Research Article
BibTex RIS Cite

On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces

Year 2024, , 894 - 914, 27.08.2024
https://doi.org/10.15672/hujms.1197627

Abstract

Let $\psi \in H(\mathbb{B}_n),$ the space of all holomorphic functions on the unit ball $\mathbb{B}_n$ of $\mathbb{C}^n,$ $\varphi = (\varphi_1, \ldots, \varphi_n) \in S(\mathbb{B}_n)$ the set of holomorphic self-maps of $\mathbb{B}_n.$ Let $C_{\psi, \varphi}: \mathcal B_{\nu}$ (and $ \mathcal B_{\nu,0}$) $\to \mathcal B_{\mu} $ (and $ \mathcal B_{\mu,0}$) be weighted extended Cesàro operators induced by products of the extended Cesàro operator $ C_\varphi $ and integral operator $T_\psi.$ In this paper, we characterize the boundedness and compactness of $ C_{\psi,\varphi} $ via the estimates for either $ |\varphi| $ or $ |\varphi_k| $ for some $ k\in \{1,\ldots,n\}. $ At the same time, we also give the asymptotic estimates of the norms of these operators.

Supporting Institution

The Science and Technology Planning Project of Quang Ngai Province

References

  • [1] A. Aleman, J. Cima, An integral operator on $H^p$ and Hardys inequality, J. Anal. Math. 85, 157-176, 2001.
  • [2] A. Aleman, A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. 46, 337-356, 1997.
  • [3] K. Avetisyanm, S. Stevic, Extended Cesàro operators between different Hardy spaces, Appl. Math. Computation 207(2), 346-350, 2009.
  • [4] H. Hamada, Bloch-type spaces and extended Cesàro operators in the unit ball of a complex Banach space, Sci. China Math. 62(4), 617-628, 2019.
  • [5] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131(7), 2171-2179, 2003.
  • [6] Z.J. Hu, S.S. Wang, Composition operators on Bloch-type spaces, Proc. Roy. Soc. Edinburgh Sect. A 135, 1229-1239, 2005.
  • [7] S. Li, S. Stevic, Compactness of Riemann-Stieltjes operators between $ F(p, q, s) $ spaces and $ \alpha$-Bloch spaces, Publ. Math. Debrecen 72(1-2), 111-128, 2008.
  • [8] S. Li, S. Stevic, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. 15(4), 677-686, 2008.
  • [9] S. Li, S. Stevic, Products of Volterra type operator and composition operator from $ H^\infty $ and Bloch spaces to Zygmund spaces, J. Math. Ana. Appl. 345(1), 40-52, 2008.
  • [10] Yu-X. Liang, Ze-H. Zhou, Product of Extended Cesàro Operator and Composition Operator from Lipschitz Space to $ F(p, q, s) $ Space on the Unit Ball, Hind. Publ. Corp. Abst. Appl. Anal., Article ID 152635, 9 pages, 2011.
  • [11] A. L. Shields, D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162, 287-302, 1971.
  • [12] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of $\mathbb{C}^n$, J. Math. Anal. Appl. 326, 1199-1211, 2007.
  • [13] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Doctoral Dissertation, Michigan State University, 1996.
  • [14] S.S. Wang, Z.J. Hu, Extended Cesàro operators on Bloch-type spaces, Chinese Ann. Math. Ser. A 26 (5), 613-624 (in Chinese), 2005.
  • [15] J. Xiao, Cesàro operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68, 398- 406, 1997.
  • [16] W. F. Yang, Volterra composition operators from $ F(p, q, s) $ spaces to Bloch-type spaces, Bull. Malay. Math. Sci. Soc. 34(2), 267-277, 2011.
  • [17] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005.
Year 2024, , 894 - 914, 27.08.2024
https://doi.org/10.15672/hujms.1197627

