When every ideal is $\phi$-P-flat
Year 2023,
, 708 - 720, 30.05.2023
Hwankoo Kım
,
Najib Mahdou
,
El Houssaine Oubouhou
Abstract
Let $R$ be a commutative ring with nonzero identity. An $R$-module $M$ is called $\phi$-P-flat if $x \in \Ann(s)M$ for every non-nilpotent element $s \in R$ and $x\in M$ such that $sx=0$. In this paper, we introduce and study the class of $\phi$-PF-rings, i.e., rings in which all ideals are $\phi$-P-flat. Among other results, the transfer of the $\phi$-PF-ring to the amalgamation is investigated. Several examples which delineate the concepts and results are provided.
Supporting Institution
National Research Foundation of Korea
Project Number
2021R1I1A3047469
References
- [1] D. F. Anderson and A. Badawi, On $\phi$-Prüfer rings and $\phi$-Bézout rings, Houston J.
Math 30 (2), 331–343, 2004.
- [2] D. D. Anderson and M. Winders, Idealization of a module, J. Comm. Algebra 1 (1),
3–56, 2009.
- [3] G. Artico and U. Marconi, On the compactness of minimal spectrum, Rend. Sem.
Mat. Univ. Padova 56, 79–84, 1976.
- [4] A. Badawi, On divided commutative rings, Comm. Algebra 27 (3), 1465–1474, 1999.
- [5] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer condi-
tions, J. Pure Appl. Algebra 214 (1), 53–60, 2010.
- [6] G. W. Chang and H. Kim, Prüfer rings in a certain pullback, Comm. Algebra, to
appear, 2022, doi: 10.1080/00927872.2022.2149766.
- [7] F. Cheniour and N. Mahdou, When every principal ideal is flat, Port. Math. (N.S.),
70 (1), 51–58, 2011.
- [8] F. Couchot, Flat modules over valuation rings, J. Pure Appl. Algebra 211 (1), 235–
247, 2007.
- [9] M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 (2), 507–519, 2006.
- [10] M. D’Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal,
in: Commutative Algebra and Applications, Proceedings of the Fifth International
Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, pp.
155-172, W. de Gruyter Publisher, Berlin, 2009.
- [11] M. D’Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals
in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214 (9), 1633–1641,
2010.
- [12] M. D’Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an
amalgamated algebra along an ideal, Comm. Algebra 44, 1836–1851, 2016.
- [13] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443–459, 2007.
- [14] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
- [15] A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring
theory, a survey, Moroccan Journal of Algebra and Geometry with Applications 1
(1), 139–182, 2022.
- [16] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics 1371, Berlin:
Spring-Verlag, 1989.
- [17] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York
Basel, 1988.
- [18] S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions,
Comm. Algebra 32 (10), 3937–3953, 2004.
- [19] H. Kim and F. Wang, On $\phi$-strong Mori rings, Houston J. Math. 38 (2), 359–371,
2012.
- [20] J.J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009.
- [21] F.Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra
and Applications 22, Springer, Singapore, 2016.
- [22] W. Zhao, On $\phi$-flat modules and $\phi$-Prüfer rings, J. Korean Math. Soc. 55 (5), 1221–
1233, 2018.
- [23] W. Zhao, F. Wang and G. Tang, On $\phi$-von Neumann regular rings, J. Korean Math.
Soc. 50 (1), 219–229, 2013.
Year 2023,
, 708 - 720, 30.05.2023
Hwankoo Kım
,
Najib Mahdou
,
El Houssaine Oubouhou
Project Number
2021R1I1A3047469
References
- [1] D. F. Anderson and A. Badawi, On $\phi$-Prüfer rings and $\phi$-Bézout rings, Houston J.
Math 30 (2), 331–343, 2004.
- [2] D. D. Anderson and M. Winders, Idealization of a module, J. Comm. Algebra 1 (1),
3–56, 2009.
- [3] G. Artico and U. Marconi, On the compactness of minimal spectrum, Rend. Sem.
Mat. Univ. Padova 56, 79–84, 1976.
- [4] A. Badawi, On divided commutative rings, Comm. Algebra 27 (3), 1465–1474, 1999.
- [5] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer condi-
tions, J. Pure Appl. Algebra 214 (1), 53–60, 2010.
- [6] G. W. Chang and H. Kim, Prüfer rings in a certain pullback, Comm. Algebra, to
appear, 2022, doi: 10.1080/00927872.2022.2149766.
- [7] F. Cheniour and N. Mahdou, When every principal ideal is flat, Port. Math. (N.S.),
70 (1), 51–58, 2011.
- [8] F. Couchot, Flat modules over valuation rings, J. Pure Appl. Algebra 211 (1), 235–
247, 2007.
- [9] M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 (2), 507–519, 2006.
- [10] M. D’Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal,
in: Commutative Algebra and Applications, Proceedings of the Fifth International
Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, pp.
155-172, W. de Gruyter Publisher, Berlin, 2009.
- [11] M. D’Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals
in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214 (9), 1633–1641,
2010.
- [12] M. D’Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an
amalgamated algebra along an ideal, Comm. Algebra 44, 1836–1851, 2016.
- [13] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443–459, 2007.
- [14] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
- [15] A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring
theory, a survey, Moroccan Journal of Algebra and Geometry with Applications 1
(1), 139–182, 2022.
- [16] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics 1371, Berlin:
Spring-Verlag, 1989.
- [17] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York
Basel, 1988.
- [18] S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions,
Comm. Algebra 32 (10), 3937–3953, 2004.
- [19] H. Kim and F. Wang, On $\phi$-strong Mori rings, Houston J. Math. 38 (2), 359–371,
2012.
- [20] J.J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009.
- [21] F.Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra
and Applications 22, Springer, Singapore, 2016.
- [22] W. Zhao, On $\phi$-flat modules and $\phi$-Prüfer rings, J. Korean Math. Soc. 55 (5), 1221–
1233, 2018.
- [23] W. Zhao, F. Wang and G. Tang, On $\phi$-von Neumann regular rings, J. Korean Math.
Soc. 50 (1), 219–229, 2013.