Orlicz algebras associated to a Banach function space
Year 2024,
, 191 - 200, 29.02.2024
Chung-chuan Chen
,
Alireza Bagheri Salec
,
Seyed Mohammad Tabatabaie
Abstract
In this paper, we study the spaces ${\mathcal X}^\Phi$ as Banach algebras, where $\mathcal X$ is a quasi-Banach function space and $\Phi$ is a Young function, and extend some well-known facts regarding Lebesgue and Orlicz spaces on this new structure. Also, for each $p\geq 1$, we give some necessary condition for the space $\mathcal{X}^p$ to be a Banach algebra under the pointwise product.
References
- [1] A.R. Bagheri Salec and S.M. Tabatabaie, Some necessary and sufficient conditions for
convolution weighted Orlicz algebras, Bull. Iranian Math. Soc. 48, 2509-2520, 2022.
- [2] A.R. Bagheri Salec, S. Ivkovic and S.M. Tabatabaie, Spaceability on some classes of
Banach spaces, Math. Ineq. Appl. 25(3), 659-672, 2022.
- [3] A.R. Bagheri Salec, V. Kumar and S.M. Tabatabaie, Convolution properties of Orlicz
spaces on hypergroups, Proc. Amer. Math. Soc. 150(4), 1685-1696, 2022.
- [4] L. Bernal-González and M.O. Cabrera, Spaceability of strict order integrability, J.
Math. Anal. Appl. 385, 303-309, 2012.
- [5] R. del Campo, A. Fernández, F. Mayoral and F. Naranjo, Orlicz spaces associated
to a quasi-Banach function space. Applications to vector measures and interpolation,
Collect. Math. 72, 481-499, 2021.
- [6] S. Glab and F. Strobin, Dichotomies for $L^p$ spaces, J. Math. Anal. Appl. 368, 382-390,
2010.
- [7] S. Glab and F. Strobin, Spaceability of sets in $L^p\times L^q$ and $C_0\times C_0$, J. Math. Anal.
Appl. 440, 451-465, 2016.
- [8] H. Hudzik, Orlicz spaces of essentially bounded functions and Banach-Orlicz algebras,
Arch. Math. 44, 535-538, 1985.
- [9] H. Hudzik, A. Kamiska and J. Musielak, On some Banach algebras given by a modular,
in: Alfred Haar Memorial Conference, Budapest, Colloquia Mathematica Societatis
J anos Bolyai (North Holland, Amsterdam), 49, 445-463, 1985.
- [10] P. Jain, L.E. Persson and P. Upreti, Inequalities and properties of some generalized
Orlicz classes and spaces, Acta Math. Hungar. 117, 161-174, 2007.
- [11] V. Kumar, R. Sarma and N. Shravan Kumar, Orlicz algebras on homogeneous spaces
of compact groups and their abstract linear representations, Mediterr. J. Math. 15(4),
186, 2018.
- [12] V. Kumar, R. Sarma and N. Shravan Kumar, Orlicz spaces on hypergroups, Publ.
Math. Debrecen 94(1-2), 31-47, 2019.
- [13] L. Maligranda and L.E. Persson, Generalized duality of some Banach function spaces,
Proc. Konin. Nederlands Akad. Wet. 92, 323-338, 1989.
- [14] S. Okada, W. Ricker, and E.A. Sánchez-Pérez, Optimal domain and integral extension
of operators acting in functions spaces, Operator Theory: Advances and Applications,
vol. 180, Birkhäuser, Verlag, Besel, 2008.
- [15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J.
Aust. Math. Soc. 99, 399-414, 2015.
- [16] S. Öztop and S.M. Tabatabaie, Weighted Orlicz algebras on hypergroups, FILOMAT,
34(7), 2131-2139, 2020.
- [17] L. E. Persson, Some elementary inequalities in connection with Xp-spaces, in: Constructive
Theory of Functions, 367-376, 1988.
- [18] L. E. Persson, On some generalized Orlicz classes and spaces, Research Report 1988-3,
Department of Mathematics, Lulea University of Technology, 1988.
- [19] T.S. Quek and L.Y.H. Yap, Sharpness of Young’s inequality for convolution, Math.
Scand. 53, 221-237, 1983.
- [20] M. Rajagopalan, $L^p$-conjecture for locally compact groups-I, Trans. Amer. Math. Soc.
125, 216-222, 1966
- [21] M. Rajagopalan and W Zelazko, $L^p$-conjecture for solvable locally compact groups, J.
Indian Math. Soc. 29, 87-93, 1965.
- [22] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
- [23] S. Saeki, The $L^p$-conjecture and Young’s inequality, Illinois Journal of Mathematics,
34(3), 614-627, 1990.
- [24] S.M. Tabatabaie and A.R. Bagheri Salec, Convolution of two weighted Orlicz spaces
on hypergroups, Revista Colombiana de Matemáticas, 54(2), 117-128, 2020.
- [25] S.M. Tabatabaie, A.R. Bagheri Salec and M. Zare Sanjari, A note on Orlicz algebras,
Oper. Matrices, 14(1), 139-144, 2020.
