Research Article
BibTex RIS Cite

Hom-Gel'fand-Dorfman conformal superbialgebras

Year 2024, , 577 - 585, 27.06.2024
https://doi.org/10.15672/hujms.1196147

Abstract

Gel'fand Dorfman superbialgebra, which is both a Lie superalgebra and a (left) Novikov superalgebra with some compatibility condition, appears in the study of Hamiltonian pairs in completely integrable systems and a class of special Lie conformal superalgebras called quadratic Lie conformal superalgebras. In the present paper, we generalize this algebraic structure to the Hom-conformal case. We introduce first, Hom-Novikov conformal superalgebras and exihibit several properties. Then we introduce Hom-Gel'fand Dorfman superbialgebra and provide some construction results.

References

  • [1] A. D’Andrea and V. G. Kac, Structure theory of finite conformal algebras, Selecta Math. New ser. 4, 377, 1998.
  • [2] B. Bakalov, V. Kac and A. Voronov, Cohomology of conformal algebras, Comm. Math. Phys. 200, 561-598, 1999.
  • [3] I.M. Gelfand and I.Y. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Its Appl. 13, 248-262, 1979.
  • [4] J. T. Hartwig, D. Larsson, D. and S. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2), 314361, 2006.
  • [5] Y. Hong. A Class of Lie Conformal Superalgebras in Higher Dimensions. J. Lie Theory 26 (4), 1145-1162, 2016.
  • [6] Y. Hong and Z. Wu, Simplicity of quadratic Lie conformal algebras , Comm. Algebra 45 141-150, 2017.
  • [7] Y. Hong and F. Li, Left-symmetric conformal algebras and vertex algebras. J. Pure Appl. Algebra 219 (8), 3543-3567, 2015.
  • [8] V. G. Kac, Vertex Algebras for Beginners, Univ. Lect. Ser. vol. 10 (Amer. Math. Soc., Providence, RI, 1996), second edition 1998.
  • [9] P. S. Kolesnikov, Simple associative conformal algebras of linear growth, J. Algebra 295 (1), 247-268, 2006.
  • [10] A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Electron. J. Algebra 8 (8), 177-190, 2010.
  • [11] A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2), 51-64, 2008.
  • [12] J. Osborn, Novikov algebras, Nova J. Algebra and Geom. 1, 1-14, 1992.
  • [13] M. Roitman, On embedding of Lie conformal algebras into associative conformal algebras, J. Lie theory 15, 575-588, 2005.
  • [14] X. Xu, Gelfand-Dorfman bialgebras, Southeast Asian Bulletin of Mathematics 27, 561-574, 2003.
  • [15] X. Xu, Quadratic conformal superalgebras, J. Algebra 231 (1), 1-38 2000.
  • [16] D. Yau, Hom-Novikov algebras, J. Phys. A: Math. Theor. 44, 085202, 2011.
  • [17] L. Yuan, Hom Gelfand-Dorfman bialgebras and Hom-Lie conformal algebras, J. Math. Phys. 55 , 043507, 2014.
  • [18] L.M. Yuan, S. Chen and C. He, Hom-GelfandDorfman super-bialgebras and Hom-Lie conformal superalgebras, Acta Math. Sin. (Engl. Ser.) 33 (1), 96-116, 2017.
  • [19] E. I. Zelmanov, Idempotents in conformal algebras, Proceedings of the Third International Algebra Conference, Tainan, 257-266, 2002.
Year 2024, , 577 - 585, 27.06.2024
https://doi.org/10.15672/hujms.1196147