Abstract

References

  • [1] A. Aleman, J. Cima, An integral operator on $H^p$ and Hardys inequality, J. Anal. Math. 85, 157-176, 2001.
  • [2] A. Aleman, A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. 46, 337-356, 1997.
  • [3] K. Avetisyanm, S. Stevic, Extended Cesàro operators between different Hardy spaces, Appl. Math. Computation 207(2), 346-350, 2009.
  • [4] H. Hamada, Bloch-type spaces and extended Cesàro operators in the unit ball of a complex Banach space, Sci. China Math. 62(4), 617-628, 2019.
  • [5] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131(7), 2171-2179, 2003.
  • [6] Z.J. Hu, S.S. Wang, Composition operators on Bloch-type spaces, Proc. Roy. Soc. Edinburgh Sect. A 135, 1229-1239, 2005.
  • [7] S. Li, S. Stevic, Compactness of Riemann-Stieltjes operators between $ F(p, q, s) $ spaces and $ \alpha$-Bloch spaces, Publ. Math. Debrecen 72(1-2), 111-128, 2008.
  • [8] S. Li, S. Stevic, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. 15(4), 677-686, 2008.
  • [9] S. Li, S. Stevic, Products of Volterra type operator and composition operator from $ H^\infty $ and Bloch spaces to Zygmund spaces, J. Math. Ana. Appl. 345(1), 40-52, 2008.
  • [10] Yu-X. Liang, Ze-H. Zhou, Product of Extended Cesàro Operator and Composition Operator from Lipschitz Space to $ F(p, q, s) $ Space on the Unit Ball, Hind. Publ. Corp. Abst. Appl. Anal., Article ID 152635, 9 pages, 2011.
  • [11] A. L. Shields, D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162, 287-302, 1971.
  • [12] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of $\mathbb{C}^n$, J. Math. Anal. Appl. 326, 1199-1211, 2007.
  • [13] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Doctoral Dissertation, Michigan State University, 1996.
  • [14] S.S. Wang, Z.J. Hu, Extended Cesàro operators on Bloch-type spaces, Chinese Ann. Math. Ser. A 26 (5), 613-624 (in Chinese), 2005.
  • [15] J. Xiao, Cesàro operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68, 398- 406, 1997.
  • [16] W. F. Yang, Volterra composition operators from $ F(p, q, s) $ spaces to Bloch-type spaces, Bull. Malay. Math. Sci. Soc. 34(2), 267-277, 2011.
  • [17] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Lien Vuong Lam 0000-0003-0634-8019

Thai Thuan Quang 0000-0003-3029-9157

Early Pub Date January 10, 2024
Publication Date August 27, 2024
Published in Issue Year 2024

Cite

APA Vuong Lam, L., & Thuan Quang, T. (2024). On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces. Hacettepe Journal of Mathematics and Statistics, 53(4), 894-914. https://doi.org/10.15672/hujms.1197627
AMA Vuong Lam L, Thuan Quang T. On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces. Hacettepe Journal of Mathematics and Statistics. August 2024;53(4):894-914. doi:10.15672/hujms.1197627
Chicago Vuong Lam, Lien, and Thai Thuan Quang. “On the Boundedness and Compactness of Extended Cesàro Composition Operators Between Weighted Bloch-Type Spaces”. Hacettepe Journal of Mathematics and Statistics 53, no. 4 (August 2024): 894-914. https://doi.org/10.15672/hujms.1197627.
EndNote Vuong Lam L, Thuan Quang T (August 1, 2024) On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces. Hacettepe Journal of Mathematics and Statistics 53 4 894–914.
IEEE L. Vuong Lam and T. Thuan Quang, “On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, pp. 894–914, 2024, doi: 10.15672/hujms.1197627.
ISNAD Vuong Lam, Lien - Thuan Quang, Thai. “On the Boundedness and Compactness of Extended Cesàro Composition Operators Between Weighted Bloch-Type Spaces”. Hacettepe Journal of Mathematics and Statistics 53/4 (August 2024), 894-914. https://doi.org/10.15672/hujms.1197627.
JAMA Vuong Lam L, Thuan Quang T. On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53:894–914.
MLA Vuong Lam, Lien and Thai Thuan Quang. “On the Boundedness and Compactness of Extended Cesàro Composition Operators Between Weighted Bloch-Type Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, 2024, pp. 894-1, doi:10.15672/hujms.1197627.
Vancouver Vuong Lam L, Thuan Quang T. On the boundedness and compactness of extended Cesàro composition operators between weighted Bloch-type spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53(4):894-91.