Research Article
BibTex RIS Cite

Actions and semi-direct products in categories of groups with action

Year 2023, , 103 - 113, 15.02.2023
https://doi.org/10.15672/hujms.1028848

Abstract

Derived actions in the category of groups with action on itself $\mathbf{Gr}^{\bullet}$ are defined and described. This category plays a crucial role in the solution of two problems of Loday stated in the literature. A full subcategory of reduced groups with action $\mathbf{rGr}^{\bullet}$ of $\mathbf{Gr}^{\bullet}$ is introduced, which is not a category of interest but has some properties, which can be applied in the investigation of action representability in this category; these properties are similar to those, which were used in the construction of universal strict general actors in the category of interest. Semi-direct product constructions are given in $\mathbf{Gr}^{\bullet}$ and $\mathbf{rGr}^{\bullet}$ and it is proved that an action is a derived action in $\mathbf{Gr}^{\bullet}$ (resp. $\mathbf{rGr}^{\bullet}$) if and only if the corresponding semi-direct product is an object of $\mathbf{Gr}^{\bullet}$ (resp. $\mathbf{rGr}^{\bullet}$). The results obtained in this paper will be applied in the forthcoming paper on the representability of actions in the category $\mathbf{rGr}^{\bullet}$.

References

  • [1] F. Borceux, G.Z. Janelidze and G.M. Kelly, Internal object actions, Comment. Math. Univ. Carolin. 46 (2), 235-255, 2005.
  • [2] Y. Boyacı, J.M. Casas, T. Datuashvili and E.Ö. Uslu, Actions in modified categories of interest with application to crossed modules, Theor. Appl. Categ. 30, 882-908, 2015.
  • [3] J.M. Casas, T. Datuashvili and M. Ladra, Actors in categories of interest, arXiv:0702574v2 [math.CT], 2007.
  • [4] J.M. Casas, T. Datuashvili and M. Ladra, Universal strict general actors and actors in categories of interest, Appl. Categor. Struct. 18, 85-114, 2010.
  • [5] T. Datuashvili, Central series for groups with action and Leibniz algebras, Georgian Math. J. 9 (4), 671-682, 2002.
  • [6] T. Datuashvili, Witt’s theorem for groups with action and free Leibniz algebras, Georgian Math. J. 11 (4), 691-712, 2004.
  • [7] T. Datuashvili, Categorical, homological, and homotopical properties of algebraic objects, J. Math. Sci. 225 (3), 383-533, 2017.
  • [8] T. Datuashvili and T. Şahan, Pentactions and action representability in the category of reduced groups with action, Submitted for publication, arXiv:2203.05345v2 [math.CT], 2022.
  • [9] A.G. Kurosh, Lectures in General Algebra (Translated from Russian), Pergamon Press, Oxford-Edinburgh-New York, 1965.
  • [10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (3-4), 269-293, 1993.
  • [11] J.-L. Loday, Algebraic K-theory and the conjectural Leibniz K-theory, K-Theory 30 (2), 105-127, 2003.
  • [12] G. Orzech, Obstruction theory in algebraic categories, I, J. Pure. Appl. Algebra 2 (4), 287-314, 1972.
  • [13] G. Orzech, Obstruction theory in algebraic categories, II, J. Pure. Appl. Algebra 2 (4), 315-340, 1972.
  • [14] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, P. Edinburgh Math. Soc. 30 (3), 373-381, 1987.
Year 2023, , 103 - 113, 15.02.2023
https://doi.org/10.15672/hujms.1028848