Abstract

References

  • [1] A. D’Andrea and V. G. Kac, Structure theory of finite conformal algebras, Selecta Math. New ser. 4, 377, 1998.
  • [2] B. Bakalov, V. Kac and A. Voronov, Cohomology of conformal algebras, Comm. Math. Phys. 200, 561-598, 1999.
  • [3] I.M. Gelfand and I.Y. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Its Appl. 13, 248-262, 1979.
  • [4] J. T. Hartwig, D. Larsson, D. and S. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2), 314361, 2006.
  • [5] Y. Hong. A Class of Lie Conformal Superalgebras in Higher Dimensions. J. Lie Theory 26 (4), 1145-1162, 2016.
  • [6] Y. Hong and Z. Wu, Simplicity of quadratic Lie conformal algebras , Comm. Algebra 45 141-150, 2017.
  • [7] Y. Hong and F. Li, Left-symmetric conformal algebras and vertex algebras. J. Pure Appl. Algebra 219 (8), 3543-3567, 2015.
  • [8] V. G. Kac, Vertex Algebras for Beginners, Univ. Lect. Ser. vol. 10 (Amer. Math. Soc., Providence, RI, 1996), second edition 1998.
  • [9] P. S. Kolesnikov, Simple associative conformal algebras of linear growth, J. Algebra 295 (1), 247-268, 2006.
  • [10] A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Electron. J. Algebra 8 (8), 177-190, 2010.
  • [11] A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2), 51-64, 2008.
  • [12] J. Osborn, Novikov algebras, Nova J. Algebra and Geom. 1, 1-14, 1992.
  • [13] M. Roitman, On embedding of Lie conformal algebras into associative conformal algebras, J. Lie theory 15, 575-588, 2005.
  • [14] X. Xu, Gelfand-Dorfman bialgebras, Southeast Asian Bulletin of Mathematics 27, 561-574, 2003.
  • [15] X. Xu, Quadratic conformal superalgebras, J. Algebra 231 (1), 1-38 2000.
  • [16] D. Yau, Hom-Novikov algebras, J. Phys. A: Math. Theor. 44, 085202, 2011.
  • [17] L. Yuan, Hom Gelfand-Dorfman bialgebras and Hom-Lie conformal algebras, J. Math. Phys. 55 , 043507, 2014.
  • [18] L.M. Yuan, S. Chen and C. He, Hom-GelfandDorfman super-bialgebras and Hom-Lie conformal superalgebras, Acta Math. Sin. (Engl. Ser.) 33 (1), 96-116, 2017.
  • [19] E. I. Zelmanov, Idempotents in conformal algebras, Proceedings of the Third International Algebra Conference, Tainan, 257-266, 2002.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Taoufik Chtioui 0000-0002-1950-217X

Early Pub Date August 15, 2023
Publication Date June 27, 2024
Published in Issue Year 2024

Cite

APA Chtioui, T. (2024). Hom-Gel’fand-Dorfman conformal superbialgebras. Hacettepe Journal of Mathematics and Statistics, 53(3), 577-585. https://doi.org/10.15672/hujms.1196147
AMA Chtioui T. Hom-Gel’fand-Dorfman conformal superbialgebras. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):577-585. doi:10.15672/hujms.1196147
Chicago Chtioui, Taoufik. “Hom-Gel’fand-Dorfman Conformal Superbialgebras”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 577-85. https://doi.org/10.15672/hujms.1196147.
EndNote Chtioui T (June 1, 2024) Hom-Gel’fand-Dorfman conformal superbialgebras. Hacettepe Journal of Mathematics and Statistics 53 3 577–585.
IEEE T. Chtioui, “Hom-Gel’fand-Dorfman conformal superbialgebras”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 577–585, 2024, doi: 10.15672/hujms.1196147.
ISNAD Chtioui, Taoufik. “Hom-Gel’fand-Dorfman Conformal Superbialgebras”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 577-585. https://doi.org/10.15672/hujms.1196147.
JAMA Chtioui T. Hom-Gel’fand-Dorfman conformal superbialgebras. Hacettepe Journal of Mathematics and Statistics. 2024;53:577–585.
MLA Chtioui, Taoufik. “Hom-Gel’fand-Dorfman Conformal Superbialgebras”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 577-85, doi:10.15672/hujms.1196147.
Vancouver Chtioui T. Hom-Gel’fand-Dorfman conformal superbialgebras. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):577-85.