statistics 38 3 293–298.
IEEE [1]G. Oros and A. Taut, “Best Subordinants of the Strong Differential Superordination”, Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 3, pp. 293–298, Mar. 2009, [Online]. Available: https://izlik.org/JA55WS53HN
ISNAD Oros, Gheorghe - Taut, A.o. “Best Subordinants of the Strong Differential Superordination”. Hacettepe Journal of Mathematics and Statistics 38/3 (March 1, 2009): 293-298. https://izlik.org/JA55WS53HN.
JAMA 1.Oros G, Taut A. Best Subordinants of the Strong Differential Superordination. Hacettepe Journal of Mathematics and Statistics. 2009;38:293–298.
MLA Oros, Gheorghe, and A.o. Taut. “Best Subordinants of the Strong Differential Superordination”. Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 3, Mar. 2009, pp. 293-8, https://izlik.org/JA55WS53HN.
Vancouver 1.Oros G, Taut A. Best Subordinants of the Strong Differential Superordination. Hacettepe Journal of Mathematics and Statistics [Internet]. 2009 Mar. 1;38(3):293-8. Available from: https://izlik.org/JA55WS53HN