Abstract

References

  • [1] F. Borceux, G.Z. Janelidze and G.M. Kelly, Internal object actions, Comment. Math. Univ. Carolin. 46 (2), 235-255, 2005.
  • [2] Y. Boyacı, J.M. Casas, T. Datuashvili and E.Ö. Uslu, Actions in modified categories of interest with application to crossed modules, Theor. Appl. Categ. 30, 882-908, 2015.
  • [3] J.M. Casas, T. Datuashvili and M. Ladra, Actors in categories of interest, arXiv:0702574v2 [math.CT], 2007.
  • [4] J.M. Casas, T. Datuashvili and M. Ladra, Universal strict general actors and actors in categories of interest, Appl. Categor. Struct. 18, 85-114, 2010.
  • [5] T. Datuashvili, Central series for groups with action and Leibniz algebras, Georgian Math. J. 9 (4), 671-682, 2002.
  • [6] T. Datuashvili, Witt’s theorem for groups with action and free Leibniz algebras, Georgian Math. J. 11 (4), 691-712, 2004.
  • [7] T. Datuashvili, Categorical, homological, and homotopical properties of algebraic objects, J. Math. Sci. 225 (3), 383-533, 2017.
  • [8] T. Datuashvili and T. Şahan, Pentactions and action representability in the category of reduced groups with action, Submitted for publication, arXiv:2203.05345v2 [math.CT], 2022.
  • [9] A.G. Kurosh, Lectures in General Algebra (Translated from Russian), Pergamon Press, Oxford-Edinburgh-New York, 1965.
  • [10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (3-4), 269-293, 1993.
  • [11] J.-L. Loday, Algebraic K-theory and the conjectural Leibniz K-theory, K-Theory 30 (2), 105-127, 2003.
  • [12] G. Orzech, Obstruction theory in algebraic categories, I, J. Pure. Appl. Algebra 2 (4), 287-314, 1972.
  • [13] G. Orzech, Obstruction theory in algebraic categories, II, J. Pure. Appl. Algebra 2 (4), 315-340, 1972.
  • [14] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, P. Edinburgh Math. Soc. 30 (3), 373-381, 1987.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Tamar Datuashvili 0000-0002-9956-7773

Tunçar Şahan 0000-0002-6552-4695

Publication Date February 15, 2023
Published in Issue Year 2023

Cite

APA Datuashvili, T., & Şahan, T. (2023). Actions and semi-direct products in categories of groups with action. Hacettepe Journal of Mathematics and Statistics, 52(1), 103-113. https://doi.org/10.15672/hujms.1028848
AMA Datuashvili T, Şahan T. Actions and semi-direct products in categories of groups with action. Hacettepe Journal of Mathematics and Statistics. February 2023;52(1):103-113. doi:10.15672/hujms.1028848
Chicago Datuashvili, Tamar, and Tunçar Şahan. “Actions and Semi-Direct Products in Categories of Groups With Action”. Hacettepe Journal of Mathematics and Statistics 52, no. 1 (February 2023): 103-13. https://doi.org/10.15672/hujms.1028848.
EndNote Datuashvili T, Şahan T (February 1, 2023) Actions and semi-direct products in categories of groups with action. Hacettepe Journal of Mathematics and Statistics 52 1 103–113.
IEEE T. Datuashvili and T. Şahan, “Actions and semi-direct products in categories of groups with action”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, pp. 103–113, 2023, doi: 10.15672/hujms.1028848.
ISNAD Datuashvili, Tamar - Şahan, Tunçar. “Actions and Semi-Direct Products in Categories of Groups With Action”. Hacettepe Journal of Mathematics and Statistics 52/1 (February 2023), 103-113. https://doi.org/10.15672/hujms.1028848.
JAMA Datuashvili T, Şahan T. Actions and semi-direct products in categories of groups with action. Hacettepe Journal of Mathematics and Statistics. 2023;52:103–113.
MLA Datuashvili, Tamar and Tunçar Şahan. “Actions and Semi-Direct Products in Categories of Groups With Action”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, 2023, pp. 103-1, doi:10.15672/hujms.1028848.
Vancouver Datuashvili T, Şahan T. Actions and semi-direct products in categories of groups with action. Hacettepe Journal of Mathematics and Statistics. 2023;52(1):103-1.