Completeness of fuzzy quasi-pseudometric spaces
Year 2023,
, 426 - 444, 31.03.2023
Shi Yi
,
Wei Yao
Abstract
The purpose of this paper is to present the relations among the completeness of sequences, of filters and of nets in the framework of fuzzy quasi-pseudometric spaces. In particular, we show that right completeness of filters and of sequences are equivalent under special conditions of fuzzy quasi-pseudometrics. By introducing a kind of more general right K-Cauchy nets in fuzzy quasi-pseudometric spaces, the equivalence between the completeness of the nets and the sequential completeness is established.
Supporting Institution
National Natural Science Foundation of China
Thanks
This paper is supported by National Natural Science Foundation of China (11871189, 1211101082), Natural Science Foundation of Hebei Province (A2020208008), Jiangsu Provincial Innovative and Entrepreneurial Talent Support Plan (JSSCRC202521) and the Startup Foundation for Introducing Talent of NUIST (2019r63).
References
- [1] E. Alemany and S. Romaguera, On right K-sequentially complete quasi-metric spaces,
Acta Math. Hungar. 75, 267–278, 1997.
- [2] N.F. Al-Mayahi and I.H. Radhi, The closure in fuzzy metric (normed) space, Tikrit
J. Pure Sci. 18, 411–412, 2013.
- [3] F. Castro-Company, S. Romaguera and P. Tirado, The bicompletion of fuzzy quasi-
metric spaces, Fuzzy Sets Syst. 166, 56–64, 2011.
- [4] Ş. Cobzaş, Completeness in quasi-pseudometric spaces–a survey, Math. 8, 1279, 2020.
- [5] A.S. Davis, Indexed systems of neighbourhoods for general topological spaces, Amer.
Math. Mon. 68, 886–893, 1961.
- [6] D. Doitchinov, On completeness in quasi-metric spaces, Topology Appl. 30, 127–148,
1988.
- [7] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst.
64, 395–399, 1994.
- [8] A. George and P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math.
3, 933–940, 1995.
- [9] V. Gregori and J. Ferrer, A note on R. Stoltenberg’s completion theory of quasi-
uniform spaces. Proc. Lond. Math. Soc. 49, 36–36, 1984.
- [10] V. Gregori, A. López-Crevillén, S. Morillas and A. Sapena, On convergence in fuzzy
metric spaces, Topology Appl. 156, 3002–3006, 2009.
- [11] V. Gregori, J.J. Miñana, S. Morillas and A. Sapena, Characterizing a class of com-
pletable fuzzy metric spaces, Topology Appl. 203, 3–11, 2016.
- [12] V. Gregori, S. Morillas and A. Sapena, On completion of fuzzy quasi-metric spaces,
Topology Appl. 153, 886–899, 2005.
- [13] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets
Syst. 115, 485–489, 2000.
- [14] V. Gregori and S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Sets Syst.
130, 399–404, 2002.
- [15] V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topology 5,
129–136, 2004.
- [16] V. Gregori, S. Romaguera and A. Sapena, A characterization of bicpmpletable fuzzy
quasi-metric spaces, Fuzzy Sets Syst. 152, 395–402, 2005.
- [17] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. 12, 71–89, 1963.
- [18] E.P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers,
Dordrecht, 2000.
- [19] I. Kramosil and J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica
11, 326–334, 1975.
- [20] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA. 28, 535–537, 1942.
- [21] I.L. Reilly, A generalized contraction principle, Bull. Austral. Math. Soc. 10, 359–363,
1974.
- [22] I.L. Reilly, I.L. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasi-
pseudo-metric spaces, Monatsh. Math. 93, 127–140, 1982.
- [23] S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr. 157, 15–23,
1992.
- [24] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland series in prob-
ability and applied mathematics, Elsevier Science Publishing Co. Inc. 1983.
- [25] H. Sherwood, On the completion of probabilistic metric spaces, Z. Wahrsch. Verw.
Geb. 6, 62–64, 1966.
- [26] R.A. Stoltenberg, Some properties of quasi-uniform spaces, Proc. Lond. Math. Soc.
17, 226–240, 1967.
- [27] P.V. Subrahmanyam, Remarks on some fixed-point theorems related to Banach’s con-
traction principle, J. Math. Phys. Sci. 8, 455–457, 1974.
- [28] A. Wald, On a statistical generalization of metric spaces, Proc. Nat. Acad. Sci. USA.
29, 196–197, 1943.
- [29] W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53, 675–684, 1931.
- [30] J.R. Wu, X. Tang, Caristi’s fixed point theorem, Ekeland’s variational principle and
Takahashi’s maximization theorem in fuzzy quasi-metric spaces, Topology Appl. 302,
108701, 2021.
- [31] H. Yang and B. Pang, Fuzzy points based betweenness relations in L-convex spaces,
Filomat 35 (10), 3521–3532, 2021.
- [32] Y. Yue and J. Fang, Completeness in probabilistic quasi-uniform spaces, Fuzzy Sets
and Systems 370, 34–62, 2019.
- [33] L. Zhang and B. Pang, The category of residuated lattice valued filter spaces, Quaest.
Math. https://doi.org/10.2989/16073606.2021.1973140, 2021.
- [34] L. Zhang and B. Pang, Monoidal closedness of the category of $\top$-semiuniform conver-
gence spaces, Hacet. J. Math. Stat. 51 (5), 1348–1370, 2022.
- [35] F. Zhao and B. Pang, Equivalence among L-closure (interior) operators, L-closure
(interior) systems and L-enclosed (internal) relations, Filomat 36 (3), 979–1003,
2022.