- [26] S.M. Tabatabaie and A.R. Bagheri Salec, On The inclusion of X spaces, Mathematica
Bohemica, 148(1), 65-72, 2023.
Year 2024,
, 191 - 200, 29.02.2024
Chung-chuan Chen
,
Alireza Bagheri Salec
,
Seyed Mohammad Tabatabaie
References
- [1] A.R. Bagheri Salec and S.M. Tabatabaie, Some necessary and sufficient conditions for
convolution weighted Orlicz algebras, Bull. Iranian Math. Soc. 48, 2509-2520, 2022.
- [2] A.R. Bagheri Salec, S. Ivkovic and S.M. Tabatabaie, Spaceability on some classes of
Banach spaces, Math. Ineq. Appl. 25(3), 659-672, 2022.
- [3] A.R. Bagheri Salec, V. Kumar and S.M. Tabatabaie, Convolution properties of Orlicz
spaces on hypergroups, Proc. Amer. Math. Soc. 150(4), 1685-1696, 2022.
- [4] L. Bernal-González and M.O. Cabrera, Spaceability of strict order integrability, J.
Math. Anal. Appl. 385, 303-309, 2012.
- [5] R. del Campo, A. Fernández, F. Mayoral and F. Naranjo, Orlicz spaces associated
to a quasi-Banach function space. Applications to vector measures and interpolation,
Collect. Math. 72, 481-499, 2021.
- [6] S. Glab and F. Strobin, Dichotomies for $L^p$ spaces, J. Math. Anal. Appl. 368, 382-390,
2010.
- [7] S. Glab and F. Strobin, Spaceability of sets in $L^p\times L^q$ and $C_0\times C_0$, J. Math. Anal.
Appl. 440, 451-465, 2016.
- [8] H. Hudzik, Orlicz spaces of essentially bounded functions and Banach-Orlicz algebras,
Arch. Math. 44, 535-538, 1985.
- [9] H. Hudzik, A. Kamiska and J. Musielak, On some Banach algebras given by a modular,
in: Alfred Haar Memorial Conference, Budapest, Colloquia Mathematica Societatis
J anos Bolyai (North Holland, Amsterdam), 49, 445-463, 1985.
- [10] P. Jain, L.E. Persson and P. Upreti, Inequalities and properties of some generalized
Orlicz classes and spaces, Acta Math. Hungar. 117, 161-174, 2007.
- [11] V. Kumar, R. Sarma and N. Shravan Kumar, Orlicz algebras on homogeneous spaces
of compact groups and their abstract linear representations, Mediterr. J. Math. 15(4),
186, 2018.
- [12] V. Kumar, R. Sarma and N. Shravan Kumar, Orlicz spaces on hypergroups, Publ.
Math. Debrecen 94(1-2), 31-47, 2019.
- [13] L. Maligranda and L.E. Persson, Generalized duality of some Banach function spaces,
Proc. Konin. Nederlands Akad. Wet. 92, 323-338, 1989.
- [14] S. Okada, W. Ricker, and E.A. Sánchez-Pérez, Optimal domain and integral extension
of operators acting in functions spaces, Operator Theory: Advances and Applications,
vol. 180, Birkhäuser, Verlag, Besel, 2008.
- [15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J.
Aust. Math. Soc. 99, 399-414, 2015.
- [16] S. Öztop and S.M. Tabatabaie, Weighted Orlicz algebras on hypergroups, FILOMAT,
34(7), 2131-2139, 2020.
- [17] L. E. Persson, Some elementary inequalities in connection with Xp-spaces, in: Constructive
Theory of Functions, 367-376, 1988.
- [18] L. E. Persson, On some generalized Orlicz classes and spaces, Research Report 1988-3,
Department of Mathematics, Lulea University of Technology, 1988.
- [19] T.S. Quek and L.Y.H. Yap, Sharpness of Young’s inequality for convolution, Math.
Scand. 53, 221-237, 1983.
- [20] M. Rajagopalan, $L^p$-conjecture for locally compact groups-I, Trans. Amer. Math. Soc.
125, 216-222, 1966
- [21] M. Rajagopalan and W Zelazko, $L^p$-conjecture for solvable locally compact groups, J.
Indian Math. Soc. 29, 87-93, 1965.
- [22] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
- [23] S. Saeki, The $L^p$-conjecture and Young’s inequality, Illinois Journal of Mathematics,
34(3), 614-627, 1990.
- [24] S.M. Tabatabaie and A.R. Bagheri Salec, Convolution of two weighted Orlicz spaces
on hypergroups, Revista Colombiana de Matemáticas, 54(2), 117-128, 2020.
- [25] S.M. Tabatabaie, A.R. Bagheri Salec and M. Zare Sanjari, A note on Orlicz algebras,
Oper. Matrices, 14(1), 139-144, 2020.
- [26] S.M. Tabatabaie and A.R. Bagheri Salec, On The inclusion of X spaces, Mathematica
Bohemica, 148(1), 65-72, 2023.